首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amentoflavone is a bi-flavonoid compound with anti-fungal and anti-inflammatory activities. We isolated amentoflavone from Selaginella tamariscina (Selaginellaceae) and studied its effects on nuclear factor-kappaB (NF-kappaB)-mediated inducible nitric oxide synthase (iNOS) gene expression in RAW 264.7 cells. Amentoflavone inhibited the production of nitric oxide in a concentration-dependent manner and also blocked the lipopolysaccharide (LPS)-induced expression of inducible nitric oxide synthase (iNOS). To clarify the mechanistic basis for its inhibition of iNOS induction, we examined the effect of amentoflavone on the transactivation of iNOS gene by luciferase reporter activity using -1.59 kb flanking region. Amentoflavone potently suppressed the reporter gene activity. The LPS-induced activation of NF-kappaB was also found to be significantly blocked by amentoflavone, but AP-1 activation was unaffected. Furthermore, the nuclear translocation of p65 by LPS was inhibited by amentoflavone. NF-kappaB activation is controlled by the phosphorylation and subsequent degradation of I-kappaBalpha, and the cytosolic degradation of I-kappaBalpha was found to be inhibited by amentoflavone. These findings suggest that the inhibition of LPS-induced NO formation by amentoflavone is due to its inhibition of NF-kappaB by blocking I-kappaBalpha degradation, which may be the mechanistic basis of the anti-inflammatory effects of amentoflavone.  相似文献   

2.
In the present study, we report the inhibitory effect of equol on nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) gene expression in murine macrophages. In vivo administration of equol (i.p.) attenuated NO production by peritoneal adherent cells isolated from lipopolysaccharide (LPS)-treated mice. Equol dose-dependently inhibited the LPS-induced production of NO in isolated peritoneal adherent cells and RAW 264.7 cells. The mRNA expression of iNOS was also blocked by equol in LPS-stimulated RAW 264.7 cells. Further study demonstrated that the LPS-induced activation of Akt was suppressed by equol in RAW 264.7 cells while the activation of ERK, SAPK/JNK and p38 MAP kinase was not affected. Equol also blocked LPS-induced NF-kappaB activation. Moreover, the LPS-induced NO production and NF-kappaB activation was inhibited by LY294002, a specific inhibitor of phosphatidylinositol 3-kinase/Akt pathway, in RAW 264.7 cells. These results suggest that equol might inhibit NO production and iNOS gene expression, at least in part, by blocking Akt activation and subsequent down-regulation of NF-kappaB activity.  相似文献   

3.
The expression of inducible nitric-oxide synthase (iNOS) in vascular smooth muscle cells leads to prolonged vasorelaxation in vivo and contributes to the profound vasodilation induced by bacterial lipopolysaccharide (LPS) in septic shock. This induction of iNOS depends, in large part, on activation of nuclear factor (NF)-kappaB. Hypertonicity regulates the activity of NF-kappaB in different cell lines; as such, we propose that it should also regulate the expression of iNOS. Thus, the goal of this study was to determine whether hypertonicity regulates iNOS expression and function in smooth muscle cells and to elucidate the mechanism(s) underlying this process. Treatment of hamster ductus deferens (DDT1MF-2) cells and porcine aortic smooth muscle cells with either mannitol (50 mM) or NaCl (50 mM) reduced LPS-stimulated iNOS expression and nitric oxide release. Both of these agents also reduced the activation of NF-kappaB induced by LPS, tumor necrosis factor-alpha and interleukin-1beta in smooth muscle cells. This inhibitory action was caused by suppression of IkappaB-alpha phosphorylation, a prerequisite for ubiquitination and degradation of this protein, and showed additivity with N-benzoyloxycarbonyl (Z)-Leu-Leu-leucinal (MG-132), an inhibitor of proteasomal degradation of IkappaB-alpha. Furthermore, exposure to mannitol inhibited the activity of IkappaB kinase, an enzyme involved in phosphorylation of IkappaB-alpha. Mannitol was unable to affect the induction of iNOS produced by overexpression of RelA in DDT1MF-2 cells, suggesting that this agent does not have additional downstream inhibitory actions on this activated NF-kappaB subunit. Taken together, these data suggest that these hypertonic solutions may prove useful as anti-inflammatory agents, especially against conditions associated with increased NF-kappaB activity.  相似文献   

4.
Intrahepatic levels of the inducible nitric oxide synthase (iNOS) are increased in chronic hepatitis C patients. As iNOS gene promoter contains Nuclear Factor (NF)-kappaB binding sites and hepatitis C virus (HCV) core protein activates NF-kappaB, the aim of this work was to study if HCV core protein transactivates iNOS promoter through NF-kappaB activation. iNOS mRNA and protein were determined by RT-PCR and western blot in HepG2 cells. The effect of HCV core protein on iNOS promoter was assayed by cotransfecting HepG2 cells with the core protein expression plasmid pHCV-Co and p1iNOS-CAT or p2iNOS-CAT plasmids. Formation of NF-kappaB-DNA complexes was determined by electrophoretic mobility shift assay. Transfection of HepG2 cells with pHCV-Co plasmid results in an increase in iNOS mRNA and protein levels. Cotransfection with pHCV-Co and p1iNOS-CAT or p2iNOS-CAT plasmids results in a transactivation of iNOS promoter, the presence of the proximal NF-kappaB binding site in the promoter being sufficient for the transactivation. Furthermore, the HCV core protein increases the formation of complexes between NF-kappaB and its binding sequence in the iNOS promoter. The expression of the NF-kappaB inhibitor IKB reverts the effect of the HCV core protein on the iNOS promoter. In conclusion, HCV core protein transactivates iNOS gene promoter through NF-kappaB activation.  相似文献   

5.
Ginsenoside Rg3 (Rg3) isolated from Panax ginseng relaxes vessels and exerts a cytoprotective effect. In view of the fact that nitric oxide (NO) is involved in vascular hyporeactivity and immunostimulation, the effects of total ginsenosides (GS) and Rg3 on the vascular responses and the expression of inducible nitric oxide synthase (iNOS) were investigated. Vasocontraction of endothelium-denuded aortic ring was induced by phenylephrine with or without GS or Rg3. The expression of iNOS was assessed by Western blot and RT-PCR analyses. NF-kappaB activation was monitored by gel shift, immunoblot and immunocytochemical analyses. Incubation of the endothelium-denuded aortic ring with GS or Rg3 inhibited phenylephrine-induced vasocontraction, which was abrogated by NOS inhibition. GS or Rg3 increased NO production in aortic rings, but Rb1, Rc, Re and Rg1 had no effect. Aortic rings obtained from rats treated with GS or Rg3 responded to phenylnephrine to a lesser extent, while producing NO to a larger extent, than those from control animals. GS or Rg3 induced iNOS in vascular smooth muscle. Rg3 induced iNOS with increase in NO production in Raw264.7 cells. Rg3 increased NF-kappaB DNA binding, whose band was supershifted with anti-p65 and anti-p50 antibodies, and elicited p65 nuclear translocation, which was accompanied by phosphorylation and degradation of I-kappaBalpha. PKC regulated iNOS induction by Rg3. In conclusion, Rg3 relaxes vessels as a consequence of NO production, to which iNOS induction contributes, and iNOS induction by Rg3 accompanied NF-kappaB activation, which involves phosphorylation and degradation of I-kappaBalpha and nuclear translocation of p65.  相似文献   

6.
Anaerobic reduction of anticancer prodrugs is a promising route to achieve targeting and selectivity in anticancer drug design. Most reductive prodrug activations involve simple electron transfer from a flavoprotein and are not amenable to specific targeting. Here, we report that the N-oxide AQ4N is reduced by a nitric oxide synthase. This reduction involves interaction with the heme iron atom in the active site and is thus subject to specific protein constraints.  相似文献   

7.
8.
Nitric oxide (NO) is recognized as a mediator and regulator of inflammatory responses. Rengyolone, a cyclohexylethanoid isolated from the fruits of Forsythia koreana, exhibits anti-inflammatory activity with unknown mechanism. In this study, we found that rengyolone has a strong inhibitory effect on the production of nitric oxide (NO) and tumor necrosis factor-alpha (TNF-alpha). Rengyolone also inhibited inducible nitric oxide synthase (iNOS) gene expression and cyclooxygenase 2 (COX-2) by lipopolysaccharide (LPS). In order to explore the mechanism responsible for the inhibition of iNOS gene expression by rengyolone, we investigated its effect on LPS-induced nuclear factor-kappaB (NF-kappaB) activation. The LPS-induced DNA binding activity of NF-kappaB was significantly inhibited by rengyolone, and this effect was mediated through inhibition of the degradation of inhibitory factor-kappaBalpha and phosphorylation of p38 MAP kinase. Furthermore, rengyolone suppressed the expression of ICE protein in IL-1beta-treated D10S cells. Taken together, these results suggest that rengyolone attenuates the inflammation through inhibition of NO production and iNOS expression by blockade of NF-kappaB and p38 MAPK activation in LPS-stimulated RAW 264.7 cells.  相似文献   

9.
Excessive nitric oxide (NO) produced by inducible NO synthase (iNOS) acts as a causative regulator in various inflammatory disease states. Carpesium divaricatum has been used in Korean traditional herbal medicine for its antipyretic, analgesic, vermifugic, and anti-inflammatory properties. We investigated the molecular mechanism for the suppression of lipopolysaccharide/interferon-gamma (LPS/IFN-gamma)-induced NO production in RAW 264.7 macrophages by the sesquiterpene lactone 2beta,5-epoxy-5,10-dihydroxy-6alpha-angeloyloxy-9beta-isobutyloxy-germacran-8alpha,12-olide (C-1), which has been identified recently as a new compound from C. divaricatum. C-1 decreased NO production in LPS/IFN-gamma-stimulated RAW 264.7 cells in a concentration-dependent manner, with an IC50 of approximately 2.16 microM; however, it had no direct effect on the iNOS activity of fully LPS/IFN-gamma-stimulated RAW 264.7 cells. Furthermore, treatment with C-1 led to a decrease in iNOS protein and mRNA. These effects appear to be due to inhibition of nuclear factor-kappaB (NF-kappaB) activation through a mechanism involving stabilization of the NF-kappaB/inhibitor of the kappaB (I-kappaB) complex, since inhibition of NF-kappaB DNA binding activity by C-1 was accompanied by a parallel reduction of nuclear translocation of subunit p65 of NF-kappaB and I-kappaBalpha degradation. Taken together, the results suggest that the ability of C-1 to inhibit iNOS gene expression may be responsible, in part, for its anti-inflammatory effects.  相似文献   

10.
Dimerization of inducible NOS has been known to be a potential therapeutic target for iNOS-mediated pathologies. Cyclic dipeptides are among the simplest peptides commonly found as by-products of food processing or metabolites of microorganisms. In this study, we found that cyclo(dehydrohistidyl-l-tryptophyl) (CDHT), a cyclic dipeptide from an unidentified fungal strain Fb956, prevents iNOS dimerization in activated microglial BV-2 cells. CDHT inhibited NO production with an IC50 of 6.5 microM in LPS-treated BV-2 cells. Western blot analysis and iNOS activity measurement of fractions from size-exclusion chromatography of cell lysates indicated that CDHT inhibits dimerization of iNOS, while it has no effect on iNOS expression or enzyme activity. The CDHT inhibition of iNOS dimerization was confirmed by partially denaturing SDS-PAGE analysis. In contrast, CDHT did not affect cGMP production in endothelial HUVEC cells, which indicates no inhibition of endothelial NOS activity. These results reveal that CDHT, one of the simplest and cyclic dipeptides, selectively inhibits NO production by inhibiting iNOS dimerization, and could be a useful therapeutic agent for inflammation-mediated diseases.  相似文献   

11.
12.
The potent vasodilator factor released from endothelial cells upon activation of muscarinic acetylcholine receptors has recently been identified as nitric oxide (NO). This discovery has sparked intensive research efforts aiming at understanding the functional role of this short-lived, highly reactive free radical. As a result, it has been shown that NO is a very important second messenger involved in a wide spectrum of physiological functions. One important aspect that differentiates NO from other second messengers is that NO is a ‘traveling’ messenger that diffuses out of the cells of its origin to produce marked effects in neighboring cells. This paper provides a synopsis of the diverse biological roles of NO and the mechanisms of its generation upon activation of muscarinic acetylcholine receptors. Drug Dev. Res. 40:205–214, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
Mitomycin C (MC) requires bioreduction prior to the generation of alkylating moieties. NADPH-cytochrome P450 reductase is predominant in metabolic activation of MC in hypoxic cancer cells. In this study, neuronal nitric oxide synthase (nNOS), whose reductase domain is structurally similar to that of NADPH-cytochrome P450 reductase, was assessed for its ability to activate MC. nNOS under anaerobic conditions catalyzed the reduction of MC, which was measured as the decrease in absorbance at 375 nm. Neither the heme blocker potassium cyanide (1 mM) nor the nNOS competitive inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME, 1 mM) affected the bioreduction of MC, whereas 0.1 mM diphenyleneiodonium chloride, which binds to the reductase domain of nNOS, inhibited MC reduction completely. The reduction of MC by nNOS was influenced by Ca(2+)/calmodulin. In the absence of Ca(2+)/calmodulin, the rate of MC reduction decreased by 28% at pH 6.6. The formation of an alkylated complex of 4-(p-nitrobenzyl)pyridine occurred in a manner analogous to that observed in MC metabolic experiments. The rate of MC reduction and the formation of the alkylated complex of 4-(p-nitrobenzyl)pyridine at pH 6.6 were increased by 43 and 54%, respectively, as compared with that at pH 7.6. nNOS-activated MC resulted in the consumption of oxygen in air. The rate of oxygen consumption decreased by 50% in the presence of 2000 U/mL of catalase. MC inhibited nNOS activity in a noncompetitive manner. These findings demonstrate that nNOS is capable of catalyzing the bioreduction of MC.  相似文献   

14.
15.
Aminoguanidine selectively inhibits inducible nitric oxide synthase.   总被引:17,自引:0,他引:17       下载免费PDF全文
1. Endotoxin induces nitric oxide synthase in vascular tissue, including rat main pulmonary artery. Currently available agents that cause inhibition of nitric oxide synthase are relatively non-selective between the constitutive and inducible forms of the enzyme. 2. Aminoguanidine caused a dose-dependent increase in phenylephrine-induced tension in intact and endothelium-denuded pulmonary artery rings from endotoxin-treated rats, but had no effect on sham-treated controls. 3. Contraction caused by aminoguanidine in endothelium-denuded vessels from endotoxin-treated rats was unaffected by indomethacin (10 microM), and by cimetidine and mepyramine (both 10 microM), excluding an effect of aminoguanidine mediated by arachidonic acid metabolites or histamine. 4. Contraction caused by aminoguanidine in endothelium-denuded vessels from endotoxin-treated rats was abolished by L-arginine (2 mM) and L-NG-monomethyl arginine (300 microM), but unaffected by D-arginine and D-NG-monomethyl arginine, suggesting that its action is mediated by the L-arginine/nitric oxide pathway.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Transient adenosine A1 receptor (A1R) activation induces a second window or delayed preconditioning against myocardial infarction 24-72 h later. Early generation of nitric oxide and delayed induction of nitric oxide synthase have been implicated in mediating delayed cardioprotection after ischemic preconditioning in rabbits. Recent evidence indicates that some of the regulatory roles of adenosine in cardiac tissue may be mediated by A1R-induced generation of nitric oxide. This study examined the role of nitric oxide in the mediation of A1R-induced delayed preconditioning against infarction. Pharmacologic preconditioning of rabbits with the selective A1R agonist 2-chloro-N6-cyclopentyladenosine 100 microg/kg (CCPA) significantly reduced myocardial infarct size compared with control animals, after 30 min regional ischemia and 2 h reperfusion in vivo 24 h later (27.3+/-4.7 vs. 46.0+/-3.7%, respectively; p = 0.001). Nonselective inhibition of nitric oxide synthase with N(G)-nitro-L-arginine methyl ester (10 mg/kg) before administration of CCPA did not affect this infarct limitation at 24 h. Selective inhibition of inducible nitric oxide synthase before the prolonged ischemic insult on day 2, with two structurally independent inducible nitric oxide synthase inhibitors, L-N(6)-(1-iminoethyl)-lysine (10 mg/kg) or aminoguanidine (300 mg/kg), did not abrogate the reduction in infarction observed by pharmacologic preconditioning with CCPA 24 h earlier. These results suggest that the second window or delayed protection against myocardial infarction observed 24 h after pharmacologic preconditioning with an adenosine A1 agonist occurs independently of either early generation of nitric oxide or subacute induction of inducible nitric oxide synthase.  相似文献   

17.
18.
Chromium(VI) is a recognized toxicant whose effects have been linked to its reduction to lower oxidation states. Although Cr(VI) is reduced by several systems, it is anticipated that its reduction by nitric oxide synthase (NOS) could have significant effects in endothelial and brain cells that express high constitutive levels of the enzyme. This possibility was examined by electron paramagnetic resonance that showed the formation of a stable Cr(V) species from NOS/Cr(VI). The formation of Cr(V) was calcium/calmodulin-independent indicating that Cr(VI) to Cr(V) reduction occurs at the flavin-containing domain of NOS. Accordingly, Cr(VI) reduction by the reductase domain of NOS and the chimera protein cytochrome-P450-reductase+tail-nNOS also generated Cr(V). Activation of tetrahydrobiopterin (BH(4))-free NOS with calcium/calmodulin diminished Cr(V) steady-state levels while increasing superoxide formation. Since SOD restored Cr(V) to control levels, this result was taken as evidence for a reaction between Cr(V) and superoxide. Supplementation of NOS with BH(4) cofactor not only failed to increase Cr(V) yields but generated superoxide and hydroxyl radical. Since the holoenzyme does not generate superoxide, this reaction indicated that Cr(V) mediates the oxidation of BH(4)-bound to the enzyme. In the presence of L-arginine, however, Cr(VI) neither enhances superoxide release nor inhibits NO formation from fully active NOS. This suggests that L-arginine protects BH(4) from Cr(V)-mediated oxidation. While Cr(V) was inactive toward NO, spin trapping experiments with 5-tert-butoxycarbonyl 5-methyl-1-pyrroline N-oxide and oxygen consumption measurements showed that Cr(V) reacts with superoxide by a one-electron-transfer mechanism to generate oxygen and Cr(IV). Thus, reduction of Cr(VI) to Cr(V) by NOS occurs in resting and fully active states. It is likely that the reaction between Cr(V) and superoxide influences the cytotoxic mechanisms of Cr(VI) in cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号