首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Our objective was to explore the antiangiogenic activity of norcantharidin (NCTD) as an angiogenic inhibitor for gallbladder cancers. In vitro and in vivo experiments to determine the effects of NCTD on HUVECs, chicken CAM capillaries and gallbladder cancer xenograft angiogenesis in nude mice were respectively done. The MTT method was used to assay the cytotoxicity of NCTD on HUVECs. Immunofluorescence was used to evaluate HUVEC apoptosis. The scraping line method, matrigel invasion assay and tube formation assay were used to detect the migration, invasion and tube formation of HUVECs. A digital camera was used to observe chicken CAM capillaries. Experiments with NCTD in a xenograft model were used to observe the effect of NCTD on xenograft growth and survival of mice with xenografts. CD?? immunohistochemistry, flow cytometry and micro-MRA were used, respectively, to determine MVD, cell apoptosis and hemodynamic analysis of the xenografts. Immunohistochemistry and RT-PCR were used, respectively, to detect the expression of VEGF, Ang-2, TSP, TIMP-2 proteins/mRNAs of the xenografts. The xenograft MVD associated with tumor volume, the PCNA/apoptosis ratio and related-protein expression was evaluated simultaneously. We found that NCTD effectively inhibited the proliferation, migration, invasion and capillary-like tube formation of HUVECs in vitro; it reduced angiogenesis and directly destroyed the formed CAM capillaries in vivo. In the experiments in mice, NCTD not only inhibited significantly xenograft proliferation and growth, prolonged survival time of mice with xenografts, decreased the xenograft MVD and vascular perfusion, but also, similarly to ES, decreased significantly the expression of VEGF or Ang-2 protein/mRNA, increased the expression of TSP or TIMP-2 protein/mRNA. Moreover, the xenograft MVD was positively related with tumor volume, PCNA/apoptosis ratio, and VEGF or Ang-2 expression, respectively (all P<0.05), but negatively correlated with TSP or TIMP-2 expression (both P<0.05). These data showed that NCTD could serve as a potential antiangiogenic agent for gallbladder cancers.  相似文献   

2.
Norcantharidin (NCTD), the demethylated form of Cantharidin, a reagent isolated from blister beetles, has been shown to be an anti‐tumor agent capable of inhibiting proliferation as well as inducing apoptosis in many cancer cell lines. However, little is known about the effect of NCTD in tumor angiogenesis. In this study, we demonstrated that NCTD inhibited vascular endothelial growth factor (VEGF)‐induced cell proliferation, migration, invasion, and capillary tube formation of primary human umbilical vein endothelial cells (HUVECs) in a dose‐dependent manner. Furthermore, we showed NCTD inhibited tumor growth and angiogenesis of colon cancer cells (LOVO) in vivo. We then mechanistically described that NCTD specifically abrogated the phosphorylation/activation of vascular endothelial growth factor receptor‐2 (VEGFR2)/MEK/ERK pathway kinases, with little effect on the phosphorylation of p38 MAPK and Akt, and on Cox‐2 expression. In summary, our results indicate that NCTD is a potential inhibitor of tumor angiogenesis by blocking VEGFR2/MEK/ERK signaling.  相似文献   

3.
Studies have indicated that the consumption of green tea is associated with a reduced risk of developing certain forms of cancer and angiogenesis. The mechanism of inhibition of angiogenesis by green tea or its catechins, however, has not been well-established. Vascular endothelial (VE)-cadherin, an adhesive molecule located at the site of intercellular contact, is involved in cell-cell recognition during vascular morphogenesis. The extracellular domain of VE-cadherin mediates initial cell adhesion, whereas the cytosolic tail binding with beta-catenin is required for interaction with the cytoskeleton and junctional strength. Therefore, the cadherin-catenin adhesion system is implicated in cell recognition, differentiation, growth and migration of capillary endothelium. Using tube formation of human microvascular endothelial cells (HMVEC) in culture as an in vitro model of angiogenesis, we reported that vascular endothelial growth factor (VEGF)-induced tube formation is inhibited by anti-VE-cadherin antibody and dose-dependently by green tea catechins. We also demonstrated here that inhibition of tube formation by epigallocatechin gallate (EGCG), one of the green tea catechins, is in part mediated through suppression of VE-cadherin tyrosine phosphorylation and inhibition of Akt activation during VEGF-induced tube formation. These findings indicate that VE-cadherin and Akt, known downstream proteins in VEGFR-2-mediated cascade, are the new-targeted proteins by which green tea catechins inhibit angiogenesis.  相似文献   

4.
5.
Huang SW  Lien JC  Kuo SC  Huang TF 《Carcinogenesis》2012,33(5):1022-1030
Angiogenesis occurs not only during tissue growth and development but also during wound healing and tumor progression. Angiogenesis is a balanced process controlled by proangiogenic and antiangiogenic molecules. As a critical factor in the induction of angiogenesis, vascular endothelial growth factor (VEGF) has become an attractive target for antiangiogenic and cancer therapeutic agents. In an effort to develop novel inhibitors to block VEGF signaling, we selected Pj-8, a benzimidazole derivative, and investigated its inhibitory mechanisms in human umbilical vascular endothelial cells (HUVECs). Pj-8 concentration-dependently inhibited VEGF-induced proliferation, migration and tube formation of HUVECs. Pj-8 also suppressed VEGF-induced microvessel sprouting from aortic rings ex vivo and suppressed neovascularization of implanted matrigel plugs in vivo. Pj-8 inhibited VEGF-induced phosphorylation of VEGF receptor (VEGFR) 2 and the downstream protein kinases, including Akt, focal adhesion kinase, extracellular signal-regulated kinases and Src. Results from in vitro kinase assay further demonstrated that Pj-8 suppressed the kinase activity of 3-phosphoinositide-dependent kinase 1 (PDK1). Using xenograft tumor angiogenesis model, Pj-8 markedly eliminated tumor-associated angiogenesis. Taken together, our findings suggest that Pj-8 inhibits VEGF and tumor cells MDA-MB-231-induced angiogenesis, and it may be a potential drug candidate in anticancer therapy. Downregulation of VEGFR2-mediated signaling may contribute to its antiangiogenic actions.  相似文献   

6.
The role of cell adhesion molecules has been studied extensively in the process of inflammation, and these molecules are critical components of carcinogenesis and cancer metastasis. This study investigated the effect of tanshinone I derived from the traditional herbal medicine, Salvia miltiorrhiza Bunge, on the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-alpha (TNF-alpha)-stimulated endothelial cells. Furthermore, this study investigated the effect of tanshinone I on cancer growth, invasion and angiogenesis on human breast cancer cells MDA-MB-231, both in vitro and in vivo. Tanshinone I dose dependently inhibited ICAM-1 and VCAM-1 expressions in human umbilical vein endothelial cells (HUVECs) that were stimulated with TNF-alpha for 6 h. Pretreatment with tanshinone I significantly reduced adhesion of either monocyte U937 or MDA-MB-231 cells to HUVECs. Interestingly, the inhibitory effect of tanshinone I on monocyte and cancer cell adhesion to HUVECs was mimicked by transfection with ICAM-1 and VCAM-1 small interfering RNA. In addition, tanshinone I effectively inhibited TNF-alpha-induced production of vascular endothelial growth factor (VEGF) and VEGF-mediated tube formation in HUVECs. Tanshinone I also inhibited TNF-alpha-induced VEGF production in MDA-MB-231 cells and migration of MDA-MB-231 cells through extracellular matrix. Additionally, reduction of tumor mass volume and decrease of metastasis incidents by tanshinone I were observed in vivo. In conclusion, this study provides a potential mechanism for the anticancer effect of tanshinone I on breast cancer cells, suggesting that tanshinone I may serve as an effective drug for the treatment of breast cancer.  相似文献   

7.
8.
Bee venom (BV) treatment is the therapeutic application of honeybee venom (HBV) for treating various diseases in Oriental medicine. In the present work, the authors investigated the functional specificity of BV as an angiogenesis inhibitor using in vitro models and in vivo mouse angiogenesis and lung metastasis models. BV significantly inhibited the viability of Lewis lung carcinoma (LLC) cells but did not affect peripheral blood mononuclear lymphocytes (PBML) cells. BV also inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration and capillary-like tube formation of human umbilical vein endothelial cells (HUVECs). Western blotting analysis showed that BV inhibited AKT and MAPK phosphorylation in LLC cells and HUVECs and down regulated expression of VEGF and VEGFR-2 of LLC cells and HUVECs. Also, BV effectively disrupted VEGF-induced neovascularization in Matrigel plugs in our in vivo angiogenesis assay. When given subcutaneously, BV also significantly suppressed tumor angiogenesis through inhibition of VEGF and VEGFR-2 in LLC model. Mice bearing subcutaneous LLC tumors were treated with 1 μg/ml or 10 μg/ml of BV. They showed reductions ranging between 49% and 62% in primary tumor volume and reduction of spontaneous pulmonary metastasis occurrences. Furthermore, BV treatment in the spontaneous lung metastases model after primary tumor excision prolonged their median survival time from 27 to 58 days. These results suggest that the tumor-specific anti-angiogenic activity of BV takes effect during different stages of tumor progression by blocking the tyrosine phosphorylation of VEGFR-2, and validate the application of BV in lung cancer treatment.  相似文献   

9.
Development of a novel type of angiogenesis inhibitor will be essential for further improvement of therapeutics against cancer patients. We examined whether an octahydronaphthalene derivative, AMF-26, which was screened as an inhibitor of intercellular adhesion molecule-1 (ICAM-1) production stimulated by inflammatory stimuli in vascular endothelial cells, could block angiogenesis in response to vascular endothelial growth factor (VEGF) and/or inflammatory cytokines. Low dose AMF-26 effectively inhibited the tumor necrosis factor-α (TNF-α)- or the interleukin-1β (IL-1β)-induced production of ICAM-1 in human umbilical vascular endothelial cells (HUVECs). We found that the TNF-α-induced phosphorylation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) and nuclear translocation of p65 were impaired by AMF-26 in both endothelial cells and cancer cells. AMF-26 was found to inhibit the phosphorylation of VEGF receptor 1 (VEGFR1), VEGFR2 and the downstream signaling molecules Akt, extracellular signal-regulated kinase (ERK)1/2 stimulated by VEGF in HUVECs. Therefore, the VEGF-induced proliferation, migration and tube formation of vascular endothelial cells was highly susceptible to inhibition by AMF-26. Oral administration of AMF-26 significantly blocked VEGF- or IL-1β-induced angiogenesis in the mouse cornea, and also tumor angiogenesis and growth. Together, our results indicate that AMF-26 inhibits angiogenesis through suppression of both VEGFR1/2 and nuclear factor-κB (NF-κB) signaling pathways when stimulated by VEGF or inflammatory cytokines. AMF-26 could be a promising novel candidate drug for cancer treatments.  相似文献   

10.
We investigated the effects of serum-free conditioned medium (SFCM) of colon cancer cells on human umbilical vein endothelial cells (HUVECs). SFCM of highly liver metastatic cell line (LM-HS) strongly enhanced proliferation, migration and tube formation of HUVECs. Moreover, it was suggested that a main angiogenic factor derived from LM-H5 may be VEGF based on HPLC, SDS-PAGE analysis and neutralizing experiment using anti-growth factor antibodies. These findings suggest that angiogenesis is related to the processes of metastasis of colon cancer, and that VEGF synthesized by colon cancer cells acts as a key factor inducing angiogenesis.  相似文献   

11.

Purpose

Dihydroartemisinin (DHA) has recently shown antitumor activity in human pancreatic cancer cells. However, its effect on antiangiogenic activity in pancreatic cancer is unknown, and the mechanism is unclear. This study was aimed to investigate whether DHA would inhibit angiogenesis in human pancreatic cancer.

Methods

Cell viability and proliferation, tube formation of human umbilical vein endothelial cells (HUVECs), nuclear factor (NF)-??B DNA-binding activity, expressions of vascular endothelial growth factor (VEGF), interleukin (IL)-8, cyclooxygenase (COX)-2, and matrix metalloproteinase (MMP)-9 were examined in vitro. The effect of DHA on antiangiogenic activity in pancreatic cancer was also assessed using BxPC-3 xenografts subcutaneously established in BALB/c nude mice.

Results

DHA inhibited cell proliferation and tube formation of HUVECs in a time- and dose-dependent manner and also reduced cell viability in pancreatic cancer cells. DHA significantly inhibited NF-??B DNA-binding activity, so as to tremendously decrease the expression of NF-??B-targeted proangiogenic gene products: VEGF, IL-8, COX-2, and MMP-9 in vitro. In vivo studies, DHA remarkably reduced tumor volume, decreased microvessel density, and down-regulated the expression of NF-??B-related proangiogenic gene products.

Conclusions

Inhibition of NF-??B activation is one of the mechanisms that DHA inhibits angiogenesis in human pancreatic cancer. We also suggest that DHA could be developed as a novel agent against pancreatic cancer.  相似文献   

12.
重组人血管内皮抑素对血管新生的影响研究   总被引:1,自引:0,他引:1       下载免费PDF全文
目的 探讨重组人血管内皮抑素(Endostar,恩度)对血管内皮细胞趋化、迁移、粘附、增殖及小管形成等与血管新生相关生物学行为的影响。方法 以原代培养的人脐静脉内皮细胞(HUVEC)为细胞模型,通过Boyden小室荧光定量分析、划痕试验、HUVEC荧光定量粘附分析、CFSE染色流式细胞术、CCK-8定量检测、小管形成试验和Matrigel栓试验研究恩度对HUVEC与血管新生相关的生物学行为的影响。结果 恩度在5~50 000ng/ml范围内可抑制血管内皮生长因子诱导HUVEC的迁移运动,且浓度为50ng/ml和500ng/ml时效果最明显;恩度在5~50 000ng/ml间可呈剂量依赖的方式抑制HUVEC向损伤部位的迁移。与0ng/ml相比,50、500和5000ng/ml 恩度处理的HUVEC的粘附率、增殖率及HUVEC形成网状小管结构的数量、面积和长度均降低,差异均有统计学意义(P<0.05); Matrigel栓实验结果显示,恩度在50~5000ng/ml间对SCID小鼠体内血管新生有明显的抑制作用。结论 恩度在细胞水平能抑制HUVEC与血管新生相关的生物学行为,包括HUVEC的趋化、迁移、粘附、增殖和小管形成;在动物水平能抑制SCID小鼠体内的血管新生,据此推断恩度能抑制血管新生。  相似文献   

13.
We recently demonstrated that two chalcones isolated from Angelica keiskei roots have anti-tumor and anti-metastatic activities through the inhibition of tumor-induced angiogenesis, but the anti-tumor substances of Angelica japonica roots are unknown. We attempted to clarify the anti-tumor action and its mechanisms of a major component 3'-O-acetylhamaudol isolated from A. japonica roots. We first examined the effects of 3'-O-acetylhamaudol on tumor growth in colon 26-bearing mice. Furthermore, we examined the effects of 3'-O-acetylhamaudol on angiogenic factors (vascular endothelial growth factor receptor-2 (VEGFR-2) phosphorylation in human umbilical vein endothelial cells (HUVECs), and vascular endothelial growth factor (VEGF) production and hypoxia-inducible factor (HIF)-1alpha expression in tumors). 3'-O-Acetylhamaudol (25 and 50 mg/kg, twice daily) inhibited the tumor growth in colon 26-bearing mice. Although 3'-O-acetylhamudol had no effect on the VEGF production and HIF-1alpha in colon 26 cells, it (10 microM) inhibited the VEGF-induced angiogenesis and VEGF-induced VEGFR-2 phosphorylation in HUVECs. 3'-O-Acetylhamaudol has anti-tumor effects mediated through dual mechanisms, i.e., anti-angiogenic actions and the modulation of the immune system in the spleen and small intestine in tumor-bearing mice.  相似文献   

14.
15.
Ki23057 is a new, small synthetic tyrosine kinase inhibitor that blocks autophosphorylation of the VEGF receptor2 (VEGFR2). To determine the effect of Ki23057 as an anti-angiogenic agent, we studied the effect of Ki23057 for colon cancer and vascular endothelial cells in vitro and in vivo. Ki23057 inhibited VEGF-induced proliferation of human umbilical vein endothelial cells (HUVECs), whereas no inhibitory effect of Ki23057 on the proliferation of three colon cancer cells (LM-H3, LoVo and LS174T) was observed by means of the cell count assay. Ki23057 inhibited tube formation of HUVECs. Immunoprecipitation demonstrated that Ki23057 inhibited tyrosine phosphorylation of VEGFR2 in HUVECs. Ki23057 exhibited a significant inhibitory effect on the growth of the xenografted LM-H3 tumours and the spreading of cancer cells to the liver. Anti-CD31 antibody stained significantly fewer microvessels in the xenografted tumours treated with Ki23057 compared with controls. Ki23057 may be a promising new antiangiogenic agent for colon cancer.  相似文献   

16.
17.
Emodin (1,3,8-trihydroxy-6-methylanthraquinone), an active component in the root and rhizome of Rheum palmatum, is a tyrosine kinase inhibitor with a number of biological activities, including antitumor effects. Here, we examine the effects of emodin on vascular endothelial growth factor (VEGF)-A-induced angiogenesis, both in vitro and in vivo. In vitro, emodin dose-dependently inhibits proliferation, migration into the denuded area, invasion through a layer of Matrigel and tube formation of human umbilical vein endothelial cells (HUVECs) stimulated with VEGF-A. Emodin also inhibits basic fibroblast growth factor-induced proliferation and migration of HUVECs and VEGF-A-induced tube formation of human dermal microvascular endothelial cells. Specifically, emodin induces the cell cycle arrest of HUVECs in the G0/G1 phase by suppressing cyclin D1 and E expression and retinoblastoma protein phosphorylation, and suppresses Matrigel invasion by inhibiting the basal secretion of matrix metalloproteinase-2 and VEGF-A-stimulated urokinase plasminogen activator receptor expression. Additionally, emodin effectively inhibits phosphorylation of VEGF-A receptor-2 (KDR/Flk-1) and downstream effector molecules, including focal adhesion kinase, extracellular signal-regulated kinase 1/2, p38 mitogen-activated protein kinase, Akt and endothelial nitric oxide synthase. In vivo, emodin strongly suppresses neovessel formation in the chorioallantoic membrane of chick and VEGF-A-induced angiogenesis of the Matrigel plug in mice. Our data collectively demonstrate that emodin effectively inhibits VEGF-A-induced angiogenesis in vitro and in vivo. Moreover, inhibition of phosphorylation of KDR/Flk-1 and downstream effector molecules is a possible underlying mechanism of the anti-angiogenic activity of emodin. Based on these data, we propose that an interaction of emodin with KDR/Flk-1 may be involved in the inhibitory function of emodin toward VEGF-A-induced angiogenesis in vitro and responsible for its potent anti-angiogenic in vivo.  相似文献   

18.
Recent studies have indicated that microRNAs (miRNAs) are important gene regulators that play critical roles in biological processes and function as either tumour suppressors or oncogenes. Therefore, the expression levels of miRNAs can be important and reliable biomarkers for cancer detection and prognostic prediction, and potentially serve as targets for cancer therapy. In this study, we showed that the expression level of miR-128 was significantly downregulated in non-small cell lung cancer (NSCLC) tissues and cancer cells, and was significantly correlated with NSCLC differentiation, pathological stage and lymph node metastasis. Ectopic miR-128 overexpression significantly suppressed in vitro proliferation, colony formation, immigration and invasion, and induced G1 arrest and apoptosis of NSCLC cells. Interestingly, ectopic miR-128 overexpression could significantly inhibit vascular endothelial growth factor (VEGF)-C expression and reduce the activity of a luciferase reporter containing the VEGF-C 3′-untranslated region. In addition, overexpression of miR-128 in NSCLC cells and human umbilical vein endothelial cells (HUVECs) cells led to decreased expression of VEGF-A, vascular endothelial growth factor receptor (VEGFR)-2 and VEGFR-3, critical factors responsible for cancer angiogenesis and lymphangiogenesis, and subsequently decreased phosphorylation of extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (AKT) and p38 signalling pathways. Furthermore, in vivo restoration of miR-128 significantly suppressed tumourigenicity of A549 cells in nude mice and inhibited both angiogenesis and lymphangiogenesis of tumour xenografts. These findings suggest that miR-128 could play a role in NSCLC tumourigenesis at least in part by modulation of angiogenesis and lymphangiogenesis through targeting VEGF-C, and could simultaneously block ERK, AKT and p38 signalling pathways. Therapeutic strategies to restore miR-128 in NSCLC could be useful to inhibit tumour progression.  相似文献   

19.
Kong D  Li Y  Wang Z  Banerjee S  Sarkar FH 《Cancer research》2007,67(7):3310-3319
Progression of prostate cancer is believed to be dependent on angiogenesis induced by tumor cells. 3,3'-Diindolylmethane (DIM) has been shown to repress neovascularization in a Matrigel plug assay and inhibit cell proliferation, migration, invasion, and capillary tube formation of cultured human umbilical vein endothelial cells. However, the molecular mechanism, by which DIM inhibits angiogenesis and invasion, has not been fully elucidated. Therefore, we sought to explore the molecular mechanism by which DIM inhibits angiogenesis and invasion, specifically by investigating the role of angiogenic factors secreted by prostate cancer cells which control all steps of angiogenesis. We found that BioResponse DIM (B-DIM), a formulated DIM with higher bioavailability, inhibited angiogenesis and invasion by reducing the bioavailability of vascular endothelial growth factor (VEGF) via repressing extracellular matrix-degrading proteases, such as matrix metalloproteinase (MMP)-9 and urokinase-type plasminogen activator (uPA), in human prostate cancer cells and reduced vascularity (angiogenesis) in vivo using Matrigel plug assay. We also found that B-DIM treatment inhibited DNA binding activity of nuclear factor-kappaB (NF-kappaB), which is known to mediate the expression of many NF-kappaB downstream target genes, including VEGF, IL-8, uPA, and MMP-9, all of which are involved in angiogenesis, invasion, and metastasis. Our data suggest that inhibition of NF-kappaB DNA binding activity by B-DIM contributes to the regulated bioavailability of VEGF by MMP-9 and uPA and, in turn, inhibits invasion and angiogenesis, which could be mechanistically linked with the antitumor activity of B-DIM as observed previously by our laboratory in a prostate cancer animal model.  相似文献   

20.
Objective: Angiogenesis plays a key role in tumor growth, invasion, and metastasis of cancer diseases, and therefore, the inhibition of angiogenesis can provide an important therapeutic approach in cancer diseases. The aim of this study was to investigate the inhibitory effects of methyl hydroxychalcone on ex vivo sprouting of rat aortic micro-vessels and in vivo formation of chorionic plexus in chick chorioallantoic membrane and to investigate the mechanism underlying anti-angiogenic activity. Methods: Rat aortic rings were sectioned by 1 mm. 500μl of 3 mg/ml of fibrinogen in serum free M199 growth medium was added to each well with 5 ug/ml of aprotinin. Methyl hydroxychalcone at varying concentrations ranging from 6.25 µg/ml to 100 µg/ml was added to the complete growth medium. Fertilized chicken eggs were incubated at 37°C. On day 3, a small window was opened in the shell. The window was sealed with adhesive tape and incubated until day 5. One mg of methylhydroxychalcone was applied. Images of each CAM were captured using a digital camera, and the dimensions of the blood vessels were measured digitally. Vascular endothelial growth factor (VEGF)-induced human umbilical vein endothelial cell (HUVEC) proliferation and tube formation assays were examined. Additionally, VEGF-165 levels and expression of membrane VEGF receptor-2 in HUVEC lysates have been assessed. Results: The data showed that methyl hydroxychalcone significantly had antiangiogenic activity in a dose dependent manner in the rat aorta assay and had significant perturbation activity on blood vessels in the CAM assay. Methyl hydroxychalcone significantly inhibited proliferation and capillary-like tube formation in VEGF-induced HUVEC. Moreover, methylhydroxychalcone significantly reduced VEGF-165 levels in HUVECs lysate. Conclusion: This study showed that methyl hydroxychalcone significantly inhibits the angiogenesis process, blocking the VEGF signaling pathway in HUVECs and could be a potential promising angiogenesis inhibitor lead compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号