首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The localization of viral receptors to the basolateral surface of airway epithelia is an obstacle to the effectiveness of luminal viral-mediated gene transfer to the lung. The tight junction (TJ) serves as a rate-limiting barrier to the penetration of viral vectors. We have previously identified the sodium salt of the medium chain fatty acid (MCFA) capric acid (C10) as an agent that can enhance the ability of adenoviral vectors to transduce well differentiated (WD) primary human airway epithelial (HAE) cells. Previous studies have suggested that intracellular calcium (Ca(i)2+) levels may play a central role in the long-term C10-mediated increases in junctional permeability. In this study, we investigated the effects of C10 and lauric acid (C12) on Ca(i)2+ in WD primary HAE cells and determined whether these effects were necessary for the acute MCFA-induced reduction in transepithelial resistance (R(T)) and increased permeability. In addition, we characterized the effects of C10 and C12 on components localized to the TJ, including ZO-1, junctional adhesion molecule (JAM), and the claudin family of transmembrane proteins. In addition to rapidly decreasing R(T), C10 and C12 increased cellular and paracellular permeability. C10 induced a rapid, sustained increase in Ca(i)2+. However, buffering Ca(i)2+ did not block the effects of C10 on R(T). Both C10 and C12 caused reorganization of claudins-1, -4, JAM, and beta-catenin, but not ZO-1. These data suggest that C10 and C12 exert their acute effects on airway TJs via a Ca(2+)-independent mechanism of action and may alter junctional permeability via direct effects on the claudin family of TJ proteins.  相似文献   

2.
Small intestine permeability is frequently altered in inflammatory bowel diseases and may be caused by the translocation of intestinal toxins through leaky small intestine tight junctions (TJs) and adherence. Thus, the aim of the present study was to examine the effects of thalidomide treatment on the permeability and structure of small intestine TJs in an animal model of experimental colitis induced by dinitrobenzene sulfonic acid (DNBS). Four days after colitis induction with DNBS, the ileal TJs were studied by means of transmission electron microscopy using lanthanum nitrate and immunohistochemistry of occludin and zonula occludens 1. When compared with DNBS-treated mice, thalidomide-treated (200 mg/kg orally starting 30 min after the administration of DNBS) mice subjected to DNBS-induced colitis experienced a significantly reduced rate of the extent and severity of the histological signs of colon injury associated with a significant reduction of plasma and colon tumor necrosis factor alpha levels. After administration of DNBS to the mice induced a significant increase of ileal permeability was observed. Distal colitis in mice induced an increase of TJ permeability throughout the entire small intestine, and the extent of alterations correlates with colonic damage. In particular, we have observed that thalidomide treatment resulted in a significant reduction of the following: (1) the degree of colon injury, (2) the alteration of zonula occludens 1 and occludin localization (immunohistochemistry), and (3) intestinal permeability caused by DNBS in the colon. Taken together, our results clearly show that thalidomide treatment reduced small intestinal permeability in experimental colitis through the regulation of TJ protein.  相似文献   

3.
BackgroundEosinophilic chronic rhinitis with nasal polyps (eos‐CRSwNP) is a subtype of nasal polyps (NPs) characterized by severe type‐2 inflammation and defective epithelial barrier function. The epithelial barrier plays important roles in the pathogenesis of NPs and type‐2 inflammation. Particular matter 2.5 (PM2.5) are fine particles with a diameter less than 2.5 μm, containing a mixture of different components. Here, we investigated the impact of PM2.5 on the barrier function of the eos‐CRSwNP epithelium and explored the reparative function of budesonide.MethodsSamples from noninflammatory nasal mucosa and eos‐CRSwNP were collected to establish an in vitro air–liquid interface cultured model. The cells were exposed to PM2.5 at 50 or 100 µg/ml intermittently for 72 h, with or without budesonide pretreatment. Barrier function and tight junction (TJ) expression were reflected by measuring transepithelial resistance (TER), paracellular flux permeability of fluorescein isothiocyanate‐labeled 4‐kDa dextran, quantitative real‐time polymerase chain reaction (qPCR), and immunofluorescence staining of TJ proteins. Cytokine expression was measured by qPCR and enzyme‐linked immunosorbent assay or Luminex.ResultsPM2.5 increased paracellular flux and downregulated TJ protein expression (zona occuldens‐1, occludin, and claudin‐1), but did not change TER. These changes could be partially restored by budesonide treatment. Interleukin (IL)‐8, IL‐10, IL‐1α, and tissue inhibitor of metalloproteinase (TIMP)‐1 concentrations were significantly increased in the culture medium of cells exposed to PM2.5, and budesonide significantly reduced the changes in IL‐8, IL‐1α, and TIMP‐1.ConclusionPM2.5 impaired the barrier function of eos‐CRSwNP epithelial cells and increased the permeability of large molecules. PM2.5 also increased the secretion of pro‐inflammatory cytokines by nasal epithelial cells. Budesonide could partially repair the damage, suggesting potential applications in clinical practice.  相似文献   

4.
We tested the hypothesis that increased production of nitric oxide (NO.) associated with lipopolysaccharide (LPS)-induced systemic inflammation leads to functionally significant alterations in the expression and/or targeting of key tight junction (TJ) proteins in ileal and colonic epithelium. Wild-type or inducible NO. synthase (iNOS) knockout male C57B1/6J mice were injected intraperitoneally with 2 mg/kg Escherichia coli O111:B4 LPS. iNOS was inhibited using intraperitoneal L-N(6)-(1-iminoethyl)lysine (L-NIL; 5 mg/kg). Immunoblotting of total protein and NP-40 insoluble proteins revealed decreased expression and decreased TJ localization, respectively, of the TJ proteins, zonula occludens (ZO)-1, ZO-2, ZO-3, and/or occludin in ileal mucosa and colonic mucosa (total protein only) after injection of C57B1/6J mice with LPS. Immunohistochemistry showed deranged distribution of ZO-1 and occludin in both tissues from endotoxemic mice. Endotoxemia was associated with evidence of gut epithelial barrier dysfunction evidenced by increased ileal mucosal permeability to fluorescein isothiocyanate-dextran (Mr=4 kDa) and increased bacterial translocation to mesenteric lymph nodes. Pharmacologic inhibition of iNOS activity using L-NIL or genetic ablation of the iNOS gene ameliorated LPS-induced changes in TJ protein expression and gut mucosal barrier function. These results support the view that at least one mechanism contributing to the pathogenesis of gastrointestinal epithelial dysfunction secondary to systemic inflammation is increased iNOS-dependent NO. production leading to altered expression and localization of key TJ proteins.  相似文献   

5.
Previous studies have investigated a potential method for targeted drug delivery in the central nervous system that uses focused ultrasound bursts combined with an ultrasound contrast agent to temporarily disrupt the blood-brain barrier (BBB). The purpose of this work was to investigate the integrity of the tight junctions (TJs) in rat brain microvessels after this BBB disruption. Ultrasound bursts (1.5-MHz) in combination with a gas contrast agent (Optison) was applied at two locations in the brain in 25 rats to induce BBB disruption. Using immunoelectron microscopy, the distributions of the TJ-specific transmembrane proteins occludin, claudin-1, claudin-5, and of submembranous ZO-1 were examined at 1, 2, 4, 6 and 24 h after sonication. A quantitative evaluation of the protein expression was made by counting the number of immunosignals per micrometer in the junctional clefts. BBB disruption at the sonicated locations was confirmed by the leakage of i.v. administered horseradish peroxidase (HRP, m.w. 40,000 Da) and lanthanum chloride (La(3+), m.w. approximately 139 Da). Leakage of these agents was observed at 1 and 2 h and, in a few vessels, at 4 h after ultrasound application. These changes were paralleled by the apparent disintegration of the TJ complexes, as evidenced by the redistribution and loss of the immunosignals for occludin, claudin-5 and ZO-1. Claudin-1 seemed less involved. At 6 and 24 h after sonication, no HRP or lanthanum leakage was observed and the barrier function of the TJs, as indicated by the localization and density of immunosignals, appeared to be completely restored. This study provides the first direct evidence that ultrasound bursts combined with a gas contrast agent cause disassembling of the TJ molecular structure, leading to loss of the junctional barrier functions in brain microvessels. The BBB disruption appears to last up to 4 h after sonication and permits the paracellular passage of agents with molecular weights up to at least 40 kDa. These promising features can be exploited in the future development of this method that could enable the delivery of drugs, antibodies or genes to targeted locations in the brain.  相似文献   

6.
Outermost barriers are critical for terrestrial animals to avoid desiccation and to protect their bodies from foreign insults. Mammalian skin consists of two sets of barriers: stratum corneum (SC) and tight junctions (TJs). How acquisition of external antigens (Ags) by epidermal Langerhans cells (LCs) occur despite these barriers has remained unknown. We show that activation-induced LCs elongate their dendrites to penetrate keratinocyte (KC) TJs and survey the extra-TJ environment located outside of the TJ barrier, just beneath the SC. Penetrated dendrites uptake Ags from the tip where Ags colocalize with langerin/Birbeck granules. TJs at KC–KC contacts allow penetration of LC dendrites by dynamically forming new claudin-dependent bicellular- and tricellulin-dependent tricellular TJs at LC–KC contacts, thereby maintaining TJ integrity during Ag uptake. Thus, covertly under keratinized SC barriers, LCs and KCs demonstrate remarkable cooperation that enables LCs to gain access to external Ags that have violated the SC barrier while concomitantly retaining TJ barriers to protect intra-TJ environment.Although mucus covers the epidermis in fish and amphibian tadpoles, terminally differentiated cornified cellular sheets called the stratum corneum (SC) constitute the outmost epidermal layer in amphibian adults, reptiles, birds, and mammals and serve as a physical barrier to protect the living layer underneath (Madison, 2003). Beneath the mucus or SC, apical intercellular spaces of the living stratified epidermal cells are sealed with tight junctions (TJs) that limit paracellular leakage of water and electrolytes to maintain fluid homeostasis (Furuse et al., 2002; Tsukita and Furuse, 2002). The existence of TJ barriers in epidermis has been reported in fish, amphibians, reptiles, and, recently, in mammals (Farquhar and Palade, 1965; Mittal and Whitear, 1979; Landmann et al., 1981; Brandner et al., 2002). The knockout study of claudin-1, a TJ-specific integral membrane protein, demonstrated that TJs function as paracellular diffusion barriers in mammalian epidermis (Furuse et al., 2002). The lack of a wide-area visualization method for TJ honeycomb structures in skin, however, has hampered further detailed analysis.Skin is a major entry site for microbial pathogens and allergens and is heavily guarded by DCs, leukocyte subsets which regulate immunity. Langerhans cells (LCs), which represent the most studied skin DCs and have been reported to elicit immune responses against foreign antigens (Ags) in vivo (Merad et al., 2008; Nagao et al., 2009), exist in the epidermis and, thus, are in the best position to encounter foreign Ags. LCs elongate their dendrites between keratinocytes (KCs) to comprise a dense network that covers the entire body surface. Routes of entrance for Ags, which are taken up by skin DCs, have not received attention in relation to skin barriers. Despite the discovery of mammalian epidermal TJs that had long been overlooked, this barrier is still totally neglected, and it is taken for granted that skin DCs have access to pathogens or allergens that have somehow entered the skin at the time of Ag uptake (McGrath and Uitto, 2008; Oyoshi et al., 2009). In this study, we demonstrate that activated LCs gain access to extra-TJ Ags by sending their dendrites out through epidermal TJs. TJ at KC–KC contacts allowed penetration of LC dendrite but maintained TJ barrier integrity by reorganizing new TJ at LC–KC contacts. Our study in stratified epithelium reveals a remarkably orchestrated system for Ag uptake and barrier maintenance that occurs at the forefront of external–internal interface in skin.  相似文献   

7.
Objective Obstructive jaundice is frequently complicated by infections and has been associated with increased bacterial translocation and gut mucosal hyperpermeability in animal models. Proper expression of the tight junction (TJ) proteins ZO-1 and occludin is important for normal gut barrier function. We tested whether bile modulates intestinal epithelial ZO-1 and occludin expression.Animals (a) Male C57BL/6 mice; (b) male Sprague-Dawley rats.Interventions (a) Mice were subjected to common bile duct ligation (CBDL) or a sham procedure, and 96 h later all surviving animals were killed for measurement of ileal mucosal permeability to FITC-labeled dextran (everted gut sac technique), bacterial translocation to mesenteric lymph nodes, and ileal epithelial ZO-1 and occludin expression (western blots). (b) Rat IEC-6 enterocytic monolayers were incubated in the presence or absence of graded concentrations of rat bile and/or U0126, an inhibitor of extracellular signal related kinase (ERK) 1/2 activation.Results (a) Compared to sham-treated controls, CBDL significantly increased gut mucosal permeability and bacterial translocation and markedly decreased ileal epithelial expression of ZO-1 and occludin. In a follow-up in vivo experiment, gavaging mice with fresh rat bile twice daily significantly ameliorated the deleterious effects of CBDL on gut barrier function. (b) Addition of 1% (v/v) bile to media enhanced phosphorylation of ERK1/2, increased the expression of ZO-1 and occludin and decreased permeability to FITC-dextran. All of these bile-mediated effects were blocked by 10 µM U0126.Conclusions These data support the view that the presence of bile in the intestinal lumen is essential for normal gut barrier function, possibly because compounds present in bile initiate ERK1/2-dependent signaling that is essential for normal expression of key TJ proteins.This revised version was published online in April 2005 with a corrected section title.Grant support: 5R01 GM 37631-18 from the National Institutes of Health  相似文献   

8.
The aim of the present study was to examine the role of endogenous peroxisome proliferator-activated receptor-alpha (PPAR-alpha) ligand on the permeability and structure of small intestine tight junctions (TJs) in an animal model of experimental colitis, induced by dinitrobenzene sulfuric acid (DNBS). Four days after colitis induction with DNBS, the ileal TJs were studied by means of transmission electron microscopy using lanthanum nitrate and immunohistochemistry of occludin, zonula occludens 1, and claudin 2. Administration of DNBS to wild-type mice induced colon injury associated with a significant increase of plasma and colon tumor necrosis factor-alpha levels and with a significant increase of ileal permeability. Distal colitis in mice induced an increase of TJ permeability throughout the entire small intestine, and the extent of alterations correlates with colonic damage. Small intestinal permeability was associated with the presence of apoptosis (evaluated by FAS ligand expression and terminal deoxynucleotidyltransferase-mediated UTP nick end labeling coloration), which was associated with a significantly increased expression of proapoptotic Bax and decreased ileum content of antiapoptotic Bcl-2. Absence of a functional PPAR-alpha gene in PPAR-alpha knockout mice resulted in a significant augmentation of all the above-described parameters. Taken together, our results clearly demonstrate that endogenous PPAR-alpha ligands reduced small intestinal permeability in experimental colitis through the regulation of apoptosis and TJ protein.  相似文献   

9.
谷氨酰胺对急性肺损伤大鼠肺泡上皮屏障功能的影响   总被引:1,自引:0,他引:1  
目的:观察谷氨酰胺对急性肺损伤大鼠肺泡上皮屏障功能及紧密连接(TJ)特征性蛋白occludin和黏附连接蛋白E-cadherin的影响。方法:40只SD大鼠随机分为对照组、谷氨酰胺处理组(Gln组)、内毒素处理组(LPS组)、谷氨酰胺并内毒素处理组(Gln+LPS组)。测定支气管肺泡渗透性、运用免疫印迹测定和RT-PCR测定肺泡Ⅱ型上皮细胞中occludin和E-cadherin的蛋白及mRNA表达。结果:内毒素导致支气管肺泡上皮渗透性明显增高2倍左右(P<0.01);补充谷氨酰胺可以明显改善由内毒素处理引起的支气管肺泡上皮渗透性增高(P<0.05),但Gln+LPS组支气管肺泡渗透性仍较对照组及Gln组增高(P<0.05)。免疫印迹和RT-PCR显示在LPS组的occludin和E-cadherin蛋白和mRNA表达水平均较对照组及Gln组的低(P<0.01);在Gln+LPS组中occludin和E-cadherin的蛋白和mRNA表达水平较LPS组的高(P<0.05),而较对照组及Gln组的表达水平低(P<0.05)。结论:实验提示内毒素通过降低TJ分子occludin和E-cadherin的mRNA、蛋白表达水平导致肺泡上皮屏障功能受损,补充谷氨酰胺通过上调其mRNA、蛋白表达水平而对肺泡上皮屏障功能有保护作用。  相似文献   

10.
House dust mite (HDM) is one of the most common allergens worldwide. In this study, we have addressed the involvement of IL-1 in the interaction between HDM and the innate immune response driven by lung epithelial cells (ECs) and dendritic cells (DCs) that leads to asthma. Mice lacking IL-1R on radioresistant cells, but not hematopoietic cells, failed to mount a Th2 immune response and did not develop asthma to HDM. Experiments performed in vivo and in isolated air-liquid interface cultures of bronchial ECs showed that TLR4 signals induced the release of IL-1α, which then acted in an autocrine manner to trigger the release of DC-attracting chemokines, GM-CSF, and IL-33. Consequently, allergic sensitization to HDM was abolished in vivo when IL-1α, GM-CSF, or IL-33 was neutralized. Thymic stromal lymphopoietin (TSLP) became important only when high doses of allergen were administered. These findings put IL-1α upstream in the cytokine cascade leading to epithelial and DC activation in response to inhaled HDM allergen.  相似文献   

11.
Small intestine permeability is frequently altered in inflammatory bowel disease and may be caused by the translocation of intestinal toxins through leaky small intestine tight junctions (TJs) and adherence. Recently, it has been shown that 5-lipoxygenase (5-LO) plays an important role in the development of various inflammatory conditions like inflammatory bowel disease. In the present study, by comparing the responses in wild-type mice (5-LOWT) with those of mice lacking the 5-lipoxygenase (5-LOKO), we investigated the role played by this enzyme in the permeability and structure of small intestine TJs in an animal model of experimental colitis. To address this question, we used an experimental model of colitis, induced by dinitrobenzene sulfonic acid (DNBS). Four days after colitis induction by DNBS, the ileal TJs were studied by means of transmission electron microscopy using lanthanum nitrate and immunohistochemistry of occludin and ZO-1. When compared with DNBS-treated 5-LOWT mice, DNBS-treated 5-LOKO mice experienced a reduced rate of the extent and severity of the histological signs of colon injury. After administration of DNBS, 5-LOWT mice showed a significant increase of ileal permeability (88.3% +/- 1.2%) compared with sham (5.6% +/- 0.5%). In colitis, the percentage of "leaky" junctions in terminal ilea correlated positively with the macroscopic colon damage score. Distal colitis in 5-LOWT mice induces an increase of TJ permeability throughout the entire small intestine, and the extent of alterations correlates with colonic damage. On the contrary, a significant reduction of (1) the degree of colon injury, (2) the alteration of ZO-1 and occludin localization (immunohistochemistry), and (3) ileal permeability (8.1% +/- 0.7%) caused by DNBS in the colon was observed in 5-LOKO mice. Similarly, the treatment of 5-LOWT with zileuton (50 mg/kg per oral gavage twice a day), a 5-LO inhibitor, resulted in a significant reduction of all the previously described parameters. Taken together, our results clearly demonstrate that 5-LO modulates small intestinal permeability in experimental colitis through the regulation of TJ protein.  相似文献   

12.
BackgroundSeveral studies have shown a correlation between an altered metabolome and respiratory allergies. The epithelial barrier hypothesis proposes that an epithelial barrier dysfunction can result in allergic diseases development. Der p 1 allergen from house dust mite is a renowned epithelial barrier disruptor and allergy initiator due to its cysteine‐protease activity. Here, we compared the metabolic profile of the bronchial epithelium exposed or not to Der p 1 during barrier establishment to understand its active role in allergy development.MethodsCalu‐3 cells were cultivated in air‐liquid interface cultures and exposed to either Der p 1 or Ole e 1 allergens during barrier establishment. The comparative metabolomics analysis of apical and basolateral media were performed using liquid chromatography and capillary electrophoresis both coupled to mass spectrometry.ResultsWe showed that epithelial barrier disruption by Der p 1 was associated with a specific metabolic profile, which was highly dependent on the state of the epithelium at the time of contact. Moreover, an apical‐basolateral distribution of the metabolites was also observed, indicating a compartmentalization of the response with differential metabolic patterns. A number of metabolites were changed by Der p 1, mainly related to amino acids metabolism, such as L‐arginine, L‐kynurenine and L‐methionine.ConclusionThis work is the first report on the metabolic response in human bronchial epithelial cells associated with cysteine‐protease Der p 1 activity, which could contribute to allergy development. Moreover, it supports a reformulated epithelial barrier hypothesis that might help to explain allergies and their increasing prevalence.  相似文献   

13.
Tight junctions (TJs) play a key role in mediating paracellular ion reabsorption in the kidney. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) is an inherited disorder caused by mutations in the genes encoding the TJ proteins claudin-16 (CLDN16) and CLDN19; however, the mechanisms underlying the roles of these claudins in mediating paracellular ion reabsorption in the kidney are not understood. Here we showed that in pig kidney epithelial cells, CLDN19 functioned as a Cl(-) blocker, whereas CLDN16 functioned as a Na(+) channel. Mutant forms of CLDN19 that are associated with FHHNC were unable to block Cl(-) permeation. Coexpression of CLDN16 and CLDN19 generated cation selectivity of the TJ in a synergistic manner, and CLDN16 and CLDN19 were observed to interact using several criteria. In addition, disruption of this interaction by introduction of FHHNC-causing mutant forms of either CLDN16 or CLDN19 abolished their synergistic effect. Our data show that CLDN16 interacts with CLDN19 and that their association confers a TJ with cation selectivity, suggesting a mechanism for the role of mutant forms of CLDN16 and CLDN19 in the development of FHHNC.  相似文献   

14.
15.
Background House dust mites (HDM) Dermatophagoides pteronyssinus are a frequent indoor allergen source. Our aim was to determine the frequencies of IgE reactivity to purified HDM allergen molecules in mite allergic patients from different parts of Europe in order to establish an allergen panel for diagnosis of HDM allergy. Materials and methods Populations of D. pteronyssinus‐allergic patients from Austria (n = 56), France (n = 55), Italy (n = 67) and Sweden (n = 65) and storage mite allergic patients from Sweden (n = 31) were analysed for IgE reactivity to eight purified natural (n) and recombinant (r) D. pteronyssinus allergens (nDer p 1, rDer p 2, nDer p 4, rDer p 5, rDer p 7, rDer p 8, rDer p 10 and rDer p 14) in RAST‐based dot blot assays. Results Using a combination of Der p 1 and Der p 2, at least 97% of the D. pteronyssinus‐allergic patients could be diagnosed in each of the HDM allergic populations. However, more than 50% of the patients also reacted with other allergens and significant variabilities regarding the frequencies of IgE reactivity to individual allergen molecules were found. Patients with a predominant storage mite allergy showed none or only very weak IgE reactivity to purified D. pteronyssinus allergens. Conclusions Purified Der p 1 and Der p 2 are sufficient for the diagnosis of ≥ 97% of D. pteronyssinus allergic patients in Europe, but other allergens may also play an important role for the diagnosis and treatment of HDM allergy.  相似文献   

16.
Hemorrhagic shock (HS) leads to intestinal barrier loss, causing systemic inflammation, which in turn can ultimately lead to multiorgan dysfunction syndrome. Barrier function is based on tight junctions (TJs) between intact epithelial cells. These TJs are anchored in the cell via the filamentous actin (F-actin) cytoskeleton. We hypothesize that HS causes hypoperfusion, leading to loss of F-actin, via activation of actin-depolymerizing factor/cofilin (AC), and consequently TJ loss. This study is aimed at unraveling the changes in cytoskeleton and TJ integrity after HS in organs commonly affected in multiorgan dysfunction syndrome (liver, kidney, and intestine) and to elucidate the events preceding cytoskeleton loss. Adult rats were subjected to a nonlethal HS and sacrificed, along with unshocked controls, at 15, 30, 60, and 90 min after induction of shock. Cytoskeleton, TJ integrity loss, and its consequences were studied by assessment of globular actin, F-actin, AC, zonula occludens protein 1, claudin 3, and bacterial translocation. In the liver and kidney, TJ and the F-actin cytoskeleton remained intact at all time points studied. However, in the intestine, significant loss of F-actin and increase of globular actin was seen from 15 min after shock. This change preceded statistically significant loss of the TJ proteins claudin 3 and zonula occludens protein 1, which were observed starting at 60 min after induction of shock (P < 0.05 vs. controls). Early after induction of shock (15 and 30 min) the nonactive AC (phosphorylated AC) in the intestine was significantly decreased (by 21% and 27%, P < 0.05 vs. control), whereas total AC remained constant, reflecting an increase in activated AC in the intestine from 15 min after shock. Bacterial translocation to mesenteric lymph nodes, liver, and spleen was present from 30 min after shock. This study shows for the first time that HS results in AC activation, selective intestinal actin cytoskeleton disruption, and TJ loss very early after the onset of shock. Loss of this intestinal barrier results in translocation of toxins and bacteria, which enhances inflammation and leads to infections.  相似文献   

17.
Genome-wide association studies revealed that loss-of-function mutations in protein tyrosine phosphatase non-receptor type 2 (PTPN2) increase the risk of developing chronic immune diseases, such as inflammatory bowel disease (IBD) and celiac disease. These conditions are associated with increased intestinal permeability as an early etiological event. The aim of this study was to examine the consequences of deficient activity of the PTPN2 gene product, T cell protein tyrosine phosphatase (TCPTP), on intestinal barrier function and tight junction organization in vivo and in vitro. Here, we demonstrate that TCPTP protected against intestinal barrier dysfunction induced by the inflammatory cytokine IFN-γ by 2 mechanisms: it maintained localization of zonula occludens 1 and occludin at apical tight junctions and restricted both expression and insertion of the cation pore-forming transmembrane protein, claudin-2, at tight junctions through upregulation of the inhibitory cysteine protease, matriptase. We also confirmed that the loss-of-function PTPN2 rs1893217 SNP was associated with increased intestinal claudin-2 expression in patients with IBD. Moreover, elevated claudin-2 levels and paracellular electrolyte flux in TCPTP-deficient intestinal epithelial cells were normalized by recombinant matriptase. Our findings uncover distinct and critical roles for epithelial TCPTP in preserving intestinal barrier integrity, thereby proposing a mechanism by which PTPN2 mutations contribute to IBD.  相似文献   

18.
Antigen-specific CD4+ T cells play an important role in the allergic immune response to house dust mite (HDM) allergens in humans. The group 1 allergen of Dermatophagoides spp. is a major target antigen in both B and T cell recognition of HDM. In vitro studies have shown that the presentation of peptides to human T cells under appropriate conditions may lead to a state of specific nonresponsiveness. Therefore, to determine if peptides are able to modulate the function of allergen- reactive T cells in vivo, we have used a murine model of T cell recognition of the HDM allergen Der p 1. The results demonstrate that inhalation of low concentrations of peptide containing the major T cell epitope of Der p 1 (residues 111-139), induces tolerance in naive C57BL/6J mice such that they become profoundly unresponsive to an immunogenic challenge with the intact allergen. When restimulated in vitro with antigen, lymph node T cells isolated from tolerant mice secrete very low levels of interleukin 2, proliferative poorly, and are unable to provide cognate help to stimulate specific antibody production. Furthermore, intranasal peptide therapy was able to inhibit an ongoing immune response to the allergen in mice and this has potential implications in the development of allergen-based immunotherapy.  相似文献   

19.
目的 观察慢性乙醇摄取及内毒素处理对大鼠气道上皮屏障功能及紧密连接(TJ)特征性蛋白occludin和黏附连接(AJ)蛋白E-cadherin的影响.方法 将40只SD大鼠随机均分为对照组、慢性乙醇摄取组(乙醇组)、内毒素处理组(LPS组)、慢性乙醇摄取合并内毒素处理组(乙醇+LPS组).利用荧光示踪剂异硫氰酸荧光素标记的右旋糖酐(FD4)测定支气管肺泡上皮的通透性;免疫荧光共聚焦显微镜下观察大鼠气道上皮occludin和E-cadherin蛋白分布及表达;蛋白质免疫印迹法(Western blotting)和逆转录-聚合酶链反应(RT-PCR)测定肺组织中occludin和E-cadherin的蛋白及mRNA表达;并观察肺组织病理学改变.结果 乙醇组及LPS组支气管肺泡上皮通透性均较对照组明显增高(P均<0.05);乙醇+LPS组支气管肺泡上皮的通透性进一步增高(P<0.01).occludin和E-cadherin蛋白在对照组大鼠气道上皮呈连续、均匀的胞膜及胞质中表达;在乙醇组、LPS组胞膜呈部分断裂、不连续的表达,且胞膜和胞质的表达下降;在乙醇+LPS组的表达显著下降,且胞膜表达呈明显的断裂甚至消失.Western blotting和RT-PCR显示,乙醇组和LPS组肺组织中occludin和E-cadherin的蛋白及mRNA表达均较对照组明显下降(P均<0.05);乙醇+LPS组中蛋白及mRNA表达下降最为明显,与其余各组比较差异均有统计学意义(P均<0.01).结论 慢性乙醇摄取通过降低TJ蛋白occludin和AJ蛋白E-cadherin的蛋白及mRNA表达水平,并干扰各蛋白在胞膜上的定位,最终导致气道上皮屏障功能受损,加重内毒素诱导的急性肺损伤.  相似文献   

20.
Tight junctions regulate paracellular conductance and ionic selectivity. These properties vary among epithelia but the molecular basis of this variation remains unknown. To test whether members of the claudin family of tight junction proteins influence paracellular ionic selectivity, we expressed human claudin-4 in cultured MDCK cells using an inducible promoter. Overexpression increased the complexity of tight junction strands visible by freeze-fracture microscopy without affecting the levels of claudin-1, -2, or -3, occludin, or ZO-1. A decrease in conductance correlated directly with the kinetics of claudin-4 induction. Dilution potentials revealed that the decrease in paracellular conductance resulted from a selective decrease in Na(+) permeability without a significant effect on Cl(-) permeability. Flux for an uncharged solute, mannitol, and the rank order of permeabilities for the alkali metal cations were unchanged. A paracellular site for these effects was supported by the lack of apical/basal directionality of the dilution potentials, the linearity of current-voltage relationships, and the lack of influence of inhibitors of major transcellular transporters. These results provide, to our knowledge, the first direct demonstration of the ability of a claudin to influence paracellular ion selectivity and support a role for the claudins in creating selective channels through the tight-junction barrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号