首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的和方法:研究白三烯D4(LTD4)是否剌激培养的人气管平滑肌细胞(ASMC)增殖。将分离的人ASMC进行传代培养,在培养基中加入各种浓度的LTD4,计数细胞并测定 [3H]-胸腺嘧啶核苷([3H]-TdR)掺入量和三磷酸肌醇(IP3)累积量。结果: LTD4在一定范围内(0.1 nmoL·L-1~10 nmoL·L-1)以浓度依赖的方式增加人ASMC(P<0.01)。LTD4也增加[3H]-TdR的掺入量和IP3累积量(P<0.01)。磷脂酶C抑制剂新霉素(1 μmol·L-1)阻止IP3累积量的增加(P<0.01)。结论:LTD4剌激培养的人ASMC增殖并且可能在哮喘的气道重塑中起了作用。  相似文献   

2.
3.
4.
5.
目的和方法 :研究白三烯D4 (LTD4 )是否剌激培养的人气管平滑肌细胞 (ASMC)增殖。将分离的人ASMC进行传代培养 ,在培养基中加入各种浓度的LTD4 ,计数细胞并测定 [3 H]-胸腺嘧啶核苷 ([3 H]-TdR)掺入量和三磷酸肌醇 (IP3 )累积量。结果 :LTD4 在一定范围内 (0 1nmoL·L-1~ 10nmoL·L-1)以浓度依赖的方式增加人ASMC(P <0 0 1)。LTD4 也增加 [3 H]-TdR的掺入量和IP3 累积量 (P <0 0 1)。磷脂酶C抑制剂新霉素(1μmol·L-1)阻止IP3 累积量的增加 (P <0 0 1)。结论 :LTD4 剌激培养的人ASMC增殖并且可能在哮喘的气道重塑中起了作用。  相似文献   

6.
The initial bronchoconstrictor response of the asthmatic airway depends on airway smooth muscle (ASM) contraction. Intracellular calcium is a key signaling molecule, mediating a number of responses, including proliferation, gene expression, and contraction of ASM. Ca(2+) influx through receptor-operated calcium (ROC) or store-operated calcium (SOC) channels is believed to mediate longer term signals. The mechanisms of SOC activation in ASM remain to be elucidated. Recent literature has identified the STIM and ORAI proteins as key signaling players in the activation of the SOC subtype; calcium release-activated channel current (I(CRAC)) in a number of inflammatory cell types. However, the role for these proteins in activation of SOC in smooth muscle is unclear. We have previously demonstrated a role for STIM1 in SOC channel activation in human ASM. The aim of this study was to investigate the expression and define the potential roles of the ORAI proteins in SOC-associated Ca(2+) influx in human ASM cells. Here we show that knockdown of ORAI1 by siRNA resulted in reduced thapsigargin- or cyclopiazonic acid (CPA)-induced Ca(2+) influx, without affecting Ca(2+) release from stores or basal levels. CPA-induced inward currents were also reduced in the ORAI1 knockdown cells. We propose that ORAI1 together with STIM1 are important contributors to SOC entry in ASM cells. These data extend the major tissue types in which these proteins appear to be major determinants of SOC influx, and suggest that modulation of these pathways may prove useful in the treatment of bronchoconstriction.  相似文献   

7.
8.
Mechanical properties and contractility of airway smooth muscle tissue are largely responsible for airway narrowing and airway hyperresponsiveness in asthma. To explain these pathological phenomena, investigators have studied the mechanical behaviour of airway smooth muscle cells and its relationship to the underlying cellular biophysical and biochemical mechanisms. During the past decade, a growing body of evidence has indicated that a deformable intracellular polymer network, known as the cytoskeleton, plays a major role in transmitting and distributing mechanical forces within the cell and in their conversion into biochemical responses. We review here evidence suggesting that the tensed and crosslinked cytoskeletal lattice, the contractile apparatus, and the cytoskeleton–extracellular matrix interactions are key determinants of mechanical properties and mechanosensing of airway smooth muscle cells, with the mechanical distending stress of the cytoskeleton playing the central role.  相似文献   

9.
Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodeling, which is associated with increased airway smooth muscle (ASM) mass. Licochalcone A is the predominant characteristic chalcone in licorice root. We found that licochalcone A inhibited vascular endothelial growth factor (VEGF)-induced ASM cell proliferation and induced cell cycle arrest. Additionally, VEGF-induced ASM cell proliferation was suppressed via inhibition of extracellular signal-regulated kinase 1/2 (ERK1/2) activity, but not that of Akt. Furthermore, licochalcone A treatment inhibited VEGF-induced activation of VEGF receptor 2 (VEGFR2) and ERK and blocked the downregulation of caveolin-1 in a concentration-dependent manner. Collectively, our findings suggested that licochalcone A inhibited VEGF-induced ASM cell proliferation by suppressing VEGFR2 and ERK1/2 activation and downregulating caveolin-1. Further studies of these mechanisms are needed to facilitate the development of treatments for smooth muscle hyperplasia-associated diseases of the airway, such as asthma.  相似文献   

10.
气道平滑肌增殖是支气管哮喘的特征性病理改变。本研究用体外培养的大鼠气道平滑肌细胞 (ASMC) ,观察了白细胞介素 4(IL 4 )对其增殖的影响。实验用四唑盐比色法 (MTT法 )和3 H TdR掺入法。MTT检测结果以OD值表示 ,加入IL 4的 2 4h组和 48h组分别为 0 32 3± 0 0 2 6 (x—±s,下同 )和 0 4 5 3± 0 0 48,比相应时间对照组的 0 191±0 0 18和 0 335± 0 0 6 3明显增加 ,(P均 <0 0 0 1) ;3 H TdR掺入也得到类似结果 ,IL 4 2 4h组 3 H掺入量为 76 5 8± 6 34 ,高于对照组的 6 0 6 0± 6 71counts min(P <0 0 1) ;用MTT检测法还观察到作用 2 4h ,IL 4 +胸腺肽组为 0 30 8± 0 0 0 7、IL 4 +地塞米松组为 0 2 45± 0 0 0 8比IL 4组 0 32 4± 0 0 14降低 (分别P <0 0 5及P <0 0 0 1) ,说明两种药物均可抑制IL 4的促增殖作用。实验表明IL 4可能还通过促进ASMC的增殖参与哮喘发病 ;而抑制IL 4对ASMC的促增殖作用可能是胸腺肽和地塞米松治疗哮喘的机制之一。  相似文献   

11.
12.
BACKGROUND: The hypertrophy/hyperplasia of airway smooth muscle (ASM) cells is one of the characteristic features of bronchial asthma. This structural change leads to the thickening of airway walls resulting in the amplification of airway narrowing. However, the pathogenesis of this structural change has not yet been determined. Eosinophils, which play a pathogenic role in asthma, have been demonstrated to have proliferative effects on fibroblasts and vascular smooth muscle cells. OBJECTIVE: We attempted to investigate the potential of eosinophils to induce the proliferation of ASM cells. METHODS: We examined the effect of lysates of eosinophils purified from peripheral blood of healthy donors on cultured human ASM cell proliferation. RESULTS: Eosinophil lysates significantly induced ASM cell proliferation in time- and dose-dependent manners, reaching a maximum on day 6 at 50% of eosinophil lysates (6.0 +/- 0.7 x 104 [mean +/- SD] /well, n = 5 vs. 4.5 +/- 1.1 x 104/well, n = 5; P < 0.05). This proliferative activity was heat-sensitive and recovered in the soluble fraction of the eosinophil lysates. Furthermore, the molecular weight of the mitogenic activity in the soluble fraction was identified as lower than 10 kDa. The inhibitory activity to ASM cell proliferation was also found in the insoluble fraction of the lysates. CONCLUSION: These results indicate that circulating eosinophils store mitogenic activity for ASM cells, suggesting that eosinophils might contribute to the development of the hyperplasia of ASM cells in asthmatics through the release of the stored mitogenic activity upon stimulation at the site of inflammation.  相似文献   

13.
Ryanodine receptor 1 (RyR1) is well-known to be expressed in systemic and pulmonary vascular smooth muscle cells (SMCs); however, its functional roles remain largely unknown. In the present study, we attempted to determine the potential importance of RyR1 in membrane depolarization-, neurotransmitter-, and hypoxia-induced Ca2+ release and contraction in pulmonary artery SMCs (PASMCs) using RyR1 homozygous and heterozygous gene deletion (RyR1−/− and RyR1+/−) mice. Our results indicate that spontaneous local Ca2+ release and caffeine-induced global Ca2+ release are significantly reduced in embryonic RyR1−/− and adult RyR+/− cells. An increase in [Ca2+]i following membrane depolarization with high K+ is markedly attenuated in RyR1−/− and RyR1+/− PASMCs in normal Ca2+ or Ca2+-free extracellular solution. Similarly, muscle contraction evoked by membrane depolarization is reduced in RyR1+/− pulmonary arteries in the presence or absence of extracellular Ca2+. Neurotransmitter receptor agonists and inositol 1,4,5-triphosphate elicit a much smaller increase in [Ca2+]i in both RyR1−/− and RyR1+/− cells. We have also found that neurotransmitter-evoked muscle contraction is significantly inhibited in RyR1+/− pulmonary arteries. Hypoxia-induced increase in [Ca2+]i and contraction are largely blocked in RyR1−/− and/or RyR1+/− PASMCs. Collectively, our findings provide genetic evidence for the functional importance of RyR1 in spontaneous local Ca2+ release, and membrane depolarization-, neurotransmitter-, as well as hypoxia-induced global Ca2+ release and attendant contraction in PASMCs.  相似文献   

14.
Large-conductance, calcium-activated potassium (BK(Ca)) channels are regulated by voltage and near-membrane calcium concentrations and are determinants of membrane potential and excitability in airway smooth muscle cells. Since the T helper-2 (Th2) cytokine, interleukin (IL)-4, is an important mediator of airway inflammation, we investigated whether IL-4 rapidly regulated BK(Ca) activity in normal airway smooth muscle cells. On-cell voltage clamp recordings were made on subconfluent, cultured human bronchial smooth muscle cells (HBSMC). Interleukin-4 (50 ng ml(-1)), IL-13 (50 ng ml(-1)) or histamine (10 microm) was added to the bath during the recordings. Immunofluorescence studies with selective antibodies against the alpha and beta1 subunits of BK(Ca) were also performed. Both approaches demonstrated that HBSMC membranes contained large-conductance channels (>200 pS) with both calcium and voltage sensitivity, all of which is characteristic of the BK(Ca) channel. Histamine caused a rapid increase in channel activity, as expected. A new finding was that perfusion with IL-4 stimulated rapid, large increases in BK(Ca) channel activity (77.2 +/- 63.3-fold increase, P < 0.05, n = 18). This large potentiation depended on the presence of external calcium. In contrast, IL-13 (50 ng ml(-1)) had little effect on BK(Ca) channel activity, but inhibited the effect of IL-4. Thus, HBSMC contain functional BK(Ca) channels whose activity is rapidly potentiated by the cytokine, IL-4, but not by IL-13. These findings are consistent with a model in which IL-4 rapidly increases near-membrane calcium concentrations to regulate BK(Ca) activity.  相似文献   

15.
 目的:探讨1,25-二羟维生素D3[1,25-(OH)2D3]对被动致敏人气道平滑肌细胞(HASMCs)中核因子κB(NF-κB)信号通路的影响。方法:原代培养HASMCs并使之被动致敏,以1,25-(OH)2D3作为干预因素。EMSA法检测NF-κB的DNA结合活性;免疫细胞化学染色技术观察NF-κB p65的核易位情况;Western blotting法检测核因子κB抑制蛋白α(IκBα)及p-IκBα蛋白的表达水平;实时荧光定量PCR检测维生素D受体(VDR)、维生素D 24-羟化酶(CYP24)和IκBα mRNA的表达水平;放线菌素D处理实验检测IκBα mRNA的表达。结果:(1) 1,25-(OH)2D3显著削弱被动致敏HASMCs中NF-κB的DNA结合活性及其亚单位 p65的核易位;(2) 1,25-(OH)2D3能通过增加被动致敏HASMCs中IκBα的mRNA稳定性及减少其蛋白磷酸化水平2个途径显著上调细胞中IκBα的表达;(3) 1,25-(OH)2D3显著上调被动致敏HASMCs中VDR的mRNA表达并诱发其功能性反应。结论:1,25-(OH)2D3能通过上调被动致敏HASMCs中IκBα的表达抑制细胞NF-κB信号通路,且这一作用与VDR有关,这可能是其调控被动致敏HASMCs的重要作用机制。  相似文献   

16.
The ADP-ribosyl cyclase activity of CD38 generates cyclic ADP-ribose, a Ca(2+)-mobilizing agent. In human airway smooth muscle (HASM) cells, TNF-α mediates CD38 expression through mitogen-activated protein kinases and NF-κB and AP-1. The phosphatidylinositol-3 kinase/Akt (PI3K/Akt) pathway is involved in TNF-α signaling and contributes to airway hyperresponsiveness and airway remodeling. We hypothesized that PI3Ks mediate CD38 expression and are involved in the differential induction of CD38 by TNF-α in asthmatic HASM cells. HASM cells were treated with pan-PI3K inhibitors (LY294002 or wortmannin) or class I-selective (GDC0941) or isoform-selective PI3K inhibitors (p110α-PIK-75 and p110β-TGX-221) with or without TNF-α. HASM cells were transfected with a catalytically active form of PI3K or phosphatase and tensin homolog (PTEN) or nontargeting or p110 isoform-targeting siRNAs before TNF-α exposure. CD38 expression and activation of Akt, NF-κB, and AP-1 were determined. LY294002 and wortmannin inhibited TNF-α-induced Akt activation, whereas only LY294002 inhibited CD38 expression. P110 expression caused Akt activation and basal and TNF-α-induced CD38 expression, whereas PTEN expression attenuated Akt activation and CD38 expression. Expression levels of p110 isoforms α, β, and δ were comparable in nonasthmatic and asthmatic HASM cells. Silencing of p110α or -δ, but not p110β, resulted in comparable attenuation of TNF-α-induced CD38 expression in asthmatic and nonasthmatic cells. NF-κB and AP-1 activation were unaltered by the PI3K inhibitors. In HASM cells, regulation of CD38 expression occurs by specific class I PI3K isoforms, independent of NF-κB or AP-1 activation, and PI3K signaling may not be involved in the differential elevation of CD38 in asthmatic HASM cells.  相似文献   

17.
Asthma is characterized by bronchial inflammation and hyperresponsiveness that involves mast cell tryptase and potentially its specific receptor protease activated receptor 2 (PAR-2). Tryptase increases free intracellular calcium concentration ([Ca2+]i), a key step in activation of human airway smooth muscle cells (HASMC). The aim of this study was to analyze the effect of PAR-2 gene silencing on HASMC, in terms of calcium response, since no antagonist is available for this receptor. Five siRNA against PAR-2 were synthesized and transfected in HASMC using lipid agents, and PAR-2 expression was examined using Western blot, fluorescence-activated cell sorter, immunocytochemistry and RT-PCR. [Ca2+]i was measured using microspectrofluorimetry in response to tryptase, the activating peptide SLIGKV, trypsin, or caffeine. Two siRNA significantly inhibited PAR-2 expression in terms of both total and surface protein expression, as well as mRNA levels. Tryptase- and SLIGKV-induced transient increase in [Ca2+]i was significantly inhibited after transfection with the most appropriate siRNA, whereas neither trypsin nor caffeine response was altered. Two control siRNA had no effect in terms of both PAR-2 expression and calcium response. Transfection efficiency was maximal after 24 h and disappeared after 48 h. Gene silencing using siRNA can thus be used in vitro to assess the function of PAR-2 in HASMC.  相似文献   

18.
The airways of patients with chronic asthma commonly develop an element of fixed airway obstruction, which fails to reverse with inhaled beta2-adrenoceptor agonists. Airway remodeling refers to the structural changes of the bronchi in longstanding asthma and is characterized by increased deposition and altered ratios of extracellular matrix (ECM) proteins. We therefore assessed whether ECM proteins alter beta2-adrenoceptor signaling in human airway smooth muscle cells. We report that a fibronectin environment increases responses to beta2-adrenoceptor stimulation, whereas exposure to collagen V or laminin decreases accumulation of the second messenger cyclic AMP when compared with collagens I or IV. These differences are likely to be physiologically significant as they translate into altered phosphorylation of the downstream target VASP. The altered cAMP levels are due to differences in adenylyl cyclase activity, although expression of the relevant isoforms of enzyme appears unaltered. However, inhibition of Galphai abrogates the differences in beta2-adrenoceptor-mediated cAMP accumulation in cells exposed to different matrix factors. The difference in Galphai signaling is not due to altered Galphai expression. We conclude therefore that ECM modulates Galphai activity in human airway smooth muscle cells, and propose that these changes could contribute to the fixed airway obstruction seen in patients with chronic asthma.  相似文献   

19.
20.
In response to mechanical stretch, airway smooth muscle exhibits various cellular functions such as contraction, proliferation, and cytoskeletal remodeling, all of which are implicated in the pathophysiology of asthma. We tested the hypothesis that mechanical stretch of airway smooth muscle cells increases intracellular Ca(2+) concentration ([Ca(2+)](i)) by activating stretch-activated (SA) nonselective cation channels. A single uniaxial stretch (3 s) was given to human bronchial smooth muscle cells cultured on an elastic silicone membrane. After the mechanical stretch, a transient increase in [Ca(2+)](i) was observed. The [Ca(2+)](i) increase was significantly dependent on stretch amplitude. The augmented [Ca(2+)](i) due to stretch was completely abolished by removal of extracellular Ca(2+) and was markedly attenuated by an application of Gd(3+), an inhibitor of SA channels, or ruthenium red, a transient receptor potential vanilloid (TRPV) inhibitor. In contrast, the stretch-induced rises of [Ca(2+)](i) were not altered by other Ca(2+) channel inhibitors such as nifedipine, BTP-2, and SKF-96365. Moreover, the [Ca(2+)](i) increases were not affected by indomethacin, a cyclooxygenase inhibitor, U-73122, a phospholipase C inhibitor, or xestospongin C, an inhibitor of the inositol-trisphosphate receptor. These findings demonstrate that a novel Ca(2+) influx pathway activated by mechanical stretch, possibly through the Ca(2+)-permeable SA channel activated directly by stretch rather than by indirect mechanisms via intracellular messenger production, is involved in human airway smooth muscle cells. A molecular candidate for the putative SA channel may be one of the members of the TRPV channel family. Thus, abnormal Ca(2+) homeostasis in response to excessive mechanical strain would contribute to the pathogenesis of asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号