首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We hypothesized that localized IL-10 gene transfer can induce alloreactive T cell apoptosis and tested this hypothesis with liposome-mediated ex vivo intracoronary IL-10 gene transfer using a functional heterotopic allograft heart transplant model in rabbits. Localized IL-10 overexpression prolonged cardiac allograft survival over three folds. In parallel with the time-course of IL-10 overexpression, the percentage of apoptotic CD3+ cells among total CD3+ cells was significantly increased in the gene therapy group (36.5+/-3.9%) compared with that in the control group (6.2+/-2.6%, P<0.01) on postoperative day (POD) 3-6, and it was further increased (45.8+/-5.7%) on POD7-10. Apoptotic CD4+ and CD8+ cells were also significantly increased in the gene group (P<0.01). In contrast, the percentage of apoptotic myocytes significantly decreased from 10.1+/-0.8% in the control group to 3.5+/-0.4% in the gene group on POD7-10 (P<0.01). This reduction was inversely correlated with the increase in the percentages of apoptotic CD4+ and CD8+ cells (P<0.01). The percentage of caspase-3 positive myocytes was significantly reduced, although percentages of caspase-3 positive CD4+ and CD8+ cells were markedly increased in the gene group (P<0.01). Moreover, about 60-80% of apoptotic T lymphocytes expressed Fas in the gene group compared with less than 10% in the control group (P<0.01). These results suggest that localized IL-10 gene transfer induces alloreactive T cell apoptosis via the Fas/FasL pathway that may contribute to the alleviated acute rejection, improved cardiac function, and prolonged survival in the IL-10 gene-treated cardiac allografts.  相似文献   

2.
BACKGROUND: Overexpression of interleukin 10 (IL-10) in the donor heart prolongs allograft survival in animals. Interleukin-10 has many immunosuppressive effects; however, the mechanism(s) of its protective effect on allograft rejection remains unknown. METHODS: Recently, we optimized an ex vivo, intracoronary infusion of the GAP:DLRIE, liposome-mediated, IL-10 gene method using a rabbit, cervical, heterotopic heart transplant model. RESULTS: The efficiency of this new-generation, liposome-mediated, IL-10 gene transfer to the donor hearts was 15% in hypothermic conditions, which represents a 30% increase from the efficiency of other liposomes, such as DOSPA/DOPE, DOGS/DOPE, and DMRIE/DOPE. Cardiac allograft survival was prolonged from 6.0 +/- 0.7 days to 14.3 +/- 1.8 days. Infiltrating lymphocyte sub-populations CD3+, CD4+, and CD8) decreased significantly in the gene therapy group compared with the control group. Local IL-10 overexpression correlated significantly with decreased CD4+ and CD8+ responsiveness and Type-1 helper (Th1) cytokine gene (IL-2, interferon-gamma, and tumor necrosis factor alpha) expression level and correlated inversely with the allograft rejection grade. In the gene therapy group, the cytotoxic activity of infiltrating T cells in the allograft decreased greatly, but the time course of this decrease did not parallel the rejection process. CONCLUSION: We conclude that GAP:DLRIE is the best cationic liposome for ex vivo gene transfection in hypothermic conditions. The effects of IL-10 gene therapy on antigen-specific T-lymphocyte proliferation and Th1-cytokine expression may play an important role in localized immunosuppression and tolerance induction.  相似文献   

3.
BACKGROUND: Fas ligand (FasL)-Fas and tumor necrosis factor alpha (TNFalpha)-tumor necrosis factor receptor (TNFR) interactions regulate immune responses and contribute to self-tolerance by mediating antigen-driven T cell apoptosis. It is not known whether FasL and TNFalpha, expressed by the recipient's lymphoid or nonlymphoid cells, are essential for the apoptosis of alloreactive T lymphocytes and the induction of allograft acceptance. METHODS: We compared the survival of fully allogeneic vascularized cardiac allografts between wild-type (wt) and FasL-mutant (gld) recipient mice. In addition, we studied cardiac allograft survival in gld mice injected with TNFalpha-neutralizing antibody. Allograft acceptance (graft survival >100 days) was induced by treating the recipients with CTLA4Ig, a recombinant fusion protein that blocks B7-CD28 T cell costimulation. In vivo alloantigen-driven apoptosis of mature CD4+ and CD8+ T lymphocytes was analyzed in mice repeatedly stimulated with allogeneic splenocytes. RESULTS: We found that CTLA4Ig induces 100% long-term acceptance of cardiac allografts in wt and gld mice. Similarly, CTLA4Ig induced 100% allograft acceptance in gld recipients injected with TNFalpha-neutralizing antibody. In vivo alloantigen-driven apoptosis of mature CD4+ and CD8+ T cells was significantly reduced in gld mice and in wt mice treated with anti-TNFalpha antibody. However, neutralizing TNFalpha activity in gld mice failed to abrogate alloantigen-driven T cell apoptosis. CONCLUSIONS: These data indicate that: (1) FasL and TNFalpha expression are not obligatory for the induction of long-term allograft acceptance by CTLA4Ig and (2) FasL- and TNFalpha-independent death pathways contribute to alloantigen-driven T cell apoptosis.  相似文献   

4.
BACKGROUND: Granulocyte colony-stimulating factor (G-CSF), an important hematopoietic growth factor of the myeloid lineage, exerts profound immunoregulatory effects in T-cell tolerance. The study objective was to investigate the potential mechanism of G-CSF's antirejection effects in a fully mismatched rat cardiac allograft model. METHODS: The allograft recipients were treated with subcutaneous injection of recombinant human G-CSF (rh-G-CSF) at a dose of 250 microg/kg/d for 6 days starting from the day of cardiac transplantation. The alloreactive T-cell response and rejection level of G-CSF-treated rats were compared with those of control rats using mixed lymphocyte reactions (MLR) and histological examinations. Cytokine and cellular profiles were determined using enzyme-linked immunosorbent assay (ELISA) and flow cytometry. The presence and suppressive functions of regulatory T cells were determined by adoptive cell transfer experiments. RESULTS: Posttransplantation treatment of recipients with rh-G-CSF alone prolonged allograft survival, improved allograft biopsy grading scores, and induced alloreactive T-cell hyporesponsiveness accompanied by high levels of interleukin-10 (IL-10) and transforming growth factor-beta1 (TGF-beta1) production in MLR. It also enhanced CD4+CD25+ T cells in peripheral blood. The splenocytes from rh-G-CSF-treated recipients transferred antirejection effects to secondary recipients. CONCLUSIONS: Posttransplantation treatment of cardiac allograft recipients with rh-G-CSF leads to alloreactive T-cell hyporesponsiveness in vivo and in vitro associated with recruitment of CD4+CD25+ T cells in the peripheral blood. This study may provide insight into the application of G-CSF to control acute rejection of solid organ transplantations.  相似文献   

5.
The role of Foxp3+ regulatory T cells in liver transplant tolerance   总被引:2,自引:0,他引:2  
The liver has long been considered a tolerogenic organ that favors the induction of peripheral tolerance. The mechanisms underlying liver tolerogenicity remain largely undefined. In this study, we characterized Foxp3-expressing CD4+ CD25+ regulatory T cells (Treg) in liver allograft recipients and examined the role of Treg in inherent liver tolerogenicity by employing the mouse spontaneous liver transplant tolerance model. Orthotopic liver transplantation was performed from C57BL/10 (H2b) to C3H/HeJ (H2k) mice. The percentage of CD4+ CD25+ Treg was expanded in the liver grafts and recipient spleens from day 5 up to day 100 posttransplantation, associated with high intracellular Foxp3 and CTLA4 expression. Immunohistochemistry further demonstrated significant numbers of Foxp3+ cells in the liver grafts and recipient spleens and increased transforming growth factor beta expression in the recipient spleens throughout the time courses. Adoptive transfer of spleen cells from the long-term liver allograft survivors significantly prolonged donor heart graft survival. Depletion of recipient CD4+ CD25+ Treg using anti-CD25 monoclonal antibody (250 microg/d) induced acute liver allograft rejection, associated with elevated anti-donor T-cell proliferative responses, CTL and natural killer activities, enhanced interleukin (IL)-2, interferon-gamma, IL-10, and decreased IL-4 production, and decreased T-cell apoptotic activity in anti-CD25-treated recipients. Moreover, CTLA4 blockade by anti-CTLA4 monoclonal antibody administration exacerbated liver graft rejection when combined with anti-CD25 monoclonal antibody. Thus, Foxp3+ CD4+ CD25+ Treg appear to underpin spontaneous acceptance of major histocompatability complex- mismatched liver allografts in mice. CTLA4, IL-4, and apoptosis of alloreactive T cells appear to contribute to the function of Treg and regulation of graft outcome.  相似文献   

6.
INTRODUCTION: In vitro studies have shown that apoptotic cell death is triggered by a IL-2-dependent activation of the Fas-FasL pathway and that this pathway can be inhibited by FLIP. METHODS: To define whether FLIP regulates apoptotic death of graft infiltrating T-cells during IL-2-mediated rejection, we analyzed endomyocardial biopsies (EMB) from cardiac allograft recipients for CD3, DNA strand breaks (TUNEL assay), FLIP (mRNA and protein), and FasL mRNA expression. RESULTS: Apoptosis was present in CD3+ T-cell infiltrates. The number of TUNEL-stained mononuclear cells was inversely correlated with FLIP mRNA expression levels (P=.09). FLIP protein was present in 5% to 10% of the infiltrating cells and was constitutively produced by cardiomyocytes irrespective of the rejection grade. Rejection biopsies had elevated IL-2 and FasL mRNA expression levels compared to the expression levels before and after acute rejection (P=.03 and P=.11), while FLIP mRNA expression levels were significantly decreased during rejection (P=.05). CONCLUSION: Our results indicate that during the IL-2-induced rejection process, infiltrated T cells become more sensitive to apoptosis.  相似文献   

7.
8.
Yi S  Feng X  Wang Y  Kay TW  Wang Y  O'Connell PJ 《Transplantation》1999,67(3):435-443
BACKGROUND: In this study, the role of cell-mediated cytotoxicity by human leukocytes against pig endothelial cells was examined in vitro. The aim was to determine which cell subsets were responsible for this phenomenon and which pathways were involved in cell lysis. METHODS: Primed human peripheral blood mononuclear cells (PBMC) or purified CD4+ or CD8+ T cells were used in a cell-mediated cytotoxicity assay in which cytotoxicity of an SV40 transformed porcine endothelial cell (EC) line (SVAP) was determined by Annexin V binding. RESULTS: Human PBMC demonstrated specific lysis of porcine EC that was proportional to the effector: target ratio. CD4+ T cells accounted for >60% of this lysis, whereas CD8+ T cells accounted for <20%. CD4+ T cell-mediated lysis depended on direct recognition of porcine major histocompatibility complex class II molecules as inhibition of swine leukocyte antigen class II on porcine EC-inhibited CD4+ T cell cytotoxicity. This lysis was mediated through the Fas/FasL pathway as addition of anti-Fas and/or anti-FasL antibody profoundly inhibited antiporcine lysis. In addition, FasL gene expression was detected in primed PBMC and CD4+ T cells by RT-PCR, whereas granzyme B gene expression was not. Primed CD4+ T cells demonstrated high level FasL protein by Western blotting and two-color FACS analysis, whereas NK cells and CD8+ T cells did not. Finally, recombinant human FasL induced apoptosis in Fas expressing porcine EC cells, demonstrating that human FasL interacted with and activated Fas on porcine EC cells. CONCLUSIONS: In conclusion, human to pig cell-mediated cytotoxicity was mediated predominantly by CD4+ T cells through the Fas/FasL pathway of apoptosis. These results suggest that direct cytotoxicity by xenoreactive CD4+ T cells may be one of several effector mechanisms involved in cellular xenograft rejection.  相似文献   

9.
BACKGROUND: T cells responding through the indirect pathway can induce allograft rejection, but mechanisms of rejection are not known. Interferon-y (IFN-gamma) may be an important mediator of rejection under these circumstances. METHODS: We transferred CD4+ T cells from IFN-gamma-deficient (IFN-gamma-/-) mice into SCID recipients of MHC II-deficient (MHC II-/-) skin grafts. Under these conditions, rejection can only occur via the indirect pathway and cannot be mediated by T-cell production of IFN-gamma. RESULTS: IFN-gamma-/- CD4+ T cells rejected MHC II -/- skin grafts. Flow cytometry revealed only CD4+ T cells in the recipients. Cytokine enzyme-linked immunosorbent spot assays confirmed only indirect recognition with an associated expansion of an alloreactive population of IL-2-, IL-4-, and IL-5-secreting T cells. CONCLUSION: CD4+ T cells recognizing alloantigens via the indirect pathway can mediate skin graft rejection in the absence of IFN-gamma.  相似文献   

10.
BACKGROUND: Studies in mice have shown that rapamycin inhibits cell cycle progression and promotes the development of clonal anergy. We here addressed the question if rapamycin can induce anergy of human T cells and studied the effects of rapamycin on activation, proliferation and expression of cytotoxic effector molecules of alloresponsive T cells in mixed lymphocyte cultures. METHODS: Peripheral blood mononuclear cells from healthy individuals were labeled with CFSE to monitor subsequent cell divisions. Cells were cocultured with allogeneic irradiated cells in the presence or absence of rapamycin. Flowcytometric analysis was performed after staining for surface CD4, CD8, and CD25 and for intracellular perforin, granzyme B, active caspase-3, and TGF-beta. Bio-Plex cytokine assay was done to measure the secretion of IL-2, IL-4, IL-10, and IFN-gamma. RESULTS: Addition of rapamycin at a final concentration of 10 ng/ml strongly decreased precursor frequencies of alloreactive CD4+ and CD8+ T cells. However, when these cells were washed and subsequently specifically restimulated in the absence of rapamycin, the proliferative capacity appeared normal. Next to lowering precursor frequencies, rapamycin also inhibited T cell expansion by inducing apoptosis in divided alloreactive CD4+ and CD8+ T cells. Rapamycin did not interfere with the formation of CD25brightCD4+ T cells during allogeneic stimulation and did not inhibit their suppressive function. Furthermore, the drug decreased production of effector molecules perforin and granzyme B by alloreactive T cells and diminished alloreactive cytotoxicity. CONCLUSION: Our data show that rapamycin strongly inhibits proliferation and effector functions of alloreactive T cells in vitro, but does not induce alloantigen specific nonresponsiveness.  相似文献   

11.
Alloreactive memory T cells can significantly impact graft survival due to their enhanced functional capacities, diverse tissue distribution and resistance to tolerance induction and depletional strategies. However, their role in allograft rejection is not well understood primarily due to the lack of suitable in vivo models. In this study, we use a novel approach to generate long-lived polyclonal alloreactive memory CD4 T cells from adoptive transfer of alloantigen-activated precursors into mouse hosts. We demonstrate that CD25 upregulation is a marker for precursors to alloantigen-specific memory and have created a new mouse model that features an expanded population of polyclonal alloreactive memory T cells that is distinguishable from the naive T-cell population. Furthermore, we show that alloreactive memory T cells exhibit rapid recall effector responses with predominant IFN-gamma and IL-2 production, and mediate vigorous allograft rejection. Interestingly, while we found a heterogeneous distribution of allomemory T cells in lymphoid and nonlymphoid tissues, they were all predominantly of the effector-memory (CD62Llo) phenotype. Our results present a unique model for the generation and tracking of polyclonal allospecific memory CD4 T cells in vivo and reveal insights into the distinct and robust nature of alloreactive T-cell memory.  相似文献   

12.
13.
Acute cardiac graft rejection (ACGR) is associated with cardiomyocyte apoptosis. We investigated the respective role of the Fas/FasL and mitochondrial permeability transition pore (mPTP) pathways in cardiomyocyte apoptosis accompanying ACGR. Heterotopic cardiac transplantations were performed in 7-9-week old C57BL6 or C3H mice. Wild type or Fas-deficient (lpr) mice underwent syngeneic (GS) or allogeneic (GA) transplantation, and received either saline or NIM811, a specific inhibitor of the mPTP. At day 5, we assessed ACGR by histology, cardiomyocyte apoptosis by caspase-3 activity and cytochrome c release, Ca(2+)-induced mPTP opening by a potentiometric approach, and expression of Fas, FasL, TNFalpha, perforin, granzyme using RT-PCR. Myocardial infiltration of CD8(+) T lymphocytes was performed by immunohistochemistry. Allogenic transplantation increased infiltration of inflammatory cells, upregulated FasL, perforin, granzyme, and TNFalpha, favored Ca(2+)-induced mPTP opening and increased caspase-3 activity and cytochrome c release in WT grafts. NIM811, but not Fas-deficiency, significantly reduced all these effects. NIM811 also limited infiltration of CD8(+) into WT and lpr transplants. These data suggest that the mPTP pathway plays a major role in cardiomyocyte apoptosis associated with ACGR. Inhibition of mPTP opening may attenuate cardiomyocyte apoptosis either directly or indirectly via a limitation of CD8(+) T-cell activation.  相似文献   

14.
BACKGROUND: Deciphering the mechanisms of tolerance represents a crucial aim of research in transplantation. We previously identified by DNA chip interleukin (IL)-27 p28 and transforming growth factor (TGF)-β1 as overexpressed in a model of rat cardiac allograft tolerance mediated by regulatory CD4CD25 T cells. The role of these two molecules on the control of the inflammatory response remains controversial. However, both are involved in the regulation of the T helper 17/Treg axis, suggesting their involvement in tolerance. METHODS: We analyzed regulation of IL-27 and TGF-β1 expression in allograft response and their role in tolerance by using blocking anti-TGF-β antibody and by generating an adeno-associated virus encoding IL-27. RESULTS: Here, we confirmed the overexpression of IL-27 and TGF-β1 in tolerated cardiac allografts in two different rodent models. We observed that their expression correlates with inhibition of T helper 17 differentiation and with expansion of regulatory CD4CD25 T cells. We showed in a rat model that anti-TGF-β treatment abrogates infectious tolerance mediated by the transfer of regulatory CD4CD25 T cells. Moreover, overexpression of IL-27 by adeno-associated virus administration in combination with a short-term immunosuppression allows prolongation of cardiac allograft survival and one tolerant recipient. We found that IL-27 overexpression did not induce Foxp3CD4CD25 T-cell expansion but rather IL-10-expressing CD4 T cells in the tolerant recipient. CONCLUSIONS: Taken together, these data suggest that both TGF-β1 and IL-27 play a role in the mechanisms of tolerance. However, in contrast to TGF-β1, IL-27 seems not to be involved in regulatory CD4CD25 T-cell expansion but rather in their mode of action.  相似文献   

15.
Graft endothelium has a key role in organ transplantation because it regulates graft infiltration by allogeneic activated T cells. Overexpression of death molecules that could induce apoptosis of alloreactive T cells might be an alternative to the immunosuppressive treatment currently used in graft transplantation. Several studies have shown that immune-privileged sites express Fas ligand (FasL) and induce apoptosis of activated T-cells. We propose that endothelial cells engineered to express FasL could inhibit alloreactive T cell-proliferation by inducing apoptosis. An expression vector was constructed with human FasL cDNA and used to transfect an endothelial cell line (ECV304 cells). We demonstrated that FasL-transfected ECV304 cells were effective in inducing apoptosis of Jurkat T cell lymphoma as an agonist anti-Fas antibody. Using a mixed lymphocyte-endothelial cell culture model we observed that FasL-transfected ECV304 cells which conserved their two principal costimulatory pathways inhibited alloreactive T cell-proliferation by inducing activated T-cell apoptosis. These results suggest that endothelial cells could be interesting candidates to convey a death signal and induce hyporesponsiveness of alloreactive T cells during organ transplantation.  相似文献   

16.
17.
BACKGROUND: Dendritic cells (DC) at the immature state express low levels of major histocompatibility complex and costimulatory molecules and are poor stimulators of primary T-cell response in vitro. Injection of immature bone marrow-derived DC, however, was shown to prime in vivo alloreactive CD4 T lymphocytes toward type 2 cytokine-producing cells in the absence of CD8 T-cell activation. METHODS: We undertook the present study to determine whether Th2-immunization by immature DC could lead to allograft rejection. We first analyzed, in the major histocompatibility complex class II antigen-disparate B6-anti-bm12 combination, the capacity of immature DC to regulate the activity of alloreactive CD4 T cells. We then determined, in this model of weak antigenicity, whether injection of bm12 DC in B6 recipients before transplantation could modify the survival of vascularized bm12 cardiac allografts. RESULTS: We confirmed that in vitro immature DC are poor stimulators of T-cell alloresponse. However, when given in vivo, immature bm12 DC primed anti-bm12 T cells for the production of interleukin (IL)-4. Moreover, they induced the acute rejection of bm12 cardiac allograft. The process of rejection was dependent on IL-4 because immunization of IL-4-deficient mice did not trigger rejection. CONCLUSIONS: Allogeneic immature DC generated with granulocyte-macrophage colony-stimulating factor are potent stimulators of primary alloreactive response in vivo and prime for transplant rejection. Our results indicate that strategies based on immature DC for the induction of transplantation tolerance should be considered with caution.  相似文献   

18.
BACKGROUND: It is known that the infusion of whole blood from donors (donor-specific transfusion) into recipients combined with anti-CD154 therapy can prolong allograft survival. It has generally been agreed that the effectiveness of anti-CD154 therapy is caused by the inactivation of alloreactive CD4+ and CD8+ effector T cells. The recent literature has implicated CD4+CD25+ regulatory T cells in the suppression of autoimmunity and graft rejection, and we therefore examined whether CD154 blockade is effective because of its blockade of inflammatory T-cell activation or because of a direct impact on the regulatory T cells. METHODS: RAG(-/-) mice were adoptively transfused with CD4+ T cells or a subset of the population (CD4+CD25+ or CD4+CD25- T cells) alone or in combination with donor-specific transfusion and anti-CD154 and given an allo-skin transplant. The longevity of the transplant was determined over time. CD154(-/-)CD4+ T cells were used to assess the importance of CD154 in graft rejection and acceptance. RESULTS: CD154 blockade (or loss of CD154) on CD4+CD25+ regulatory T cells enhanced their immunosuppressive activities and was a contributing factor to anti-CD154-induced immune suppression in vivo. In a model of allograft tolerance, suppression was elicited by antigen and anti-CD154 or antigen alone if the CD4+CD25+ regulatory T cells were deficient in CD154 expression. CONCLUSIONS: Neutralizing the function of CD154 on regulatory T cells upon antigen exposure induces heightened levels of suppressive activities and is likely a contributing factor to the long-lived therapeutic effects of anti-CD154 treatment.  相似文献   

19.
Tsuyuki S, Kono M, Bloom ET. Cloning and potential utility of porcine Fas ligand: overexpression in porcine endothelial cells protects them from attack by human cytolytic cells. Xenotransplantation 2002; 9:410–421. © Blackwell Munksgaard, 2002
Endothelial cells (EC) are primary targets of the recipient's immune response to transplanted organs and constitutively express Fas (CD95) ligand (FasL) on their surface. We investigated the role of porcine FasL in the generation of the human anti-pig response in vitro. Porcine aortic endothelial cells (PAEC) lysed a Fas+ human T-cell line, Jurkat. Anti-human Fas monoclonal antibody (mAb) specifically inhibited this killing in a dose-dependent manner, suggesting that porcine FasL recognizes and binds human Fas to induce apoptosis of human Fas+ cells. We next cloned porcine FasL, identifying an open reading frame of 849 base pairs predicting a protein of 282 amino acids. The predicted amino acid sequence was 85, 76, and 75% homologous to the predicted amino acid sequences of human, mouse, and rat, respectively, and found that PAEC expressed both FasL mRNA and protein. Transient transfection was used to increase or induce porcine FasL expression in PAEC or COS-7 cells. Transfection of PAEC with a plasmid encoding porcine FasL increased their ability to induce apoptosis in Jurkat cells, fresh human T cells activated with IL-2 and anti-CD3, and fresh IL-2-activated human (natural killer) NK cells. Moreover, porcine Fas L -transfected COS-7 cells induced significant apoptosis in Jurkat cells compared with that induced by mock-transfected COS-7 cells. Finally, the overexpression of porcine FasL in PAEC reduced their susceptibility as target cells to lysis by activated human NK or T cells. These findings suggest that porcine FasL overexpression in EC of vascularized xenografts may provide protection from cellular xenograft rejection.  相似文献   

20.
BACKGROUND: Fas ligand gene transfer to induce peripheral allograft tolerance in animal models has shown controversial results. The immunosuppression effects mediated by engineered FasL depend on whether alloreactive T cells are selectively deleted. In the present study, we tested the feasibility of a strategy to induce long-time survival by fusing CTLA4-FasL gene transfer in vivo. METHODS: Cardiac allografts from DA(RT-1(a)) rats were transplanted heterotopically into the abdomens of LEW(RT-1(1)) rats. Plaque units (5x10(9)) of either AdCTLA4-FasL, AdCTLA4Ig, or AdEGFP were administered via the portal vein immediately after cardiac transplantation. The frequencies of helper T lymphocyte precursors (HTLp) and cytotoxic T lymphocyte precursors (CTLp) were determined by a combined single limiting dilution assay on days 5 and 20 after transplantation. RESULTS: Cardiac allograft survival was significantly prolonged by either AdCTLA4-FasL or AdCTLA4Ig treatment(mean survival times [MST] of 71.0 +/- 3.7 and 45.7 +/- 2.4, respectively, n = 6) compared with untreated hosts or animals treated with AdEGFP(MST of 5.7 +/- 0.5 and 5.2 +/- 0.4, respectively, n = 6). In addition, treatment with AdCTLA4-FasL led to significantly prolonged allograft survival compared with AdCTLA4Ig treatment. Furthermore, the frequencies of HTLp and CTLp on day 20 among rats treated with AdCTLA4-FasL was lower than those on day 5, whereas frequencies of HTLp and CTLp on day 20 were similar with those on day 5 in the other groups. CONCLUSION: These results suggest that administration of an adenovirus encoding fusion CTLA4-FasL gene to rat recipients effectively decreased the size of alloreactive T cells and induced long-term survival of cardiac allografts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号