首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
Recently, point mutations in superoxide dismutase 1 (SOD1) have been shown to lead to a subset of autosomal dominantly inherited familial amyotrophic lateral sclerosis (ALS). These findings have led to the hypothesis that defects in oxygen radical metabolism may be involved in the pathogenesis of ALS. Therefore, we decided to analyze other enzymes involved in oxygen radical metabolism for possible involvement in other forms of ALS. We report here analysis of two genes encoding the molybdenum hydroxylases aldehyde oxidase (AO) and xanthine dehydrogenase/ oxidase (XDH) for involvement in ALS. Of particular interest, one gene identified as encoding aldehyde oxidase is shown to map to 2q33, a region recently shown to contain a gene responsible for a familial form of ALS with autosomal recessive inheritance (FALS-AR). The AO gene appears to be located within 280,000 bp of simple sequence repeat marker D2S116, which shows no recombination with the FALS-AR locus. The AO gene is highly expressed in glial cells of human spinal cord. In addition, we mapped a gene for XDH to 2p22, a region previously shown to contain a highly homologous but different form of XDH. Neither of these XDH genes appears to be highly expressed in human spinal cord. This evidence suggests that AO may be a candidate gene for FALS-AR.  相似文献   

2.
Seventeen multiple sclerosis (MS) patients progressing under conventional therapy (average treatment duration: 3 years) with performance status 3-4 (mean Disability Status Scale [DSS]: 82) who demonstrated circulating lymphokine inhibitor factors were selected for a monthly immunomodulatory protocol using plasmapheresis, followed by 3 days of human intravenous immunoglobulin, and low-dose methylprednisolone, cyclophosphamide, interferon-a, and interferon-g, as well as octreide. Twelve of the 17 patients presented with visual problems, 12 had lower extremity weakness or paraperesis/paralysis, and 6 had bladder/bowel dysfunction. Following 4 months of therapy, 4 recovered completely, 7 showed loss of paralysis/paraparesis, and 5 had improvement in lower extremity weakness. One patient progressed (mean DSS: 51). Lymphokine inhibitor factors declined in 14 patients with concomitant normalization of circulating immune complexes. Eight patients experienced rises in CD4 levels with stabilization of CD8 levels. Hypotension and hypocalcemia were observed during plasmapheresis. Twelve patients with amyotrophic lateral sclerosis with poor performance status also were studied. Four of the 12 improved with the regimen, whereas six stabilized disease. Similar alterations in laboratory parameters were described. The rationale for this approach is discussed.  相似文献   

3.
Mutations in human angiogenin (hANG), an angiogenic member of the RNase A superfamily, have been recently reported in patients with amyotrophic lateral sclerosis (ALS), a progressive late-onset neurodegenerative disorder. However, very little is known about the expression and subcellular distribution of ANG in the nervous system or its role in differentiation. Here we report that mouse angiogenin-1 (mAng-1) is strongly expressed in the developing nervous system during mouse embryogenesis and neuroectodermal differentiation of pluripotent P19 embryonal carcinoma cells. mAng1 is strongly expressed in motor neurons (MNs) in the spinal cord and dorsal root ganglia as well as in post-mitotic MNs derived from P19 cells. We also show for the first time that ANG expression is in the growth cones and neurites. NCI 65828, an inhibitor of the ribonucleolytic activity of hANG, affected pathfinding by P19-derived neurons but not neuronal differentiation. Our findings clearly show that ANG plays an important role in neurite pathfinding and this has implications for ALS.  相似文献   

4.
BACKGROUND: Depressive symptoms among patients with amyotrophic lateral sclerosis (ALS) are usually measured with conventional questionnaires. These measurements do not consider the specific circumstances of the underlying disease. The purpose of this study was to assess the validity of a new short 12 items ALS-Depression-Inventory (ADI-12). We determined convergent, criterion, and concurrent validity. The Structured Clinical Interview (SCID) for DSM-IV was used as the gold standard and the Beck Depression Inventory (BDI) and the WHO Well Being Index (WHO-5) to assess concurrent validity. METHODS: A total of 39 ALS patients in all stages of the disease were interviewed. Convergent validity was estimated by the inter-correlation between the ADI-12 and the BDI. Criterion and concurrent validity were specified with respect to sensitivity, specificity and predictive values. Receiver Operating Characteristics (ROC) and Areas Under the Curves (AUC) were calculated. RESULTS: All three depression scales showed excellent internal consistencies (Cronbach's alpha: .8-.9). The correlation between the ADI-12 and the BDI was high (r=.80). For the ADI-12 a cut-off of > or = 30 (SE=100%, SP=83%) identified all patients with a current episode of major depression. A more liberal cut-off (> or = 23) identified all patients with any depressive disorder including minor depression at the cost of specificity (60%). CONCLUSIONS: With the ADI-12 ALS patients with depressive disorders can be reliably identified. We recommend the ADI-12 for routine screening in primary care of ALS patients.  相似文献   

5.
Deletion of chromosome 3q29, which is associated with mental retardation and autism, was recently identified as being present in excess or occurring de novo in schizophrenia cases, being present in approximately 1/1,000 cases and 1/40,000 unscreened controls. Of the ~20 genes in the commonly deleted region two are prominent candidates for involvement in the behavioral features of the microdeletion syndrome: DLG1 and PAK2. We report the result of mutation screening of the entire protein coding sequence of both genes in a sample of 234 unrelated cases and 272 unrelated controls from the UK. We find no evidence for any amino acid changing genetic variants in PAK2. We observe several rare and singleton non‐synonymous genetic variations at DLG1, however there is no excess of these variants in cases when compared to controls. Our sample was underpowered to detect very rare or low‐penetrance disease relevant alleles in the studied genes. Therefore very rare, low‐to‐moderate penetrance protein coding mutations or non‐coding mutations at DLG1 and/or PAK2, or a nearby gene, may reproduce the behavioral characteristics of the 3q29 microdeletion. © 2011 Wiley‐Liss, Inc.  相似文献   

6.
Frontotemporal dementia (FTD) is a neurodegenerative disorder, sometimes occurring together with amyotrophic lateral sclerosis (ALS) within the same family. Recently, a region on chromosome 9q21–22 was reported to harbour a locus that may participate in both disorders [Hosler, B.A., et al., JAMA., 284 (2000) 1664-1669]. In the present study, a Swedish pedigree with both ALS and FTD segregating in the family was investigated by linkage analysis with five markers on chromosome 9q21–22. The pedigree included 17 individuals in two generations, with five affected cases available for analysis. As two-point logarithm of odds scores close to zero were obtained for all markers tested, the region on chromosome 9q21–22 is suggested to be excluded as candidate region in this Swedish FTD/ALS family. Our conclusion is therefore that additional loci involved in these two disorders must be operating.  相似文献   

7.
We have identified a one megabase deletion in the 15q22‐15q23 region in a patient with autism, developmental delay, and mild dysmorphism. Genes that map within the deletion region and genes that are interrupted or rearranged at the deletion breakpoints are candidate genes for autism. Fluroescence in situ hybridization studies in this patient revealed that part or all of the PML gene is absent from one chromosome 15 and a BAC clone containing the D15S124 gene locus hybridizes to only one chromosome 15. BAC clones containing the PTPN9, and SLP‐1[hUNC24] genes showed markedly reduced hybridization in the 15q22‐q23 region on one chromosome 15 in the patient. These BACs also hybridize to the 15q11‐q13 region in close proximity to SNRPN and HERC2, and in this region there is equal intensity of signal on the normal and on the deleted chromosome. There are previous reports of deletions and duplications of the 15q11‐q13 region in patients with autism. Our patient represents the first report of a 15q22‐q23 deletion. Hybridization of the PTPN9 and Slp‐1 Bac clones to the 15q11‐q13 and the 15q22‐q23 regions of chromosome 15 may be due to the presence of PTPN9 or SLP‐1 gene sequences or to the presence of other gene sequences or to non‐coding homologous DNA sequences. The PTPN9 gene encodes a non‐receptor protein tyrosine phosphatase. The Slp‐1 [hUNC24] gene is expressed mainly in the brain. Am. J. Med. Genet. (Neuropsychiatr. Genet.) 96:765–770, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

8.
Proteoglycans are molecules consisting of protein cores onto which sugar chains, i.e., glycosaminoglycans (GAGs) such as heparan or chondroitin sulphates, are attached. Proteoglycans are produced by nearly all cells, and once secreted they become a major component of the extracellular matrix. Cartilage is particularly rich in proteoglycans, and changes in the structure and composition of GAGs have been found in osteochondromas and osteoarthritis. The zebrafish (Danio rerio) exhibits fast development, a growth plate-like organization of its craniofacial skeleton and an availability of various mutants, making it a powerful model for the study of human skeletal disorders with unknown aetiology. We analysed skeletons from five zebrafish lines with known mutations in genes involved in proteoglycan synthesis: dackel (dak/ext2), lacking heparan sulphate; hi307 (β3gat3), deficient for most GAGs; pinscher (pic/slc35b2), presenting defective sulphation of GAGs and other molecules; hi954 (uxs1), lacking Notch and most GAGs due to impaired protein xylosylation; and knypek (kny/gpc4), missing the protein core of the Glypican-4 proteoglycan. Here we show that each mutant displays different phenotypes related to: (a) cartilage morphology; (b) composition of the extracellular matrix; (c) ultrastructure of the extracellular matrix; and (d) the intracellular ultrastructure of chondrocytes, proving that sulphated GAGs orchestrate the cartilage intra- and extracellular ultrastructures. The mild phenotype of the hi307 mutant suggests that proteoglycans consisting of a protein core and a short sugar linker might suffice for proper chondrocyte stacking. Finally, knypek supports the involvement of Glypican-4 in the craniofacial phenotype of Simpson-Golabi-Behmel syndrome and suggests GPC4 as a modulator of the overgrowth phenotype that is associated with this syndrome and is primarily caused by a mutation in GPC3. Moreover, we speculate on the potential involvement of SLC35B2, β3GAT3 and UXS1 in skeletal dysplasias. This work promotes the use of zebrafish as a model of human skeletal development and associated pathologies.  相似文献   

9.
Venken T  Del-Favero J 《Human mutation》2007,28(12):1156-1170
Major affective disorders and schizophrenia are among the most common brain diseases worldwide and their predisposition is influenced by a complex interaction of genetic and environmental factors. So far, traditional linkage mapping studies for these complex disorders have not achieved the same success as the positional cloning of genes for Mendelian diseases. The struggle to identify susceptibility genes for complex disorders has stimulated the development of alternative approaches, including studies in genetically isolated populations. Since isolated populations are likely to have both a reduced number of genetic vulnerability factors and environmental background and are therefore considered to be more homogeneous compared to outbred populations, the use of isolated populations in genetic studies is expected to improve the chance of finding susceptibility loci and genes. Here we review the role of isolated populations, based on linkage and association studies, in the identification of susceptibility genes for bipolar disorder and schizophrenia.  相似文献   

10.
Pathological 43-kDa transactive response sequence DNA-binding protein (TDP-43) has been recognized as the major disease protein in amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration with ubiquitin positive, tau and α-synuclein negative inclusions (FTLD-U) and the transitional forms between these multisystem conditions. In order to develop TDP-43 into a successful ALS biomarker, the natural history of TDP-43 pathology needs to be characterized and the underlying pathophysiology established. Here we propose a spatial and temporal "two-axes" model of central nervous system vulnerability for TDP-43 linked degeneration and review recent studies on potential biomarkers related to pathological TDP-43 in the cerebrospinal fluid (CSF), blood, and skeletal muscle. The model includes the following two arms: Firstly, a "motor neuron disease" or "spinal cord/brainstem to motor cortex" axis (with degeneration possibly ascending from the lower motor neurons to the upper motor neurons); and secondly, a "dementia" or "corticoid/allocortex to neocortex" axis (with a probable spread of TDP-43 linked degeneration from the mediotemporal lobe to wider mesocortical and neocortical brain areas). At the cellular level, there is a gradual disappearance of normal TDP-43 in the nucleus in combination with the formation of pathological aggregates in the cell body and cellular processes, which can also be used to identify the stage of the disease process. Moreover, TDP-43 lesions in subpial/subependymal or perivascular localizations have been noted, and this might account for increased CSF and blood TDP-43 levels through mechanisms that remain to be elucidated.  相似文献   

11.
Mutations in the UBQLN2 and SIGMAR1 genes were recently identified in X-linked dominant amyotrophic lateral sclerosis and/or frontotemporal dementia (ALS and/or FTD) and FTD and/or motor neuron disease, respectively. Subsequent studies, however, found that UBQLN2 mutations were rare, and the pathogenicity of SIGMAR1 mutation in FTD and/or motor neuron disease was controversial. In the present study, we analyzed mutations in the UBQLN2 and SIGMAR1 genes in a Korean cohort of 258 patients with familial ALS (n = 9) or sporadic (sALS; n = 258) ALS. One novel UBQLN2 variant (p.D314E) was observed in 2 patients with sALS and 5 of 727 controls indicating that this variant might be a rare polymorphism rather than a disease-causing mutation. A novel SIGMAR1 gene variant in the 3′-untranslated region (c.*58T>C) was found in 1 sALS and was absent in 727 control samples. Taken together, our data suggest that causative mutations in the UBQLN2 and SIGMAR1 genes are rare in Korean patients with either familial or sporadic ALS.  相似文献   

12.
The ubiquitin-proteasome system (UPS) is the major intracellular proteolytic mechanism controlling the degradation of misfolded/abnormal proteins. A common hallmark in amyotrophic lateral sclerosis (ALS) and in other neurodegenerative disorders is the accumulation of misfolded/abnormal proteins into the damaged neurons, leading to the formation of cellular inclusions that are mostly ubiquitin-positive. Although proteolysis is a complex mechanism requiring the participation of different pathways, the abundant accumulation of ubiquitinated proteins strongly suggests an important contribution of UPS to these neuropathological features. The use of cellular and animal models of ALS, particularly those expressing mutant SOD1, the gene mutation most represented in familiar ALS, has provided significant evidence for a role of UPS in protein inclusions formation and motor neuron death. This review will specifically discuss this piece of evidence and provide suggestions of potential strategies for therapeutic intervention. We will also discuss the finding that, unlike the constitutive proteasome subunits, the inducible subunits are overexpressed early during disease progression in SOD1 mice models of ALS. These subunits form the immunoproteasome and generate peptides for the major histocompatibility complex class I molecules, suggesting a role of this system in the immune responses associated with the pathological features of ALS. Since recent discoveries indicate that innate and adaptive immunity may influence the disease process, in this review we will also provide evidence of a possible connection between immune-inflammatory reactions and UPS function, in the attempt to better understand the etiopathology of ALS and to identify appropriate targets for novel treatment strategies of this devastating disease.  相似文献   

13.
This paper provides evidence to support that riluzole, an FDA-approved treatment for amyotrophic lateral sclerosis (ALS), like many neuroprotective agents, displays and exerts hormetic biphasic dose responses. These findings have important implications for the experimental study and clinical treatment of ALS.  相似文献   

14.
Joubert syndrome (JS) is a rare autosomal recessive malformation syndrome involving agenesis or dysgenesis of the cerebellar vermis with accompanying brainstem malformations. JS is further characterized by hypotonia, developmental delay, intermittent hyperpnea, and abnormal eye movements. The biochemical and molecular basis of JS remains unknown, although several genes that are crucial in the development of the cerebellum have been proposed as attractive candidate genes. JS is clinically heterogeneous; this, together with previous linkage analyses, suggests that there may also be genetic heterogeneity. A locus for JS was previously identified on chromosome 9q34 by linkage analysis in a consanguineous family of Arabian origin. A putative second JS locus was recently suggested when a deletion on chromosome 17p11.2 was observed in a patient with Smith‐Magenis syndrome and JS phenotype. We have investigated a cohort of apparently unrelated North American JS pedigrees for association with the loci on chromosomes 9q34 and 17p11.2 and excluded them in all cases where data were informative. Analysis of an additional 21 unrelated JS patients showed no evidence of homozygosity at the 9q34 and 17p11.2 loci that would suggest inheritance of founder JS mutation(s) or unreported consanguinity. Together, these data suggest that one or more major loci for JS remain to be identified. Consequently, we undertook mutation analysis of several functional candidate genes, EN1, EN2, and FGF8, in a total of 26 unrelated JS patients. Our data suggest that all of these genes may be excluded from a direct pathogenic role in JS. The BARHL1 gene, which localizes to chromosome 9q34 and has previously been proposed as a strong positional candidate gene for JS, was also investigated and excluded from involvement in JS that is linked to chromosome 9q34. © 2002 Wiley‐Liss, Inc.  相似文献   

15.
This study is an extension to previously published work that has linked variation in the human leukocyte antigen (HLA) class I region with susceptibility to multiple sclerosis (MS) in Australians from the Island State of Tasmania. Single nucleotide polymorphism (SNP) mapping was performed on an 865-kb candidate region (D6S1683-D6S265) in 166 Tasmanian MS families, and seven candidate genes [ubiquitin D (UBD), olfactory receptor 2H3 (OR2H3), gamma-aminobutyric acid B receptor 1 (GABBR1), myelin oligodendrocyte glycoprotein (MOG), HLA-F, HLA complex group 4 (HCG4) and HLA-G] were resequenced. SNPs tagging the extended MS susceptibility haplotype were genotyped in an independent sample of 356 Australian MS trios and SNPs in the MOG gene were significantly over-transmitted to MS cases. We identified significant effects on MS susceptibility of HLA-A*2 (OR: 0.51; P = 0.05) and A*3 (OR: 2.85; P = 0.005), and two coding polymorphisms in the MOG gene (V145I: P = 0.01, OR: 2.2; V142L: P = 0.04, OR: 0.45) after full conditioning on HLA-DRB1. We have therefore identified plausible candidates for the causal MS susceptibility allele, and although not conclusive at this stage, our data provide suggestive evidence for multiple class I MS susceptibility genes.  相似文献   

16.
The clinical use of array comparative genomic hybridization in the evaluation of patients with multiple congenital anomalies and/or mental retardation has recently led to the discovery of a number of novel microdeletion and microduplication syndromes. We present four male patients with overlapping molecularly defined de novo microdeletions of 16q24.3. The clinical features observed in these patients include facial dysmorphisms comprising prominent forehead, large ears, smooth philtrum, pointed chin and wide mouth, variable cognitive impairment, autism spectrum disorder, structural anomalies of the brain, seizures and neonatal thrombocytopenia. Although deletions vary in size, the common region of overlap is only 90 kb and comprises two known genes, Ankyrin Repeat Domain 11 (ANKRD11) (MIM 611192) and Zinc Finger 778 (ZNF778), and is located approximately 10 kb distally to Cadherin 15 (CDH15) (MIM 114019). This region is not found as a copy number variation in controls. We propose that these patients represent a novel and distinctive microdeletion syndrome, characterized by autism spectrum disorder, variable cognitive impairment, facial dysmorphisms and brain abnormalities. We suggest that haploinsufficiency of ANKRD11 and/or ZNF778 contribute to this phenotype and speculate that further investigation of non-deletion patients who have features suggestive of this 16q24.3 microdeletion syndrome might uncover other mutations in one or both of these genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号