首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECT: The goal of this study was to identify a reliable landmark for hand sensory function in the central area. METHODS: Hand sensory activation on positron emission tomography (PET) scans was analyzed in 27 patients. Each PET study was coregistered with the patient's magnetic resonance image and analyzed in two-dimensional and three-dimensional cortical surface reconstructions to define anatomicofunctional relationships. CONCLUSIONS: The substratum of hand sensory function is a prominent fold of cortex elevating the floor of the central sulcus and connecting the pre- and postcentral gyri. Broca named this cortical fold the pli de passage moyen, and hand motor function has been localized to the precentral component of this structure. In this study the authors demonstrate that hand sensory function is highly correlated with the postcentral component of the pli de passage moyen, and that this structure is a reliable cortical landmark for identifying the aforementioned function.  相似文献   

2.
The authors applied PET activation study to two patients with arteriovenous malformation (AVM) to localize primary motor cortex before surgery or embolization. The change in regional cerebral blood flow (rCBF) was measured during foot movements in Case 1 who had a 2-cm AVM located in the post-central gyrus. Superimposed PET/MRI images revealed that the rCBF increase was located in the pre-central gyrus. Its validity was confirmed by intraoperative cortical mapping using electrical median nerve stimulation. The patient safely underwent total removal of AVM. The change in regional cerebral metabolic rate for glucose (rCMRglc) was measured during hand movements in Case 2 who had a huge AVM over the central sulcus. Superimposed PET/MRI images revealed that hand movements significantly increased rCMRglc in the frontal cortex, which was separated from the original primary motor area. The patient safely underwent partial embolization, although he suffered transient weakness of the face after embolization. The preliminary results strongly suggest that PET activation study is useful to localize precisely cortical functions of the patients with AVM, thus reducing morbidity after treatment. The results also suggest that cortical functions may undergo translocation when huge AVM involves the eloquent area.  相似文献   

3.
OBJECT: The pli de passage moyen (PPM) is an omega-shaped cortical landmark bulging into the central sulcus. There has been considerable interest in the PPM given that hand motor and sensory tasks have been found on functional magnetic resonance (fMR) imaging to activate the structure. Note, however, that the cortical function subserved by the PPM is not completely understood. Finger and thumb function are somatotopically organized over the central area and encompass a larger cortical surface than the anatomical PPM. Therefore, a sensory or motor hand area within the PPM would be redundant with the somatotopically organized digit function in the primary sensorimotor cortex. In this study the authors aimed to clarify the function subserved by the PPM and further evaluate hand area function in the primary sensorimotor cortex. METHODS: To further elucidate the function subserved by the PPM, patients underwent cortical stimulation in the region of the PPM as well as fMR imaging-demonstrated activation of the hand area. Two separate analytical methods were used to correlate hand area functional imaging with whole-hand sensory and motor responses induced by cortical stimulation. RESULTS: A relationship of the anatomical PPM with cortical stimulation responses as well as hand fMR imaging activation was observed. CONCLUSIONS: A strong relationship was identified between the PPM, whole-hand sensory and motor stimulation responses, and fMR imaging hand activation. Whole-hand motor and whole-hand sensory cortical regions were identified in the primary sensorimotor cortex. It was localized to the PPM and exists in addition to the somatotopically organized finger and thumb sensory and motor areas.  相似文献   

4.
The traditional means of localizing sensorimotor cortex during surgery is Penfield's procedure of mapping sensory and motor responses elicited by electrical stimulation of the cortical surface. This procedure can accurately localize sensorimotor cortex but is time-consuming and best carried out in awake, cooperative patients. An alternative localization procedure is presented that involves cortical surface recordings of somatosensory evoked potentials (SEP's), providing accurate and rapid localization in patients under either local or general anesthesia. The morphology and amplitude of median nerve SEP's recorded from the cortical surface varied systematically as a function of spatial location relative to the sensorimotor hand representation area. These results were validated in 18 patients operated on under local anesthesia in whom the sensorimotor cortex was independently localized by electrical stimulation mapping; the two procedures were in agreement in all cases. Similar SEP results were demonstrated in an additional 27 patients operated on under general anesthesia without electrical stimulation mapping. The following three spatial relationships between SEP's and the anatomy of the sensorimotor cortex permit rapid and accurate localization of the sensorimotor hand area: 1) SEP's with approximately mirror-image waveforms are recorded at electrode sites in the hand area on opposite sides of the central sulcus (P20-N30 precentrally and N20-P30 postcentrally); 2) the P25-N35 is recorded from the postcentral gyrus as well as a small region of the precentral gyrus in the immediate vicinity of the central sulcus: this waveform is largest on the postcentral gyrus about 1 cm medial to the focus of the 20- and 30-msec potentials; and 3) regardless of component identification, maximum SEP amplitudes are recorded from the hand representation area on the precentral and postcentral gyri.  相似文献   

5.
Liu W  Lai JJ  Qu YM 《中华外科杂志》2004,42(13):781-783
目的 探讨累及补充运动区额上回胶质瘤的外科治疗。方法 对 16例累及补充运动区的低级别星形细胞瘤患者的临床资料及随访结果进行分析。结果 手术切除范围距中央前沟 >1cm的病变 8例 ,其中 6例表现为补充运动区综合征 ,虽出现暂时的运动和语言功能障碍 ,但随访 12个月 ,均得到恢复 ;而手术切除范围距中央前沟 <1cm的 8例病变 ,术后均立即出现对侧肢体偏瘫 ,随访 12个月 ,仍有 5例遗留运动障碍。结论 对于累及补充运动区的额上回胶质瘤 ,当手术切除范围距中央前沟 <1cm时 ,很可能造成永久性的功能障碍  相似文献   

6.
Microsurgical anatomy of the insula and the sylvian fissure   总被引:13,自引:0,他引:13  
OBJECT: The purpose of this study was to define the topographic anatomy, arterial supply, and venous drainage of the insula and sylvian fissure. METHODS: The neural, arterial, and venous anatomy of the insula and sylvian fissure were examined in 43 cerebral hemispheres. CONCLUSIONS: The majority of gyri and sulci of the frontoparietal and temporal opercula had a constant relationship to the insular gyri and sulci and provided landmarks for approaching different parts of the insula. The most lateral lenticulostriate artery, an important landmark in insular surgery, arose 14.6 mm from the apex of the insula and penetrated the anterior perforated substance 15.3 mm medial to the limen insulae. The superior trunk of the middle cerebral artery (MCA) and its branches supplied the anterior, middle, and posterior short gyri; the anterior limiting sulcus; the short sulci; and the insular apex. The inferior trunk supplied the posterior long gyrus, inferior limiting sulcus, and limen area in most hemispheres. Both of these trunks frequently contributed to the supply of the central insular sulcus and the anterior long gyrus. The areas of insular supply of the superior and inferior trunks did not overlap. The most constant insular area of supply by the cortical MCA branches was from the prefrontal and precentral arteries that supplied the anterior and middle short gyri, respectively. The largest insular perforating arteries usually arose from the central and angular arteries and most commonly entered the posterior half of the central insular sulcus and posterior long gyrus. Insular veins drained predominantly to the deep middle cerebral vein, although frequent connections to the superficial venous system were found. Of all the insular veins, the precentral insular vein was the one that most commonly connected to the superficial sylvian vein.  相似文献   

7.
OBJECT: The goal of this study was to determine the somatotopical structure-function relationships of the primary motor cortex in individual patients by using functional magnetic resonance (fMR) imaging. This was done to assess whether there is a displacement of functional areas compared with anatomical landmarks in patients harboring brain tumors close to the central region, and to validate these findings with intraoperative cortical stimulation. METHODS: One hundred twenty hemispheres in 60 patients were studied by obtaining blood oxygen level-dependent fMR images in patients while they performed movements of the foot, hand, and face on both sides. There was a good correspondence between anatomical landmarks in the deep portion of the central sulcus on axial slices and the somatotopical organization of primary motor areas. Pixels activated during hand movements were centered on a small characteristic digitation; those activated during movements in the face and foot areas were located in the lower portion of the central sulcus (lateral to the hand area) and around the termination of the central sulcus, respectively. In diseased hemispheres, signal-intensity changes were still observed in the projection of the expected anatomical area. The fMR imaging data mapped intraoperative electrical stimulation in 92% of positive sites. CONCLUSIONS: There was a high correspondence between the somatotopical anatomy and function in the central sulcus, which was similar in normal and diseased hemispheres. The fMR imaging and electrical stimulation data were highly concordant. These findings may enable the neurosurgeon to locate primary motor areas more easily during surgery.  相似文献   

8.
The aim of this (15)O-labelled H(2)O bolus positron emission tomography (PET) study was to analyse the hemispheric dominance of the vestibular cortical system. Therefore, the differential effects of caloric vestibular stimulation (right or left ear irrigation with warm water at 44 degrees C) on cortical and subcortical activation were studied in 12 right-handed and 12 left-handed healthy volunteers. Caloric irrigation induces a direction-specific sensation of rotation and nystagmus. Significant regional cerebral blood flow increases were found in a network within both hemispheres, including the superior frontal gyrus/sulcus, the precentral gyrus and the inferior parietal lobule with the supramarginal gyrus. These areas correspond best to the cortical ocular motor centres, namely the prefrontal cortex, the frontal eye field and the parietal eye field, known to be involved in the processing of caloric nystagmus. Furthermore, distinct temporo-parietal activations could be separated in the posterior part of the insula with the adjacent superior temporal gyrus, the inferior parietal lobule and precuneus. These areas fit best to the human homologues of multisensory vestibular cortex areas identified in the monkey and correspond to the parieto-insular vestibular cortex (PIVC), the visual temporal sylvian area (VTS) and areas 7 and 6. Further cortical activations were seen in the anterior insula, the inferior frontal gyrus and anterior cingulum. The subcortical activation pattern in the putamen, thalamus and midbrain is consistent with the organization of efferent ocular motor pathways. Cortical and subcortical activation of the described areas was bilateral during monaural stimulation, but predominant in the hemisphere ipsilateral to the stimulated ear and exhibited a significant right hemispheric dominance for vestibular and ocular motor structures in right-handed volunteers. Similarly, a significant left hemispheric dominance was found in the 12 left-handed volunteers. Thus, this PET study showed for the first time that cortical and subcortical activation by vestibular caloric stimulation depends (i) on the handedness of the subjects and (ii) on the side of the stimulated ear. Maximum activation was therefore found when the non-dominant hemisphere was ipsilateral to the stimulated ear, i.e. in the right hemisphere of right-handed subjects during caloric irrigation of the right ear and in the left hemisphere of left-handed subjects during caloric irrigation of the left ear. The localization of handedness and vestibular dominance in opposite hemispheres might conceivably indicate that the vestibular system and its hemispheric dominance, which matures earlier during ontogenesis, determine right- or left-handedness.  相似文献   

9.
Neurophysiological studies in non-human primates have identified saccade-related neuronal activity in cortical regions including frontal (FEF), supplementary (SEF) and parietal eye fields. Lesion and neuroimaging studies suggest a generally homologous mapping of the oculomotor system in humans; however, a detailed mapping of the precise anatomical location of these functional regions has not yet been achieved. We investigated dorsal frontal and parietal cortex during a saccade task vs. central fixation in 10 adult subjects using functional magnetic resonance imaging (fMRI). The FEF were restricted to the precentral sulcus, and did not extend anteriorly into Brodmann area 8, which has traditionally been viewed as their location in humans. The SEF were located in cortex along the interhemispheric fissure and extended minimally onto the dorsal cortical surface. Parietal activation was seen in precuneus and along the intraparietal sulcus, extending into both superior and inferior parietal lobules. These findings localize areas in frontal and parietal cortex involved in saccade generation in humans, and indicate significant differences from the macaque monkey in both frontal and parietal cortex. These differences may have functional implications for the roles these areas play in visuomotor processes.   相似文献   

10.
Surgical resection of grade II astrocytomas in the superior frontal gyrus   总被引:6,自引:0,他引:6  
Peraud A  Meschede M  Eisner W  Ilmberger J  Reulen HJ 《Neurosurgery》2002,50(5):966-75; discussion 975-7
OBJECTIVE: Surgery in the superior frontal gyrus partially involving the supplementary motor area (SMA) may be followed by contralateral transient weakness and aphasia initially indistinguishable from damage to the primary motor cortex. However, recovery is different, and SMA deficits may resolve completely within days to weeks. No study has assessed the distinct postoperative deficits after tumor resection in the SMA on a homogeneous patient group. METHODS: Twenty-four patients with World Health Organization Grade II astrocytomas in the superior frontal gyrus consecutively treated by surgery were studied. Degree and duration of postoperative deficits were evaluated according to tumor location and boundaries via magnetic resonance imaging scans, intraoperative neuromonitoring results, and extent of tumor resection. RESULTS: Postoperatively, motor deficits were evident in 21 of 24 and speech deficits in 9 of 12 patients. Motor function quickly recovered in 11 and speech function in 3 patients. None of the 12 patients in whom the posterior tumor resection line was at a distance of more than 0.5 cm from the precentral sulcus experienced persistent motor deficits. Eight of these patients developed typical SMA syndrome with transient initiation difficulties. Seven of 12 patients in whom the tumor extended to the precentral sulcus still had motor deficits at the 12-month follow-up assessment. CONCLUSION: Surgery for Grade II gliomas in the superior frontal gyrus is more likely to result in permanent morbidity when the resection is performed at a distance of less than 0.5 cm from the precentral gyrus or positive stimulation points. Therefore, cortical mapping of motor and speech function, in critical cases under local anesthesia with the patient as his or her own monitor, is recommended; resection should be tailored to obtain good functional outcome and maintain quality of life.  相似文献   

11.
BACKGROUND/AIMS: The 'precentral knob', a cortical representation of the motor hand function, can be identified and localized consistently using magnetic resonance imaging (MRI) and functional MRI. We present a method of indirectly identifying and localizing the Omega-shaped precentral knob using the anatomical landmarks on computed tomography (CT). METHODS: CT and MRI obtained within 24 h from 10 patients undergoing a headache workup and found to be negative for any anatomical abnormalities were studied. First, the precentral knob was identified in the CT images. Then, the 'coronal suture line' and 'midline' were identified and used to measure the distance to the precentral knob on both hemispheres. MRI was used to confirm the location of the precentral knob in the CT images based on anatomical landmarks (i.e. sulcal configurations). RESULTS: The precentral knob is located 45.1 +/- 5.2 mm posterior with respect to the coronal suture line and 33.9 +/- 3.4 mm lateral to the midline on the right hemisphere, and 44.6 +/- 5.7 mm posterior and 33.2 +/- 2.5 mm lateral on the left hemisphere. CONCLUSION: We present a method of consistently identifying and localizing the Omega-shaped precentral knob, a cortical representation of the motor hand function, using CT.  相似文献   

12.
OBJECT: Broca identified the posterior third of the inferior frontal gyrus as a locus essential for the production of fluent speech. The authors have conducted this retrospective analysis in an attempt to find readily identifiable landmarks on magnetic resonance (MR) imaging that correspond to intraoperative cortical stimulation-induced speech arrest. These landmarks demonstrate novel structural-functional relationships that can be used preoperatively to predict the location of the Broca area. METHODS: Using a neuronavigation system, sites where stimulation produced speech arrest (Broca area) were recorded in a consecutive series of patients undergoing awake tumor resections in the perisylvian territory of the dominant hemisphere. The authors reviewed 33 consecutive patients by projecting the MR imaging data sets and marking the site where the Broca area was identified. Sulcus topography was analyzed with respect to this site by scrolling into neighboring planes and classifying the frontal operculum into one of the four schemes of sulcus variability described by Ebeling, et al. The following categories of frontal opercula were found: 18 (69%) of 26 were Type I, eight (31%) of 26 were Type III, and seven cases eluded classification because of sulcal effacement. For patients with Type I anatomy, the Broca area was adjacent to, and distributed evenly around, the inferior precentral sulcus (IPS). Quantitatively, the site of speech arrest was located a mean of 2.4 +/- 0.25 cm from the anteroinferior aspect of the pars opercularis, where it abuts the subarachnoid space surrounding the apex of the pars triangularis. For all patients with Type III anatomy, the Broca area was adjacent to the accessory sulcus that lies immediately posterior to the IPS. In these patients the mean distance from the anterior inferior pars opercularis was 2.3 +/- 0.29 cm. The mean distance from the Broca area to the edge of the tumor for the 26 patients with clear sulcal anatomy was 1.29 +/- 0.12 cm. CONCLUSIONS: The results indicate a correlation between the structure of the frontal operculum as seen on MR imaging and the functional localization of speech arrest in the dominant hemisphere. Additionally, sulcal landmarks that can be used preoperatively to predict the location of the Broca area within the inferior frontal gyrus are described based on the patient population. This information will allow the surgeon to determine if an awake craniotomy is necessary to identify the Broca area when planning a surgical procedure near the dominant frontal operculum.  相似文献   

13.
OBJECT: The goal of this study was to investigate the anatomical localization and functional role of human frontal eye fields (FEFs) by comparing findings from two independently conducted studies. METHODS: In the first study, 3-tesla functional magnetic resonance (fMR) imaging was performed in 14 healthy volunteers divided into two groups: the first group executed self-paced voluntary saccades in complete darkness and the second group repeated newly learned or familiar sequences of saccades. In the second study, intracerebral electrical stimulation (IES) was performed in 38 patients with epilepsy prior to surgery, and frontal regions where stimulation induced versive eye movements were identified. These studies showed that two distinct oculomotor areas (OMAs) could be individualized in the region classically corresponding to the FEFs. One OMA was consistently located at the intersection of the superior frontal sulcus with the fundus of the superior portion of the precentral sulcus, and was the OMA in which saccadic eye movements could be the most easily elicited by electrical stimulation. The second OMA was located more laterally, close to the surface of the precentral gyrus. The fMR imaging study and the IES study demonstrated anatomical and stereotactic agreement in the identification of these cortical areas. CONCLUSIONS: These findings indicate that infracentimetric localization of cortical areas can be achieved by measuring the vascular signal with the aid of 3-tesla fMR imaging and that neuroimaging and electrophysiological recording can be used together to obtain a better understanding of the human cortical functional anatomy.  相似文献   

14.
Human neuroimaging studies conducted during visuospatial working memory tasks have inconsistently detected activation in the prefrontal cortical areas depending presumably on the type of memory and control tasks employed. We used functional magnetic resonance imaging to study brain activation related to the performance of a visuospatial n-back task with different memory loads (0-back, 1-back and 2-back tasks). Comparison of the 2-back versus 0-back tasks revealed consistent, bilateral activation in the medial frontal gyrus (MFG), superior frontal sulcus and adjacent cortical tissue (SFS/SFG) in all subjects and in six out of seven subjects in the intraparietal sulcus (IPS). Activation was also detected in the inferior frontal gyrus, medially in the superior frontal gyrus, precentral gyrus, superior and inferior parietal lobuli, occipital visual association areas, anterior and posterior cingulate areas and in the insula. Comparison between the 1- back versus 0-back tasks revealed activation only in a few brain areas. Activation in the MFG, SFS/SFG and IPS appeared dependent on memory load. The results suggest that the performance of a visuospatial working memory task engages a network of distributed brain areas and that areas in the dorsal visual pathway are engaged in mnemonic processing of visuospatial information.   相似文献   

15.
Cortical motor and somatosensory representation: effect of cerebral lesions   总被引:12,自引:0,他引:12  
OBJECT: Changes in cortical representation in patients with cerebral lesions may alter the correlation between cortical anatomy and function. This is of potential clinical significance when the extent of cortical resection is based on surface anatomical landmarks. METHODS: Fifty-one patients with supratentorial lesions were studied. Nineteen harbored noncentral lesions (no involvement of pre- or postcentral gyrus), whereas 32 had central lesions. Control studies consisted of stimulation of the hand contralateral to the unaffected hemisphere. Positron emission tomography activation studies were performed using the [15O]H2O tracer. Somatosensory stimulation of the hand or foot was performed using a mechanical vibrator. Motor activation consisted of hand clenching or foot tapping. The t-statistic volumes were generated from images showing the mean change in regional cerebral blood flow, and coregistered with a T1-weighted magnetic resonance image. At the threshold selected, exclusive contralateral primary sensorimotor cortex activation was elicited in 100% of the control studies. A different pattern of cortical activation was associated with central lesions in 35 (78%) of 45 patients, which occurred significantly more often than with noncentral lesions (eight [31%] of 26 patients). The most common difference in the pattern of activation with central lesions was activation of cortical regions outside the central area (including the supplementary sensorimotor area and the secondary somatosensory cortex). No sensorimotor activation was observed in gyri adjacent to the pre- or postcentral gyrus. CONCLUSIONS: Central lesions are more frequently associated with altered patterns in activation than lesions in noncentral locations. Characteristic patterns include activation of secondary sensorimotor areas. The absence of activation in gyri adjacent to the sensorimotor strip has clinical significance for the planning of resections in the central area.  相似文献   

16.
A case is presented which represents the first instance of the use of functional positron emission tomography (PET) scanning to precisely localize a structural brain lesion to the precentral gyrus, and the first validation of functional PET scanning by intraoperative cortical mapping. The lesion was a 3-cm arteriovenous malformation (AVM) that had produced a generalized seizure in an otherwise asymptomatic young woman. A first, resting H2(15)O PET scan identified the AVM. A second PET scan, performed during vibrotactile stimulation of the contralateral hand, identified the somatosensory area of the hand region and localized the AVM to that part of the precentral gyrus immediately in front of it. This relationship and localization were confirmed by cortical mapping at the time of craniotomy under local anesthesia. Functional PET scanning may prove to be useful to localize cortical lesions precisely and to help in determining preoperatively the best form of treatment for lesions, especially AVM's, in functionally important cortex.  相似文献   

17.
To examine the distribution of visual and oculomotor activity across the macaque brain, we performed functional magnetic resonance imaging (fMRI) on awake, behaving monkeys trained to perform visually guided saccades. Two subjects alternated between periods of making saccades and central fixations while blood oxygen level dependent (BOLD) images were collected [3 T, (1.5 mm)3 spatial resolution]. BOLD activations from each of four cerebral hemispheres were projected onto the subjects' cortical surfaces and aligned to a surface-based atlas for comparison across hemispheres and subjects. This surface-based analysis revealed patterns of visuo-oculomotor activity across much of the cerebral cortex, including activations in the posterior parietal cortex, superior temporal cortex and frontal lobe. For each cortical domain, we show the anatomical position and extent of visuo-oculomotor activity, including evidence that the dorsolateral frontal activation, which includes the frontal eye field (on the anterior bank of the arcuate sulcus), extends anteriorly into posterior principal sulcus (area 46) and posteriorly into part of dorsal premotor cortex (area 6). Our results also suggest that subcortical BOLD activity in the pulvinar thalamus may be lateralized during voluntary eye movements. These findings provide new neuroanatomical information as to the complex neural substrates that underlie even simple goal-directed behaviors.  相似文献   

18.
Recent anatomical evidence from nonhuman primates indicates that cingulate motor areas (CMAs) play a substantial role in the cortical control of upper facial movement. Using event-related functional magnetic resonance imaging in 10 healthy subjects, we examined brain activity associated with volitional eye closure involving primarily the bilateral orbicularis oculi. The findings were compared with those from bimanual tapping, which should identify medial frontal areas nonsomatotopically or somatotopically related to bilateral movements. In a group-level analysis, the blinking task was associated with rostral cingulate activity more strongly than the bimanual tapping task. By contrast, the bimanual task activated the caudal cingulate zone plus supplementary motor areas. An individual-level analysis indicated that 2 foci of blinking-specific activity were situated in the cingulate or paracingulate sulcus: one close to the genu of the corpus callosum (anterior part of rostral cingulate zone) and the posterior part of rostral cingulate zone. The present data support the notion that direct cortical innervation of the facial subnuclei from the CMAs might control upper face movement in humans, as previously implied in nonhuman primates. The CMAs may contribute to the sparing of upper facial muscles after a stroke involving the lateral precentral motor regions.  相似文献   

19.
Summary Purpose: This paper describes the potentials of functional magnetic resonance imaging (fMRI) to map sensory motor cortex in patients with mass lesions near primary motor cortex and to guide neurosurgical procedures located close to eloquent brain regions. Material and Methods: 7 patients with mass lesions near the central sulcus and 10 healthy volunteers were studied using a blood oxygenation level dependent 2D multislice multishot T2* weighted gradient echo EPI sequence on a 1.5T Phillips Gyroscan during alternating epochs of rest and motor activation of hand, foot and tongue. Sites of neuronal activation were identified by statistical analysis of the signal time course using Kolmogorov Smirnov statistics. Results: Neuronal activation following motor tasks consistently localised to the contralateral precentral gyrus and the supplementary motor area, even in the presence of local brain pathology. Additionally we could observe activation in primary sensory areas (postcentral gyrus) and supplementary motor area (SMA) in some cases. Conclusion: fMRI is capable of mapping sensory motor cortex even in the presence of distorting brain lesions. Since this information will provide valuable information to the neurosurgeon during pre-operative planning, we consider this method for neurosurgical navigation a valuable tool in the routine diagnostic of intracerebral interventions.  相似文献   

20.
The aim of the present study was to evaluate motor area mapping using functional magnetic resonance imaging (fMRI) compared with electrical cortical stimulation (ECS). Motor mapping with fMRI and ECS were retrospectively compared in seven patients with refractory epilepsy in which the primary motor (M1) areas were identified by fMRI and ECS mapping between 2012 and 2019. A right finger tapping task was used for fMRI motor mapping. Blood oxygen level-dependent activation was detected in the left precentral gyrus (PreCG)/postcentral gyrus (PostCG) along the “hand knob” of the central sulcus in all seven patients. Bilateral supplementary motor areas (SMAs) were also activated (n = 6), and the cerebellar hemisphere showed activation on the right side (n = 3) and bilateral side (n = 4). Furthermore, the premotor area (PM) and posterior parietal cortex (PPC) were also activated on the left side (n = 1) and bilateral sides (n = 2). The M1 and sensory area (S1) detected by ECS included fMRI-activated PreCG/PostCG areas with broader extent. This study showed that fMRI motor mapping was locationally well correlated to the activation of M1/S1 by ECS, but the spatial extent was not concordant. In addition, the involvement of SMA, PM/PPC, and the cerebellum in simple voluntary movement was also suggested. Combination analysis of fMRI and ECS motor mapping contributes to precise localization of M1/S1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号