首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
OBJECTIVE: The dorsolateral prefrontal cortex has been implicated in both working memory and the pathophysiology of schizophrenia. A relationship among dorsolateral prefrontal cortex activity, working memory dysfunction, and symptoms in schizophrenia has not been firmly established, partly because of generalized cognitive impairments in patients and task complexity. Using tasks that parametrically manipulated working memory load, the authors tested three hypotheses: 1) patients with schizophrenia differ in prefrontal activity only when behavioral performance differentiates them from healthy comparison subjects, 2) dorsolateral prefrontal cortex dysfunction is associated with poorer task performance, and 3) dorsolateral prefrontal cortex dysfunction is associated with cognitive disorganization but not negative or positive symptoms. METHOD: Seventeen conventionally medicated patients with schizophrenia and 16 healthy comparison subjects underwent functional magnetic resonance imaging while performing multiple levels of the "n-back" sequential-letter working memory task. RESULTS: Patients with schizophrenia showed a deficit in physiological activation of the right dorsolateral prefrontal cortex (Brodmann's area 46/9) in the context of normal task-dependent activity in other regions, but only under the condition that distinguished them from comparison subjects on task performance. Patients with greater dorsolateral prefrontal cortex dysfunction performed more poorly. Dorsolateral prefrontal cortex dysfunction was selectively associated with disorganization symptoms. CONCLUSIONS: These results are consistent with the hypotheses that working memory dysfunction in patients with schizophrenia is caused by a disturbance of the dorsolateral prefrontal cortex and that this disturbance is selectively associated with cognitive disorganization. Further, the pattern of behavioral performance suggests that dorsolateral prefrontal cortex dysfunction does not reflect a deficit in the maintenance of stimulus representations per se but points to deficits in more associative components of working memory.  相似文献   

2.
CONTEXT: It remains unclear whether altered regional brain physiological activity in patients with schizophrenia during working memory tasks relates to maintenance-related processes, manipulation-related (ie, executive) processes, or both. OBJECTIVE: To examine regional functional activations of the brain during maintenance- and manipulation-related working memory processing in patients with schizophrenia and in healthy comparison subjects. DESIGN: Functional images of the brain were acquired in 11 schizophrenic patients and 12 healthy control subjects (matched for age, sex, handedness, and parental education) during 2 spatial working memory paradigms, one contrasting maintenance-only processing with maintenance and manipulation processing and the other contrasting parametrically varying maintenance demands. RESULTS: Patients and controls showed activation of a large, spatially distributed network of cortical and subcortical regions during spatial working memory processing. When task demands required explicit manipulation of information held in memory, controls recruited right dorsolateral prefrontal cortex (Brodmann areas 45 and 46) to a significantly greater extent than patients. A similar effect was observed for the larger memory set sizes of the memory set size task. No other brain regions showed activation differences between groups for either task. These differences persisted when comparing activation maps for memory set sizes in which the 2 groups were equivalent in behavioral accuracy and when comparing subgroups of patients and controls matched for behavioral accuracy on either task. CONCLUSIONS: Physiological disturbances in the dorsolateral prefrontal cortex contribute differentially to patients' difficulties with maintaining spatial information across a brief delay, as well as with manipulating the maintained representation. These differences persisted when comparing conditions in which the 2 groups were equivalent in behavioral accuracy.  相似文献   

3.
Involvement of the prefrontal cortex in schizophrenia has been implicated by neuropsychological, as well as neuropathological and imaging studies. Reductions of N-acetylaspartate (NAA), an in vivo marker of neuronal integrity, have repeatedly been detected in the frontal lobes of patients with schizophrenia by proton magnetic resonance spectroscopy (1H-MRS). In chronic medicated patients, a positive correlation between NAA levels of the prefrontal cortex and cognitive functioning has been observed, but to date, there have been no studies in first-episode neuroleptic-naive patients. In this study, single-voxel 1H-MRS was used to investigate neuronal function of the dorsolateral prefrontal cortex in 15 first-episode and 20 chronic schizophrenic patients. Outcomes were compared to 20 age-matched healthy controls to assess the relationship between prefrontal metabolism and neuropsychological performance. Patients with chronic schizophrenia had significant reductions of NAA, glutamate/glutamine, and choline levels compared to first-episode patients and healthy controls. Furthermore, creatine and phosphocreatine were significantly reduced in both patient groups compared to healthy controls. In the neuropsychological tests, chronic schizophrenic patients performed significantly poorer in the Auditory Verbal Learning Task (AVLT) compared to first-episode patients. In both patient groups, NAA levels of the left frontal lobe significantly correlated with performances in verbal learning and memory. These results corroborate data from recent structural and spectroscopic imaging studies of the frontal lobes in schizophrenia, in which cortical gray matter reductions after onset of symptoms as well as reduced levels of NAA in chronic, but not in first-episode schizophrenic patients have been reported.  相似文献   

4.
Bor D  Duncan J  Lee AC  Parr A  Owen AM 《Neuropsychologia》2006,44(2):229-237
Although monkey lesion studies involving the prefrontal cortex commonly report working memory deficits, and neuroimaging studies consistently show prefrontal involvement in such tasks, patients with damage to this region commonly fail to show any working memory impairment. Such a discrepancy may be due to insensitive testing measures for patients, as well as small, yet critical differences between working memory tasks in imaging and patient studies. The current study utilised a more sensitive measure of spatial working memory spans, based either on structured or unstructured spatial arrays. A PET study in normal subjects confirmed that both variants did indeed activate prefrontal cortex. The same tasks were given to frontal lobe patients and closely matched controls. Patients with large frontal lesions were significantly impaired on this task, with those patients with damage to the right dorsolateral prefrontal cortex appearing particularly impaired. This result demonstrates that prefrontal cortex is necessary for normal working memory, even in simple tasks, such as spatial span. It is suggested, however, that the patient deficit reflects strategic or goal-based dysfunction, rather than storage limitations.  相似文献   

5.
OBJECTIVE: Poor executive functioning is a core deficit in schizophrenia and has been linked to frontal lobe alterations. We aimed to identify (1) prefrontal cerebral areas in which decreased volume is linked to executive dysfunction in schizophrenia; and (2) areas throughout the brain that are volumetrically related to the prefrontal area identified in the first analysis, thus detecting more extended volumetric networks associated with executive functioning. METHOD: Fifty-three outpatients with schizophrenia and 62 healthy controls, matched for age, gender and handedness, were recruited. High-resolution images were acquired on a 1.5 tesla scanner and regional gray and white matter volumes were analyzed by voxel-based morphometry within SPM5 (statistical parametric mapping, University College London, UK). Executive functioning was assessed using the Wisconsin Card Sorting Test (WCST). RESULTS: Twenty-one patients with poor executive functioning showed reduced dorsolateral prefrontal and anterior cingulate gray matter volume as compared to 30 patients with high WCST performance, with a maximum effect in the left dorsolateral prefrontal cortex. Left dorsolateral prefrontal gray matter volume predicted WCST performance after controlling for possible confounding effects of global cognitive functioning, verbal attention span, negative symptoms, illness duration and education. In this area, both patient groups had less gray matter than healthy controls. Left dorsolateral prefrontal gray matter volume was positively related to dorsal prefrontal, anterior cingulate and parietal gray matter volume; and negatively related to thalamic, cerebellar, pontine and right parahippocampal gray matter volume. CONCLUSIONS: Volumetric alterations in prefrontal-thalamic-cerebellar gray matter networks may lead to executive dysfunction in schizophrenia.  相似文献   

6.
BACKGROUND: Our goal was to examine spatial working memory function in relation to clinical symptoms of schizophrenia over a period of 4 months. METHODS: We assessed spatial working memory, spatial detection and clinical symptoms in 34 acutely psychotic schizophrenia patients within the first 2 weeks of hospitalization, and 4 months later. Spatial working memory was assessed by a delayed response task. A spatial control task was included to rule out simple sensorimotor deficits. Positive and negative symptoms were assessed by the Positive and Negative Syndrome Scale (PANSS). Thirty-nine matched normal control subjects were also examined on the same tasks over the same period. RESULTS: Patients showed deficits in working memory, but they performed well on the spatial control task. Both positive and negative symptoms improved at the 4-month follow up. Spatial working memory also improved over time but there was still a significant deficit at the follow-up session. CONCLUSIONS: These results indicate that both symptoms and spatial working memory improved 4 months after the initial hospitalization but spatial working memory, hypothesized to be mediated by the dorsolateral prefrontal system, did not normalize. Thus, spatial working memory deficit may be a stable marker for schizophrenia.  相似文献   

7.
Proposing cognitive impairment in working memory (wm) functions as a cognitive core deficit in schizophrenia, 23 first episode, medication-free schizophrenic patients in a comparison of healthy adults have been investigated by fMRI. Additionally, the effects of different attentional demands in wm tasks were analysed. A wm paradigm was applied, in which stimuli were presented in a 2-back and a 0-back condition in a non-degraded and degraded version. As hypothesized in healthy controls increased activity during both 2-back tasks was found in the ventrolateral prefrontal cortex (VLPFC), dorsolateral prefrontal cortex (DLPFC), parietal regions, the thalamus and the cerebellum. Different activation patterns were found for the cingulate cortex in the 2-back degraded conditions. The comparison between healthy controls and schizophrenic patients revealed decreased activity in the right VLPFC in patients as well as increased activity in temporal regions. Furthermore patients' task performance quality was significantly lower for 2-back conditions. Schizophrenic patients use different cognitive strategies to solve working memory tasks, reflected in significantly altered cerebral activity. However, the different fMRI working memory correlates found in schizophrenic patients seem to be insufficient in terms of overall task performance.  相似文献   

8.
目的 探讨前额叶不同亚区损伤患者的视-空间工作记忆障碍.方法 将20例前额叶不同亚区损伤患者以及20名与其人口学资料相匹配的健康人作为被试,采用视觉面孔和视觉空间的延迟匹配任务对上述2组进行视-空间工作记忆测试.结果 与健康对照组(72.9%±6.1%)相比,前额叶腹侧(ventral prefrontal cortex,VPFC)损伤的患者视觉客体工作记忆的正确率(46.4%±11.4%)明显下降,差异有统计学意义(U=1.00,P<0.01);而前额叶背外侧(dorsolateral prefrontal cortex,DLPFC)损伤的患者在视觉客体(50.4%±15.1%)和视觉空间(72.6%±18.6%)工作记忆均有明显损伤,与对照组(72.9%±6.1%、89.4%±10.1%)比较差异均有统计学意义(U=-20.5、59.5,均P<0.01).对左、右前额叶损伤的2组患者进行分析,结果表明2组患者在视觉客体和空间工作记忆正确率的比较差异均无统计学意义.对前额叶亚区进行左右侧比较,2组VPFC患者在视觉客体和视觉空间工作记忆差异均无统计学意义;左侧DLPFC损伤组和右侧DLPFC损伤组在视觉客体工作记忆正确率和视觉面孔工作记忆正确率方面,差异均无统计学意义.结论 前额叶是工作记忆加工的重要脑区,其不仅参与了视觉客体的工作记忆加工过程,同时参与了视觉空间的工作记忆加工,而且对于前额叶不同亚区在视-空间工作记忆加工过程中还存在分离.  相似文献   

9.
Working memory deficits are a core feature of schizophrenia. Previous working memory studies suggest a load dependent storage deficit. However, explicit studies of higher executive working memory processes are limited. Moreover, few studies have examined whether subcomponents of working memory such as encoding and maintenance of information are differentially affected by these deficits. Therefore, the aim of the present study was to examine the neural substrates of working memory subprocesses requiring stimulus encoding, maintenance and higher executive processing. Using functional magnetic resonance imaging a modified Sternberg working memory task involving verbal stimulus material was applied. The event-related design enabled the segregation of encoding, active maintenance and executive manipulation of information. Forty-one patients with schizophrenia and 41 healthy subjects were included. Relative to normal controls, schizophrenic patients demonstrated a significantly stronger activation pattern in a fronto-parietal network during executive information manipulation. Additionally, significant relative hypoactivity was detectable in the thalamus. Conversely, during stimulus encoding the patients demonstrated lower activation relative to controls in the prefrontal cortex and the anterior cingulate gyrus. The present findings indicate a pronounced prefrontal functional hyperactivation within the neural network subserving higher executive working memory control processes in schizophrenia. Moreover, they suggest that these altered activations during executive control are related to a preceding abnormality of information encoding. During encoding, a reduced activation in mainly dorsolateral prefrontal and anterior cingulate regions was observed. These results could be explained by increased top-down control processing from prefrontal cortex as a compensation for functional deficits occurring during encoding.  相似文献   

10.
《Social neuroscience》2013,8(5):489-504
Social cognition and the corresponding functionality of involved brain networks are essential for effortless social interaction. Patients with schizophrenia exhibit impaired social functioning. In this study, we focused on the neural networks involved in the automatic perception of cooperative behavior and their alterations in schizophrenia.

We performed a functional magnetic resonance imaging study of 19 schizophrenia patients and 19 healthy matched controls. Participants watched a set of short videos with two actors manipulating objects, either with (C+) or without cooperation (C–). Additionally, we assessed delusional symptoms in patients using the Scales for the Assessment of Positive Symptoms and psychosis proneness in healthy controls using the brief schizotypal personality questionnaire.

The observed group-by-condition interaction revealed a contrasting activation pattern for patients versus healthy controls in the medial and lateral prefrontal cortex, the middle cingulate cortex, and the left angular gyrus. Furthermore, increased activation of the middle prefrontal areas, left angular gyrus, and the posterior sulcus temporalis superior in response to the noncooperative condition (C–) was positively correlated with delusional symptoms in patients.

Our findings suggest an overactivated “theory of mind” network in patients for the processing of noncooperative behavior. Thus, “overmentalizing” might be based on delusions and altered processing of cooperative behavior in patients with schizophrenia.  相似文献   

11.
OBJECTIVE: Abnormal activation of the dorsolateral prefrontal cortex and a related cortical network during working memory tasks has been demonstrated in patients with schizophrenia, but the responsible mechanism has not been identified. The present study was performed to determine whether neuronal pathology of the dorsolateral prefrontal cortex is linked to the activation of the working memory cortical network in patients with schizophrenia. METHOD: The brains of 13 patients with schizophrenia and 13 comparison subjects were studied with proton magnetic resonance spectroscopic ((1)H-MRS) imaging (to measure N-acetylaspartate as a marker of neuronal pathology) and with [(15)O]water positron emission tomography (PET) during performance of the Wisconsin Card Sorting Test (to measure activation of the working memory cortical network). An independent cohort of patients (N=7) was also studied in a post hoc experiment with (1)H-MRS imaging and with the same PET technique during performance of another working memory task (the "N-back" task). RESULTS: Measures of N-acetylaspartate in the dorsolateral prefrontal cortex strongly correlated with activation of the distributed working memory network, including the dorsolateral prefrontal, temporal, and inferior parietal cortices, during both working memory tasks in the two independent groups of patients with schizophrenia. In contrast, N-acetylaspartate in other cortical regions and in comparison subjects did not show these relationships. CONCLUSIONS: These findings directly implicate a population of dorsolateral prefrontal cortex neurons as selectively accounting for the activity of the distributed working memory cortical network in schizophrenia and complement other evidence that dorsolateral prefrontal cortex connectivity is fundamental to the pathophysiology of the disorder.  相似文献   

12.
Spatial working memory entails the ability to keep spatial information active in working memory over a short period of time. To study the areas of the brain that are involved in spatial working memory, a group of stroke patients was tested with a spatial search task. Patients and healthy controls were asked to search through a number of boxes shown at different locations on a touch-sensitive computer screen in order to find a target object. In subsequent trials, new target objects were hidden in boxes that were previously empty. Within-search errors were made if a participant returned to an already searched box; between-search errors occurred if a participant returned to a box that was already known to contain a target item. The use of a strategy to remember the locations of the target objects was calculated as well. Damage to the right posterior parietal and right dorsolateral prefrontal cortex impaired the ability to keep spatial information 'on-line', as was indicated by performance on the Corsi Block-Tapping task and the within-search errors. Moreover, patients with damage to the right posterior parietal cortex, the right dorsolateral prefrontal cortex and the hippocampal formation bilaterally made more between-search errors, indicating the importance of these areas in maintaining spatial information in working memory over an extended time period.  相似文献   

13.
Functional neuroimaging studies on cognitive dysfunction in schizophrenia have suggested regional brain activation changes in the dorsolateral prefrontal cortex and the medial temporal lobe. However, less is known about the functional coupling of these areas during cognitive performance. In this study, we used functional magnetic resonance imaging, a verbal working memory (WM) task and multivariate statistical techniques to investigate the functional coupling of temporally anticorrelated neural networks during cognitive processing in patients with schizophrenia (n = 16) compared to healthy controls (n = 16). Independent component analysis identified 18 independent components (ICs) among which two ICs were selected for further analyses. These ICs included temporally anticorrelated networks which were most highly associated with the delay period of the task in both healthy controls and patients with schizophrenia. Functional network abnormalities in patients with schizophrenia were detected within a “task-positive” lateral frontoparietal network, where increased functional connectivity was found in bilateral dorsolateral prefrontal regions. In addition, aberrant functional coupling of the hippocampal cortex in patients with schizophrenia was detected within a “task-negative” medial frontotemporal network. In patients with schizophrenia, functional connectivity indices in the left dorsolateral prefrontal cortex and the right hippocampal cortex were positively correlated with accuracy during the WM task, while the connectivity strength in the right dorsolateral prefrontal cortex was negatively correlated with measures of symptom severity. These data suggest that within two temporally anticorrelated network states, patients with schizophrenia exhibit increased and persistent dorsolateral prefrontal and hippocampal connectivity during WM performance.  相似文献   

14.
OBJECTIVE: Working memory, a critical cognitive capacity that is affected in schizophrenia, can be divided into maintenance and manipulation processes. Previous behavioral research suggested that manipulation is more affected than maintenance in patients with chronic schizophrenia. In this study of first-episode schizophrenia patients, the authors evaluated the extent to which the two working memory processes are affected early in the course of schizophrenia. METHOD: Study subjects were 11 first-episode schizophrenia patients and 11 matched healthy comparison subjects. Each group performed two verbal working memory tasks while undergoing functional magnetic resonance imaging. One task required maintenance of information; the other required manipulation of information in addition to maintenance. RESULTS: Under behaviorally matched conditions, both groups activated a predominantly left-sided frontal-parietal network. The manipulation plus maintenance task elicited activation of greater magnitude and spatial extent. With both tasks, patients showed less bilateral dorsolateral prefrontal cortex activation and greater ventrolateral prefrontal cortex activation, relative to the comparison subjects. A group-by-task interaction was observed for activation at the left dorsolateral and ventrolateral prefrontal cortex. The increase in activation when patients engaged in the manipulation plus maintenance task was disproportionately less in the dorsolateral prefrontal cortex and greater in the ventrolateral prefrontal cortex. CONCLUSIONS: These functional neuroanatomical findings add support to earlier suggestions that manipulation of information is selectively more affected than maintenance of information in persons with schizophrenia. They also suggest the presence of interacting regions of dysfunctional and compensatory prefrontal responses in the dorsolateral and ventrolateral prefrontal cortex, respectively, that are more prominent when information is manipulated. This disrupted prefrontal network is present relatively early in the course of schizophrenia.  相似文献   

15.
OBJECTIVE: Numerous neuroimaging studies have examined the function of the dorsolateral prefrontal cortex in schizophrenia; although abnormalities usually are identified, it is unclear why some studies find too little activation and others too much. The authors' goal was to explore this phenomenon. METHOD: They used the N-back working memory task and functional magnetic resonance imaging at 3 T to examine a group of 14 patients with schizophrenia and a matched comparison group of 14 healthy subjects. RESULTS: Patients' performance was significantly worse on the two-back working memory task than that of healthy subjects. However, there were areas within the dorsolateral prefrontal cortex of the patients that were more active and areas that were less active than those of the healthy subjects. When the groups were subdivided on the basis of performance on the working memory task into healthy subjects and patients with high or low performance, locales of greater prefrontal activation and locales of less activation were found in the high-performing patients but only locales of underactivation were found in the low-performing patients. CONCLUSIONS: These findings suggest that patients with schizophrenia whose performance on the N-back working memory task is similar to that of healthy comparison subjects use greater prefrontal resources but achieve lower accuracy (i.e., inefficiency) and that other patients with schizophrenia fail to sustain the prefrontal network that processes the information, achieving even lower accuracy as a result. These findings add to other evidence that abnormalities of prefrontal cortical function in schizophrenia are not reducible to simply too much or too little activity but, rather, reflect a compromised neural strategy for handling information mediated by the dorsolateral prefrontal cortex.  相似文献   

16.
Figure copy is the most common method of visual spatial assessment in dementia evaluations, but performance on this test may be multifactorial. We examined the neuroanatomical substrates of figure copy performance in 46 patients with Alzheimer's disease (AD) and 48 patients with the behavioral variant of Frontotemporal dementia (bvFTD). A group of 94 neurologically healthy controls were studied for comparison. In AD, poor figure copy correlated significantly with right parietal cortex volumes but not with right dorsolateral prefrontal cortex volumes, whereas in bvFTD, figure copy performance correlated significantly with right dorsolateral prefrontal cortex volumes and there was only a trend with right parietal cortex volumes. The cognitive processes associated with figure copy performance also differed by diagnostic group such that figure copy was associated with spatial perception and attention in AD and with spatial planning and working memory in bvFTD. Spatial planning accounted for unique variance in the figure copy performance of bvFTD even after accounting for spatial perception, attention, and working memory. These results suggest that figure copy performance in AD and bvFTD is not anatomically specific and is differentially impacted by bottom-up and top-down aspects of visual spatial processing. Alternative methods of visual spatial assessment for dementia evaluations are proposed.  相似文献   

17.
BACKGROUND: A large number of studies suggest the presence of deficits in dorsolateral prefrontal cortex function during performance of working memory tasks in individuals with schizophrenia. However, working memory deficits may also present in other psychiatric disorders, such as major depression. It is not clear whether people with major depression also demonstrate impaired prefrontal activation during performance of working memory tasks. METHODS: We used functional magnetic resonance imaging to assess the patterns of cortical activation associated with the performance of a 2-back version of the N-Back task (working memory) in 38 individuals with schizophrenia and 14 with major depression. RESULTS: We found significant group differences in the activation of dorsolateral prefrontal cortex associated with working memory performance. Consistent with prior research, participants with schizophrenia failed to show activation of right dorsolateral prefrontal cortex in response to working memory tasks demands, whereas those with major depression showed clear activation of right and left dorsolateral prefrontal cortex as well as bilateral activation of inferior and superior frontal cortex. CONCLUSIONS: During performance of working memory tasks, deficits in prefrontal activation, including dorsolateral regions, are more severe in participants with schizophrenia (most of whom were recently released outpatients) than in unmedicated outpatients with acute nonpsychotic major depression.  相似文献   

18.
Working memory in schizophrenia: a review   总被引:1,自引:0,他引:1  
Kebir O  Tabbane K 《L'Encéphale》2008,34(3):289-298
INTRODUCTION: Working memory refers to a limited capacity system for temporary storage and processing of information that is known to depend on the integrity of the prefrontal cortex. It has been classically described as composed of a "central executive" that performs control, selection and planning functions, and two "slave" systems: on the one hand, the phonological loop that holds verbal, speech-based representations, and on the other hand, the visuospatial sketchpad that manipulates spatial and object visual representations. LITERATURE FINDINGS: Studies in schizophrenia have used different tasks that tap different processes within the working memory. Despite the variety of measures, there is solid neuropsychological evidence that patients with schizophrenia demonstrate deficits in all subsystems of working memory. Several studies have shown no correlations between working memory deficits and age, gender, premorbid IQ, duration of disease or positive syndrome, but a correlation has been found with a low-educational level, and negative and disorganization symptoms. Neuroimaging studies have provided evidence of an involvement of the dorsolateral-prefrontal cortex during working memory performance. Many studies have demonstrated a functional deficit in this area. However, several recent studies have reported either equal or increased activation of the dorsolateral-prefrontal cortex in schizophrenia during working memory performance. Working memory deficits are present early in the course of schizophrenia and they have been shown to be consistently associated with reduced levels of elementary social skills and learning capacity. Unaffected relatives of individuals with schizophrenia and individuals diagnosed with schizotypal personality demonstrate deficits in tasks designed to measure working memory function. Working memory dysfunctions might be suitable candidate markers for vulnerability. Certain executive sub-processes seem to be the most heritable component of the working memory. Working memory deficits in schizophrenia may benefit from specific stimulation of receptors such as the dopaminergic D1 receptor, adrenergic alpha-2A receptor or nicotinic receptors. Few studies on the effect of antipsychotic medication on working memory in schizophrenia have been carried out and their results are highly variable. Atypical antipsychotic drugs, notably risperidone, have appeared to improve performance in working memory tasks. Cognitive exercises can improve working memory with a six-month persistent effect.  相似文献   

19.
OBJECTIVE: Neuropsychological studies have demonstrated verbal episodic memory deficits in schizophrenia during word encoding and retrieval. This study examined neural substrates of memory in an analysis that controlled for successful retrieval. METHOD: Event-related blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) was used to measure brain activation during word encoding and recognition in 14 patients with schizophrenia and 15 healthy comparison subjects. An unbiased multiple linear regression procedure was used to model the BOLD response, and task effects were detected by contrasting the signal before and after stimulus onset. RESULTS: Patients attended during encoding and had unimpaired reaction times and normal response biases during recognition, but they had lower recognition discriminability scores, compared with the healthy subjects. Analysis of contrasts was restricted to correct items. Previous findings of a deficit in bilateral prefrontal cortex activation during encoding in patients were reproduced, but patients showed greater parahippocampal activation rather than deficits in temporal lobe activation. During recognition, left dorsolateral prefrontal cortex activation was lower in the patients and right anterior prefrontal cortex activation was preserved, as in the authors' previous study using positron emission tomography. Successful retrieval was associated with greater right dorsolateral prefrontal cortex activation in the comparison subjects, whereas orbitofrontal, superior frontal, mesial temporal, middle temporal, and inferior parietal regions were more active in the patients during successful retrieval. CONCLUSIONS: The pattern of prefrontal cortex underactivation and parahippocampal overactivation in the patients suggests that functional connectivity of dorsolateral prefrontal and temporal-limbic structures is disrupted by schizophrenia. This disruption may be reflected in the memory strategies of patients with schizophrenia, which include reliance on rote rehearsal rather than associative semantic processing.  相似文献   

20.
OBJECTIVE: The authors used proton magnetic resonance spectroscopic imaging ((1)H-MRSI) to assess potential reductions of N-acetylaspartate (a marker of neuronal integrity) in the hippocampal area and dorsolateral prefrontal cortex of patients with schizophreniform disorder. In addition, they assessed the relationship between N-acetylaspartate levels and working memory deficits. METHOD: Twenty-four patients with DSM-IV schizophreniform disorder and 24 healthy subjects were studied. Subjects underwent (1)H-MRSI and were given the N-back working memory test. RESULTS: The schizophreniform disorder patients had selective reductions of N-acetylaspartate ratios in the hippocampal area and the dorsolateral prefrontal cortex, and a positive correlation was seen between N-acetylaspartate ratios in the dorsolateral prefrontal cortex and performance during the 2-back working memory condition. CONCLUSIONS: Similar to findings reported in schizophrenia studies, N-acetylaspartate reductions in the hippocampal area and the dorsolateral prefrontal cortex were seen in patients with schizophreniform disorder. Moreover, the results support other evidence that neuronal pathology in the dorsolateral prefrontal cortex accounts for a proportion of working memory deficits already present at illness outset.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号