首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 613 毫秒
1.
The purpose of this study was to assess patterns of cortical development over time in children who had sustained traumatic brain injury (TBI) as compared to children with orthopedic injury (OI), and to examine how these patterns related to emotional control and behavioral dysregulation, two common post-TBI symptoms. Cortical thickness was measured at approximately 3 and 18 months post-injury in 20 children aged 8.2-17.5 years who had sustained moderate-to-severe closed head injury and 21 children aged 7.4-16.7 years who had sustained OI. At approximately 3 months post-injury, the TBI group evidenced decreased cortical thickness bilaterally in aspects of the superior frontal, dorsolateral frontal, orbital frontal, and anterior cingulate regions compared to the control cohort, areas of anticipated vulnerability to TBI-induced change. At 18 months post-injury, some of the regions previously evident at 3 months post-injury remained significantly decreased in the TBI group, including bilateral frontal, fusiform, and lingual regions. Additional regions of significant cortical thinning emerged at this time interval (bilateral frontal regions and fusiform gyrus and left parietal regions). However, differences in other regions appeared attenuated (no longer areas of significant cortical thinning) by 18 months post-injury including large bilateral regions of the medial aspects of the frontal lobes and anterior cingulate. Cortical thinning within the OI group was evident over time in dorsolateral frontal and temporal regions bilaterally and aspects of the left medial frontal and precuneus, and right inferior parietal regions. Longitudinal analyses within the TBI group revealed decreases in cortical thickness over time in numerous aspects throughout the right and left cortical surface, but with notable "sparing" of the right and left frontal and temporal poles, the medial aspects of both the frontal lobes, the left fusiform gyrus, and the cingulate bilaterally. An analysis of longitudinal changes in cortical thickness over time (18 months-3 months) in the TBI versus OI group demonstrated regions of relative cortical thinning in the TBI group in bilateral superior parietal and right paracentral regions, but relative cortical thickness increases in aspects of the medial orbital frontal lobes and bilateral cingulate and in the right lateral orbital frontal lobe. Finally, findings from analyses correlating the longitudinal cortical thickness changes in TBI with symptom report on the Emotional Control subscale of the Behavior Rating Inventory of Executive Function (BRIEF) demonstrated a region of significant correlation in the right medial frontal and right anterior cingulate gyrus. A region of significant correlation between the longitudinal cortical thickness changes in the TBI group and symptom report on the Behavioral Regulation Index was also seen in the medial aspect of the left frontal lobe. Longitudinal analyses of cortical thickness highlight an important deviation from the expected pattern of developmental change in children and adolescents with TBI, particularly in the medial frontal lobes, where typical patterns of thinning fail to occur over time. Regions which fail to undergo expected cortical thinning in the medial aspects of the frontal lobes correlate with difficulties in emotional control and behavioral regulation, common problems for youth with TBI. Examination of post-TBI brain development in children may be critical to identification of children that may be at risk for persistent problems with executive functioning deficits and the development of interventions to address these issues.  相似文献   

2.
The cortical processing of changes in auditory input involves auditory sensory regions as well as different frontoparietal brain networks. The spatiotemporal dynamics of the activation spread across these networks has, however, not been investigated in detail so far. We here approached this issue using concurrent functional magnetic resonance imaging (fMRI) and electroencephalography (EEG), providing us with simultaneous information on both the spatial and temporal patterns of change‐related activity. We applied an auditory stimulus categorization task with switching categorization rules, allowing to analyze change‐related responses as a function of the changing sound feature (pitch or duration) and the task relevance of the change. Our data show the successive progression of change‐related activity from regions involved in early change detection to the ventral and dorsal attention networks, and finally the central executive network. While early change detection was found to recruit feature‐specific networks involving auditory sensory but also frontal and parietal brain regions, the later spread of activity across the frontoparietal attention and executive networks was largely independent of the changing sound feature, suggesting the existence of a general feature‐independent processing pathway of change‐related information. Task relevance did not modulate early auditory sensory processing, but was mainly found to affect processing in frontal brain regions. Hum Brain Mapp 37:3400–3416, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

3.
Growing evidence from animal studies indicates brain-damaging properties of nicotine exposure. Investigations in humans found a wide range of functional cerebral effects of nicotine and cigarette smoking, but studies focusing on brain damage are sparse. In 22 smokers and 23 never-smokers possible differences of the cerebral structures were investigated using magnetic resonance imaging and voxel-based morphometry. Significantly smaller grey matter volume and lower grey matter density (P = 0.05, corrected) were observed in the frontal regions (anterior cingulate, prefrontal and orbitofrontal cortex), the occipital lobe and the temporal lobe including parahippocampal gyrus, in smokers than in never-smokers. Group differences of either grey matter volume or grey matter density were also found in the thalamus, cerebellum and substantia nigra, among other regions. Smokers did not show greater volumes than never-smokers in any cerebral region. Magnitude of lifetime exposure to tobacco smoke (pack-years) was inversely correlated with volume of frontal and temporal lobes and cerebellum (P = 0.001, uncorrected). The data indicate structural deficits of several cortical and subcortical regions in smokers relative to never-smokers. The topographic profile of the group differences show some similarities to brain networks known to mediate drug reinforcement, attention and working memory processing. The present findings may explain in part the frequently reported cognitive dysfunctions in chronic cigarette consumers.  相似文献   

4.
BACKGROUND: Marked retrograde amnesia with no or almost no anterograde amnesia is rare. Recently, a combination of ventrolateral prefrontal and temporopolar cortical lesions has been suggested as the cause of such isolated or focal retrograde amnesia. It is also assumed that when the right-sided cortical structures are damaged, autobiographical episodic memories are affected. OBJECTIVE: To search for new anatomic substrates for focal retrograde amnesia. METHODS: We performed extensive neuropsychological tests and obtained detailed neuroimages on a 43-year-old woman who showed a severe, persistent retrograde amnesia but only a limited anterograde amnesia after probable herpes simplex encephalitis. RESULTS: Tests of autobiographical memory revealed that she had a memory loss extending back to her childhood for both semantics and incidents; however, the ability to recall specific episodes appeared much more severely impaired than the ability to recall factual information about her past. The patient also showed profound impairments in recalling public memories; however, her scores improved nearly to a control level on forced-choice recognition memory tasks, although the recall of memories for a decade just before her illness remained mildly impaired. MRI revealed focal pathologies in the temporal poles and the anterior parts of the inferotemporal lobes on both sides, predominantly on the left, with some extension to the anterior parts of the medial temporal lobes. There was additional damage to the left insular cortex and its surrounding structures but no evidence of frontal lobe damage on MRIs or cognitive tests. CONCLUSIONS: A profound retrograde amnesia may be produced by damage to the bilateral temporal poles and anterior inferotemporal lobes in the absence of frontal lobe pathologies, and a dense and persistent episodic old memory loss can arise even with a relatively small lesion in the right anterior temporal lobe if it is combined with extensive damage to the left.  相似文献   

5.
OBJECTIVE: This study examined neural activation of facial stimuli in autism when the salience of emotional cues was increased by prosodic information. METHOD: Regional cerebral blood flow (rCBF) was measured while eight high-functioning men with autism and eight men without autism performed an emotion-recognition task in which facial emotion stimuli were matched with prosodic voices and a baseline gender-recognition task. RESULTS: Emotion processing in autistic subjects, compared to that in comparison subjects, resulted in lower rCBF in the inferior frontal and fusiform areas and higher rCBF in the right anterior temporal pole, the anterior cingulate, and the thalamus. CONCLUSIONS: Even with the enhanced emotional salience of facial stimuli, adults with autism showed lower activity in the fusiform cortex and differed from the comparison subjects in activation of other brain regions. The authors suggested that the recognition of emotion by adults with autism is achieved through recruitment of brain regions concerned with allocation of attention, sensory gating, the referencing of perceptual knowledge, and categorization.  相似文献   

6.
In the competition for limited processing resources, top-down attention and cognitive control processes are needed to separate relevant from irrelevant sensory information and to interact with the environment in a meaningful way. The demands for the recruitment of top-down control processes depend on the relative salience of the competing stimuli. In the present event-related functional magnetic resonance imaging (fMRI) study we investigated the dynamics of neuronal networks during varying degrees of top-down control demands. We tested 20 participants with a dichotic auditory discrimination task in which the relative perceptual salience of two simultaneously presented syllables was parametrically varied by manipulating the inter-aural intensity differences (IIDs) and instructing the subjects to selectively attend to either the louder or weaker of the two stimuli. A significant interaction of IID manipulation and attentional instruction was detected bilaterally in the inferior parietal lobe and pre-supplementary motor area, and in the precentral gyrus, anterior cingulate cortex, and inferior frontal gyrus of the right hemisphere. The post hoc analysis of the interaction pattern allowed for an assignment of these regions to either of two sets of regions which can be interpreted to constitute two different brain networks: a fronto-parietal attention control network, involved in the integration of saliency-based and instruction-based processing preferences, and a medial-lateral frontal cognitive control network, involved in the processing of the conflicts arising in the attempt to follow the attentional instruction in face of the varying inter-aural stimulus salience.  相似文献   

7.
OBJECTIVE: To study the effects of moderate to severe traumatic brain injury (TBI) on the functional neuroanatomy supporting memory retrieval. METHODS: Subjects were six patients who had sustained a moderate to severe TBI about four years before scanning and had since made a good recovery. Eleven healthy young adults matched to the patients for age and education served as controls. An established H(2)(15)0 positron emission tomography paradigm was used to elicit brain activations in response to memory retrieval. TBI patients' patterns of brain activation were compared statistically with those of control subjects. Both group and individual case data were analysed. RESULTS: Both TBI patients and controls engaged frontal, temporal, and parietal regions known to be involved in memory retrieval, yet the TBI patients showed relative increases in frontal, anterior cingulate, and occipital activity. The hemispheric asymmetry characteristic of controls was attenuated in patients with TBI. Reduced activation was noted in the right dorsomedial thalamus. Although local aspects of this pattern were affected by the presence of focal lesions and performance differences, the overall pattern was reliable across patients and comparable to functional neuroimaging results reported for normal aging, Alzheimer's disease, and other patients with TBI. CONCLUSIONS: The TBI patients performed memory tasks using altered functional neuroanatomical networks. These changes are probably the result of diffuse axonal injury and may reflect either cortical disinhibition attributable to disconnection or compensation for inefficient mnemonic processes.  相似文献   

8.
The anterior temporal lobes (ATL) have been implicated in a range of cognitive functions including auditory and visual perception, language, semantic knowledge, and social‐emotional processing. However, the anatomical relationships between the ATLs and the broader cortical networks that subserve these functions have not been fully elucidated. Using diffusion tensor imaging (DTI) and probabilistic tractography, we tested the hypothesis that functional segregation of information in the ATLs is reflected by distinct patterns of structural connectivity to regions outside the ATLs. We performed a parcellation of the ATLs bilaterally based on the degree of connectivity of each voxel with eight ipsilateral target regions known to be involved in various cognitive networks. Six discrete segments within each ATL showed preferential connectivity to one of the ipsilateral target regions, via four major fiber tracts (uncinate, inferior longitudinal, middle longitudinal, and arcuate fasciculi). Two noteworthy interhemispheric differences were observed: connections between the ATL and orbito‐frontal areas were stronger in the right hemisphere, while the consistency of the connection between the ATL and the inferior frontal gyrus through the arcuate fasciculus was greater in the left hemisphere. Our findings support the hypothesis that distinct regions within the ATLs have anatomical connections to different cognitive networks. Hum Brain Mapp 37:2210–2222, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

9.
目的应用弥散张量成像(diffusion tensor imaging,DTI)技术探讨轻中型颅脑损伤病人不同部位脑白质微结构改变与其认知功能障碍的相关性。方法分析127例轻中型颅脑损伤病人的临床资料,伤后10 d采用蒙特利尔认知评估量表(Mo CA)评定有无认知功能障碍,并常规行头颅MRI检查,采集DTI数据,测量两侧额叶、颞叶内侧、顶叶,胼胝体膝部和压部,中脑部位的感兴趣区各向异性分数(FA值)、表观弥散系数(ADC值),并与Mo CA评估结果进行相关性分析。结果以Mo CA量表为标准评定,无认知功能障碍41例(32.28%,无认知障碍组),存在认知功能障碍86例(67.72%,认知障碍组),主要表现为视空间与执行功能、注意力和计算力、语言、抽象能力、延迟记忆的障碍。与无认知障碍的病人相比,认知障碍的病人两侧额叶、颞叶内侧、胼胝体膝部FA值降低,ADC值增加,差异具有统计学意义(P0.01)。结论轻中型颅脑损伤病人早期存在显著认知功能障碍,以视空间与执行功能、注意力和计算力、语言、抽象能力、延迟记忆障碍为主。颅脑损伤后早期认知功能障碍与病人额叶、颞叶、胼胝体白质受损密切相关。  相似文献   

10.
Due to the mechanisms involved in traumatic brain injury (TBI), the frontal lobes are often impacted. As the frontal regions of the brain are believed to subsume executive functioning, then it follows that post-TBI deficits may be seen in this domain. Executive functioning broadly refers to a set of inter-related skills necessary to maintain an appropriate problem-solving set for the attainment of a future goal and may include areas such as attentional control, planning, problem-solving, cognitive flexibility, abstraction and information processing. The literature available on interventions for executive difficulties following TBI is minimal, with that focused on the paediatric population even more limited. From the few evaluation studies available, results tend to suggest that specific types of intervention lead to positive outcomes. However, as the interventions are few and often based on case studies, there is much need for more evaluation studies to be conducted.  相似文献   

11.
Human gamma-band activity: a window to cognitive processing   总被引:2,自引:0,他引:2  
This review highlights recent developments in research on human cortical oscillations in the gamma-band range (30-100 Hz). Electroencephalography has demonstrated a role of these signals for cognitive functions including visual perception, attention, learning and memory. During auditory processing, magnetoencephalogram has identified oscillatory activity in higher frequency ranges and with a more discrete localization than electroencephalogram. Gamma-band activity increases have been observed in the putative auditory dorsal and ventral processing streams during the processing of auditory spatial and pattern information, respectively. Additional gamma-band activity has been found over the frontal cortex during top-down tasks. Oscillatory activity in the gamma range may serve to assess the temporal dynamics of cortical networks and their interactions.  相似文献   

12.
It is well established that many individuals with traumatic brain injury (TBI) are impaired at facial affect recognition, yet little is known about the mechanisms underlying such deficits. In particular, little work has examined whether the breakdown of facial affect recognition abilities occurs at the perceptual level (e.g., recognizing a smile) or at the verbal categorization stage (e.g., assigning the label “happy” to a smiling face). The aim of the current study was to investigate the integrity of these two distinct facial affect recognition subskills in a sample of 38 individuals with moderate-to-severe TBI and 24 demographically matched healthy individuals. Participants were administered an affect matching (perceptual skills) and an affect labeling (verbal categorization skills) task. Statistical analyses revealed that, while individuals with TBI showed significantly higher levels of impairment in the verbal categorization task than in the perceptual task, they performed less well than healthy comparison participants on both tasks. These findings indicate that facial affect recognition impairment can occur at different cognitive stages following TBI, suggesting the necessity of careful screening to offer targeted treatment. Moreover, they provide further neuropsychological evidence supporting the notion that distinct types of subskills are necessary to achieve successful recognition of facial affects.  相似文献   

13.
Tagging cortical networks in emotion: A topographical analysis   总被引:1,自引:0,他引:1  
Viewing emotional pictures is associated with heightened perception and attention, indexed by a relative increase in visual cortical activity. Visual cortical modulation by emotion is hypothesized to reflect re‐entrant connectivity originating in higher‐order cortical and/or limbic structures. The present study used dense‐array electroencephalography and individual brain anatomy to investigate functional coupling between the visual cortex and other cortical areas during affective picture viewing. Participants viewed pleasant, neutral, and unpleasant pictures that flickered at a rate of 10 Hz to evoke steady‐state visual evoked potentials (ssVEPs) in the EEG. The spectral power of ssVEPs was quantified using Fourier transform, and cortical sources were estimated using beamformer spatial filters based on individual structural magnetic resonance images. In addition to lower‐tier visual cortex, a network of occipito‐temporal and parietal (bilateral precuneus, inferior parietal lobules) structures showed enhanced ssVEP power when participants viewed emotional (either pleasant or unpleasant), compared to neutral pictures. Functional coupling during emotional processing was enhanced between the bilateral occipital poles and a network of temporal (left middle/inferior temporal gyrus), parietal (bilateral parietal lobules), and frontal (left middle/inferior frontal gyrus) structures. These results converge with findings from hemodynamic analyses of emotional picture viewing and suggest that viewing emotionally engaging stimuli is associated with the formation of functional links between visual cortex and the cortical regions underlying attention modulation and preparation for action. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

14.
Acute marijuana effects on rCBF and cognition: a PET study   总被引:2,自引:0,他引:2  
The effects of smoking marijuana on cognition and brain function were assessed with PET using H2(15)O. Regional cerebral blood flow (rCBF) was measured in five recreational users before and after smoking a marijuana cigarette, as they repeatedly performed an auditory attention task. Blood flow increased following smoking in a number of paralimbic brain regions (e.g. orbital frontal lobes, insula, temporal poles) and in anterior cingulate and cerebellum. Large reductions in rCBF were observed in temporal lobe regions that are sensitive to auditory attention effects. Brain regions showing increased rCBF may mediate the intoxicating and mood-related effects of smoking marijuana, whereas reduction of task-related rCBF in temporal lobe cortices may account for the impaired cognitive functions associated with acute intoxication.  相似文献   

15.
Integration of phonological and lexicosemantic processes is essential for visual word recognition. Here we used dynamic causal modeling of event-related potentials, combined with group source reconstruction, to estimate how those processes translate into context-dependent modulation of effective connectivity within the temporal-frontal language network. Fifteen healthy human subjects performed a phoneme detection task in pseudo-words and a semantic categorization task in words. Cortical current densities revealed the sequential activation of temporal regions, from the occipital-temporal junction toward the anterior temporal lobe, before reaching the inferior frontal gyrus. A difference of activation between phonology and semantics was identified in the anterior temporal lobe within the 240-300 ms peristimulus time window. Dynamic causal modeling indicated this increase of activation of the anterior temporal lobe in the semantic condition as a consequence of an increase of forward connectivity from the posterior inferior temporal lobe to the anterior temporal lobe. In addition, fast activation of the inferior frontal region, which allowed a feedback control of frontal regions on the superior temporal and posterior inferior temporal cortices, was found to be likely. Our results precisely describe spatiotemporal network mechanisms occurring during integration of phonological and semantic processes. In particular, they support the hypothesis of multiple pathways within the temporal lobe for language processing, where frontal regions would exert a top-down control on temporal regions in the recruitment of the anterior temporal lobe for semantic processing.  相似文献   

16.
Recent literature suggests that the brain in multiple sclerosis (MS) undergoes reorganization that subserves the performance of visual and motor tasks. We identified sites of cerebral activity in 16 MS patients while performing a covert attention (CA) task, presented in the auditory modality. Positron emission tomography (PET) revealed activation of rostral/dorsal anterior cingulate cortex (ACC) in normal subjects studied previously. Activity in this region was not significant in MS patients, but there was a large region of activity in superior temporal cortex. Decreased activation of frontal attentional networks and greater activity in sensory/perceptual cortical areas (auditory association cortex) suggests a reduction of transmission along white matter tracts connecting these regions. This study demonstrates cingulate hypoactivity and cerebral reorganization during auditory attention in MS.  相似文献   

17.
Prefrontal neurons in networks of executive memory   总被引:5,自引:0,他引:5  
The neuronal networks of the frontal lobe that represent motor or executive memories are probably the same networks that cooperate with other cerebral structures in the temporal organization of behavior. The prefrontal cortex, at the top of the perception-action cycle, plays a critical role in the mediation of contingencies of action across time, an essential aspect of temporal organization. That role of cross-temporal mediation is based on the interplay of two short-term cognitive functions: one retrospective, of short-term active perceptual memory, and the other prospective, of attentive set (or active motor memory). Both appear represented in the neuronal populations of dorsolateral prefrontal cortex. At least one of the mechanisms for the retention of active memory of either kind seems to be the reentry of excitability through recurrent cortical circuits. With those two complementary and temporally symmetrical cognitive functions of active memory for the sensory past and for the motor future, the prefrontal cortex seems to secure the temporal closure at the top of the perception-action cycle.  相似文献   

18.
While closed head injury frequently results in damage to the frontal and temporal lobes, damage to deep cortical structures, such as the hippocampus, amygdala, and basal ganglia, has also been reported. Five deep central structures (hippocampus, amygdala, globus pallidus, putamen, and caudate) were examined in 16 children (eight males, eight females; aged 9-16y), imaged 1 to 10 years after moderate-to-severe traumatic brain injury (TBI), and in 16 individually-matched uninjured children. Analysis revealed significant volume loss in the hippocampus, amydala, and globus pallidus of the TBI group. Investigation of relative volume loss between these structures and against five cortical areas (ventromedial frontal, superomedial frontal, lateral frontal, temporal, and parieto-occipital) revealed the hippocampus to be the most vulnerable structure following TBI (i.e. greatest relative difference between the groups). In a separate analysis excluding children with focal hippocampal abnormalities (e.g. lesions), group differences in hippocampal volume were still evident, suggesting that hippocampal damage may be diffuse rather than focal.  相似文献   

19.
Deficits in information processing speed (IPS) are among the earliest and most prominent cognitive manifestations in mild traumatic brain injury (mTBI). We investigated the impact of white matter fiber location on IPS outcome in an individual basis assessment. A total of 112 acute mild TBI with all CT negative underwent brain DTI and blood sampling for inflammation cytokines within 7 days postinjury and 72 age‐ and sex matched healthy controls with same assessments were enrolled. IPS outcome was assessed by the trail making test at 6–12 month postinjury in mild TBI. Fractional anisotropy (FA) features were extracted using a novel lesion‐load analytical strategy to capture spatially heterogeneous white matter injuries and minimize implicit assumptions of uniform injury across diverse clinical presentations. Acute mild TBI exhibited a general pattern of increased and decreased FA in specific white matter tracts. The power of acute FA measures to identify patients developing IPS deficits with 92% accuracy and further improved to 96% accuracy by adding inflammation cytokines. The classifiers predicted individual's IPS and working memory ratings (r = .74 and .80, respectively, p < .001). The thalamo‐cortical circuits and commissural tracts projecting or connecting frontal regions became important predictors. This prognostic model was also verified by an independent replicate sample. Our findings highlighted damage to frontal interhemispheric and thalamic projection fiber tracts harboring frontal‐subcortical neuronal circuits as a predictor for processing speed performance in mild TBI.  相似文献   

20.
Sustained attention deficits occur in several neuropsychiatric disorders. However, the underlying neurobiological mechanisms are still incompletely understood. To that end, functional MRI was used to investigate the neural substrates of sustained attention (vigilance) using the rapid visual information processing (RVIP) task in 25 healthy volunteers. In order to better understand the neural networks underlying attentional abilities, brain regions where task-induced activation correlated with task performance were identified. Performance of the RVIP task activated a network of frontal, parietal, occipital, thalamic, and cerebellar regions. Deactivation during task performance was seen in the anterior and posterior cingulate, insula, and the left temporal and parahippocampal gyrus. Good task performance, as defined by better detection of target stimuli, was correlated with enhanced activation in predominantly right fronto-parietal regions and with decreased activation in predominantly left temporo-limbic and cingulate areas. Factor analysis revealed that these performance-correlated regions were grouped into two separate networks comprised of positively activated and negatively activated intercorrelated regions. Poor performers failed to significantly activate or deactivate these networks, whereas good performers either activated the positive or deactivated the negative network, or did both. The fact that both increased activation of task-specific areas and increased deactivation of task-irrelevant areas mediate cognitive functions underlying good RVIP task performance suggests two independent circuits, presumably reflecting different cognitive strategies, can be recruited to perform this vigilance task.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号