首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The goals of this study were to (a) evaluate the differential variable reluctance transducer as an instrument for measuring tissue strain in the anteromedial band of the anterior crudciate ligament, (b) develop a series of calibration curves (for simple states of knee loading) from which resultant force in the ligament could be estimated from measured strain levels in the anteromedial band of the ligament, and (c) study the effects of knee flexion angle and mode of applied loading on ouput from the transducer. Thirteen fresh-frozen cadaveric knee specimens underwent mechanical isolation of a bone cap containing the tibial insertion of the anterior cruciate ligament and attachment of a load cell to measure resultant force in the ligament. The transducer (with barbed prongs) was inserted into the anteromedial band of the anterior cruciate ligament to record local elongation of the instrumented fibers as resultant force was generated in the ligament. A series of calibration curves (anteromedial bundle strain versus resultant force in the anterior cruciate ligament) were determined at selected knee flexion angles as external loads were applied to the knee. During passive knee extension, strain readings did not always follow the pattern of resultant force in the ligament; erratic strain readings were often measured beyond 20° of flexion, where the anteromedial band was slack. For anterior tibial loading, the anteromedial band was a more active contributor to resultant ligament force beyond 45° of flexion and was less active near full extension; mean resultant forces in the range of 150–200 N produced strain levels on the order of 3–4%. The anteromedial band was also active during application of internal tibial torque; mean resultant forces on the order of 180–220 N produced strains on the order of 2%. Resultant forces generated by varus moment were relatively low, and the anteromedial band was not always strained. Mean coefficients of variation for resultant force in the ligament (five repeated measurements) ranged between 0.038 and 0.111. Mean coefficients of variation for five repeated placements of the strain transducer in the same site ranged from 0.209 to 0.342. Insertion and removal of this transducer at the anteromedial band produced observable damage to the ligament. In our study, repeatable measurements were possible only if both prongs of the transducer were sutured to the ligament fibers.  相似文献   

2.
The arthroscopically implantable force probe transducer, which measures the effects of local ligament fiber tension, was inserted into the anteromedial band of the anterior cruciate ligament after measurements with the differential variable reluctance transducer were completed in Part I of this study. The overall goals in Part II remained the same, with additional experiments included to determine the sensitivity of output voltage from the transducer to medial-lateral placement of the device within the anteromedial band and to depth of placement within a given insertion hole. Calibration curves of output voltage from the arthroscopically implantable force probe transducer versus resultant force in the ligament were generated during a separate series of knee-loading experiments identical to those performed in Part I. The output voltage for a given probe placement was highly sensitive to the depth of implantation into the anteromedial band. When the probe was completely buried within the ligament, voltage outputs were often sporadic or absent even though surface fibers had clearly developed tension. When the probe was only partially inserted into the hole, such that the end of the probe was slightly proud to the surface, voltage output was significantly, higher as the device measured tension in the superficial fibers. Voltage outputs for proud placement were always significantly higher than corresponding voltages for deep placements for all test conditions. With proud placements, voltage outputs were not sensitive to small deviations in medial-lateral position within the anteromedial band. Mean coefficients of variation for output voltage (four repeated placements of the probe into the same central hole) ranged from 0.156 to 0.359 (deep and proud insertions). Output voltage from the probe generally followed the pattern of resultant force in the ligament during passive knee extension. For anterior tibial loading, the contribution of deep fibers to resultant force did not depend on the knee flexion angle at which the test was conducted; the contribution of superficial fibers was greatest beyond 45° of flexion and least at full extension. The contributions of the anteromedial band to resultant force in the ligament were not significantly different between the three modes of loading (anterior tibial force, internal tibia torque, and varus moment) at either 0 or 10° of flexion; this was true for both superficial and deep fibers. We found it necessary to secure the probe within the insertion site using a suture (for both deep and proud placements) to obtain repeatable readings. Puncturing the anteromedial band clearly produced tissue damage; the insertion hole often produced a permanent plane of cleavage in the anteromedial band. However, this tissue damage did not alter the overall ability of the ligament to generate resultant force.  相似文献   

3.
The anterior cruciate ligament has a complex fiber anatomy and is not considered to be a uniform structure. Current anterior cruciate ligament reconstructions succeed in stabilizing the knee, but they neither fully restore normal knee kinematics nor reproduce normal ligament, function. To improve the outcome of the reconstruction, it may be necessary to reproduce the complex function of the intact anterior cruciate ligament in the replacement graft. We examined the in situ forces in nine human anterior cruciate ligaments as well as the force distribution between the anteromedial and posterolateral bundles of the ligament in response to applied anterioi tibial loads ranging from 22 to 110 N at knee flexion angles of 0–90°. The analysis was performed using a robotic manipulator in conjunction with a universal force-moment sensor. The in situ forces were determined with no device attached to the ligament, while the knee was permitted to move freely in response to the applied loads. We found that the in situ forces in the anterior cruciate ligament ranged from 12.8 ± 7.3 N under 22 N of anterior tibial load applied at 90° of knee flexion to 110.6 ± 14.8 N under 110 N of applied load at 15° of flexion. The magnitude of the in situ force in the posterolateral bundle was larger than that in the anteromedial bundle at knee flexion angles between 0 and 45°, reaching a maximum of 75.2 ± 18.3 N at 15° of knee flexion under an anterior tibial load of 110 N. The magnitude of the in situ force in the posterolateral bundle was significantly affected by knee flexion angle and anterior tibial load in a fashion remarkably similar to that seen in the anterior cruciate ligament. The magnitude of the in situ force in the anteromedial bundle, in contrast, remained relatively constant, not changing with flexion angle. Significant differences in the direction of the in situ force between the anteromedial bundle and the posterolateral bundle were found only at flexion angles of 0 and 60° and only under applied anterior tibial loads greater than 66 N. We have demonstrated the nonuniformity of the anterior cruciate ligament under unconstrained anterior tibial loads. Our data further suggest that in order for the anterior cruciate ligament replacement graft to reproduce the in situ forces of the normal anterior cruciate ligament, reconstruction techniques should take into account the role of the posterolateral bundle in addition to that of the anteromedial bundle.  相似文献   

4.
This article describes a new arthroscopic technique to study the anterior cruciate ligament (ACL) in vivo. A Hall effect strain transducer (HEST) is inserted arthroscopically into the anterior medial band (AMB) of the ACL. The strain is calculated from HEST displacement data. This method determines a reference length of the AMB when it becomes taut and load bearing. Data from HEST implantation in five patients with normal ACLs are reported. The HEST was implanted in the AMB with patients under local anesthesia. Strain was calculated during anterior-posterior shear testing and isometric quadriceps contractions at 30 and 90 degrees of knee flexion. The results demonstrate that this technique is safe and reliable. Lachman testing (anterior shear testing at 30 degrees) caused significantly higher strain in comparison to the drawer tests (anterior shear testing at 90 degrees). A significant increase in strain occurred during isometric quadriceps contraction when the knee was flexed at 30 degrees. No significant change in strain was measured, however, during isometric quadriceps contraction at 90 degrees of flexion. These results confirm previous studies showing that the Lachman test is a more sensitive clinical method for evaluating the AMB. They suggest that isometric quadriceps activity at 90 degrees of knee flexion can be prescribed for rehabilitation without risk of increased strain of the AMB.  相似文献   

5.
The function of the anterior cruciate ligament was investigated for different conditions of kinematic constraint placed on the intact knee using a six-degree-of-freedom robotic manipulator combined with a universal force-moment sensor. To do this, the in situ forces and force distribution within the porcine anterior cruciate ligament during anterior tibial loading up to 100 N were compared at 30, 60, and 90° of flexion under: (a) unconstrained, five-degree-of-freedom knee motion, and (b) constrained, one-degree-of-freedom motion (i.e., anterior translations only). The robotic/universal force-moment sensor testing system was used to both apply the specified external loading to the in tact joint and measure the resulting kinematics. After tests of the intact knee were completed, all soft tissues except the anterior cruciate ligament were removed, and these motions were reproduced such that the in situ force and force distribution could be determined. No significant differences in the magnitude of in situ forces in the anterior cruciate ligament were found between the unconstrained and constrained testing conditions. In contrast, the direction of in situ force changed significantly; the force vector in the unconstrained case was more parallel with the direction of the applied tibial load. In addition, the distribution of in situ force between the anteromedial and posterolateral bundles of the ligament was nearly equal for all flexion angles for the unconstrained case, whereas the anteromedial bundle carried higher forces than the posterolateral bundle at both 60 and 90° of flexion for the constrained case. This demonstrates that the constraint conditions placed on the joint have a significant effect on the apparent role of the anterior cruciate ligament. Specifically, constraining joint motion to one degree of freedom significantly alters both the direction and distribution of the in situ force in the ligament from that observed for unconstrained joint motion (five degrees of freedom). Furthermore, the changes observed in the distribution of force between the anteromedial and posterolateral bundles for different constraint conditions may help elucidate mechanisms of injury by providing new insight into the response of the anterior cruciate ligament to different types of external knee loading.  相似文献   

6.
Treatment of medial compartment knee osteoarthritis with high tibial osteotomy can produce an unintended change in the slope of the tibial plateau in the sagittal plane. The effect of changing posterior tibial slope (PTS) on cruciate ligament forces has not been quantified for knee loading in activities of daily living. The purpose of this study was to determine how changes in PTS affect tibial shear force, anterior tibial translation (ATT), and knee‐ligament loading during daily physical activity. We hypothesized that tibial shear force, ATT, and ACL force all increase as PTS increases. A previously validated computer model was used to calculate ATT, tibial shear force, and cruciate‐ligament forces for the normal knee during three common load‐bearing tasks: standing, squatting, and walking. The model calculations were repeated with PTS altered in 1° increments up to a maximum change in tibial slope of 10°. Tibial shear force and ATT increased as PTS was increased. For standing and walking, ACL force increased as tibial slope was increased; for squatting, PCL force decreased as tibial slope was increased. The effect of changing PTS on ACL force was greatest for walking. The true effect of changing tibial slope on knee‐joint biomechanics may only be evident under physiologic loading conditions which include muscle forces. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 29:223–231, 2011  相似文献   

7.
This study investigated the impact of a combination of axial compressive and anterior-posterior tibial loads on the in situ forces in the anterior cruciate ligament. An axial compressive load is believed to contribute to increased stability of the knee joint; however, its effect on in situ forces in the anterior cruciate ligament has not been clearly defined, to our knowledge. It was hypothesized that the application of an axial compressive load, when combined with an anterior tibial load, would result in larger in situ forces in the anterior cruciate ligament than those caused by an isolated anterior tibial load. With use of a porcine knee model, the results confirmed this hypothesis; the addition of a 200 N axial compressive load to a 100 N anterior tibial load increased knee stability by reducing anterior-posterior tibial translation and internal-external tibial rotation and also caused a significant increase in in situ forces in the anterior cruciate ligament (p < 0.05). Specifically, there was a 34% increase in the in situ force at 30° of flexion, a 68% increase at 60° of flexion, and an 84% increase at 90° of flexion compared with those for an isolated anterior tibial load of 100 N. Additionally, there was a statistically significant increase of the in situ forces in the anterior cruciate ligament at 60 and 90° as compared with those at 30°. These results suggest that axial compressive loads on the knee may play a role in injury of the anterior cruciate ligament when the knee is flexed.  相似文献   

8.
In forty fresh human cadaver knees the function of the anterior cruciate ligament and of its two component parts, the posterolateral part and the anteromedial band, were studied by cutting these ligaments and others in different sequences and combinations and then manually stressing the knees. The anterior drawer sign cannot be obtained unless the anteromedial band is severed. The postolateral part and the medial collateral ligament are, respectively, the secondary and tertiary restraints limiting the anterior drawer sign. Both internal and external rotation are limited by the anterior cruciate ligament, especially when the knee is in extension. The anterior cruciate ligament also limits hyperextension.  相似文献   

9.
Strain within the anteromedial bundle (AMB) of the anterior cruciate ligament (ACL) was measured in 13 human knee specimens in order to determine the combination of external loads most likely to cause injury. Using a load application system that allowed 5 df with the flexion angle being fixed, pure loads of anterior/posterior force, medial/lateral force, varus/valgus torque, and internal/external axial torque were applied at three flexion angles: 0 degrees, 15 degrees, 30 degrees. Combined loads were applied in pairs at two flexion angles: 0 degrees and 30 degrees. Liquid mercury strain gauges were used to measure strain in the ACL. Anterior tibial force was the primary determinant of strain in the anteromedial bundle. This strain was significantly larger at 30 degrees flexion than at 0 degrees. The strain sensitivity of the AMB to medial force was approximately one-half that to pure anterior force. The effect of anterior and medial forces was additive when applied in combination. Neither pure axial torque nor pure varus/valgus torque was observed to strain significantly the AMB at any of the flexion angles investigated. However, valgus torque in combination with anterior force resulted in a significantly larger strain than pure anterior force. Internal axial torque in combination with anterior force also resulted in a larger strain than pure anterior force.  相似文献   

10.
Injuries to the anterior cruciate ligament frequently occur under combined mechanisms of loading. This in vitro study was designed to measure levels of ligament force under dual combinations of individual loading states and to determine which combinations generated high force. Resultant force was recorded as the knee was extended passively from 90° of flexion to 5° of hyperextension under constant tibial loadings. The individual loading states were 100 N of anterior tibial force, 10 Nm of varus and valgus moment, and 10 Nm of internal and external tibial torque. Straight anterior tibial force was the most direct loading, mechanism; the mean ligament force was approximately equal to applied anterior tibial force near 30° of flexion and to 150% of applied tibial force at full extension. The addition of internal tibial torque to a knee loaded by anterior tibial force produced dramatic increases of force at full extension and hyperextension. This loading combination produced the highest ligament forces recorded in the study and is the most dangerous in terms of potential injury to the ligament. In direct contrast, the addition of external tibial torque to a knee loaded by anterior tibial force decreased the force dramatically for flexed positions of the knee; at close to 90° of flexion, the anterior cruciate ligament became completely unloaded. The addition of varus moment to a knee loaded by anterior tibial force increased the force in extension and hyperextension, whereas the addition of valgus moment increased the force at flexed positions. These states of combined loading also could present an increased risk for injury. Internal tibial torque is an important loading mechanism of the anterior cruciate ligament for an extended knee. The overall risk of injury to the ligament from varus or valgus moment applied in combination with internal tibial torque is similar to the risk from internal tibial torque alone. External tibial torque was a relatively unimportant mechanism for generating anterior cruciate ligament force.  相似文献   

11.
Strengthening of the hamstrings is often recommended following injury and reconstruction of the anterior cruciate ligament. It has been suggested that hamstrings activity stabilizes the knee and reduces anterior cruciate ligament load during weight-bearing flexion; however, the effects of hamstrings cocontraction on the kinematics and mechanics of the normal knee have not been assessed at physiological load levels. The aim of this study was to determine whether the addition of hamstrings force affects knee rotations, translations, and joint and quadriceps force during flexion with loads at physiological levels applied to the muscles and joints. Eight cadaveric knee specimens were tested with a servohydraulic mechanism capable of applying controlled dynamic loads to simulate quadriceps and hamstrings muscle forces throughout a physiological range of motion. A constant vertical load of physiologic magnitude was applied to the hip, and quadriceps force was varied to maintain equilibrium throughout flexion. Two conditions were tested: no hamstrings force and a constant hamstrings force equivalent to the vertical load. Hamstrings force significantly reduced internal rotation (p<0.0001) and anterior translation (p<0.0001), increased quadriceps force (p<0.0001) and normal resultant force on the tibia (p<0.0001), and reversed the direction of the shear force on the tibia (p<0.0001). These results suggest that hamstrings strengthening following anterior cruciate ligament injury may benefit anterior cruciate ligament-deficient and reconstructed knees by reducing the load in the ligament; however, they also imply that this comes at the expense of efficiency and higher patellofemoral and joint forces.  相似文献   

12.
Ten fresh-frozen knees from cadavera were instrumented with a specially designed transducer that measures the force that the anterior cruciate ligament exerts on its tibial attachment. Specimens were subjected to tibial torque, anterior tibial force, and varus-valgus bending moment at selected angles of flexion of the knee ranging from 0 to 45 degrees. Section of the medial collateral ligament did not change the force generated in the anterior cruciate ligament by applied varus moment. When valgus moment was applied to the knee, force increased dramatically after section of the medial collateral ligament; the increases were greatest at 45 degrees of flexion. Section of the medial collateral ligament had variable effects on the force generated in the anterior cruciate ligament during internal rotation but dramatically increased that generated during external rotation; these increases were greatest at 45 degrees. Section of the medial collateral ligament increased mean total torsional laxity by 13 degrees (at 0 degrees of flexion) to 20 degrees (at 45 degrees of flexion). Application of an anteriorly directed force to the tibia of an intact knee increased the force generated in the anterior cruciate ligament; this increase was maximum near the mid-part of the range of tibial rotation and minimum with external rotation of the tibia. Section of the medial collateral ligament did not change the force generated in the anterior cruciate ligament by straight anterior tibial pull near the mid-part of the range of tibial rotation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
This study was conducted to determine the effectiveness of the Lenox Hill knee brace in limiting anterior translation and external rotation of the tibia in reference to the femur in normal and ligament-deficient knees. Four fresh cadaver knees were fitted with Lenox Hill knee braces according to the manufacturer's guidelines. A computer-assisted testing apparatus was constructed that allowed each knee to be tested as a function of knee flexion angle, joint load, and soft tissue integrity. Each knee served as its own control. While 45 kg of anterior force was applied to the tibia of the anterior cruciate ligament deficient knees, the Lenox Hill knee brace was able to decrease anterior translation from an average of 10 mm, to 5.7 mm, at 30 degrees of flexion when no vertical load was present. This limiting effect was lost when the medial collateral ligament was sectioned in addition to the anterior cruciate ligament or when both the medial and the lateral collateral ligaments were sectioned along with the anterior cruciate ligament. When 20 Newton-meters (Nm) of torque was applied to the femurs at 30 degrees of flexion without vertical load, the Lenox Hill knee brace limited external rotation of the tibia in all tested categories. For intact knees at 30 degrees of flexion and no vertical load, the Lenox Hill knee brace decreased external rotation from 18 degrees to 10 degrees. In the anterior cruciate ligament-sectioned knees, external rotation was decreased from an average of 20.2 degrees to 16.1 degrees. In the knees with sectioned anterior cruciate and medial collateral ligaments, the average reduction was from 21.2 degrees to 15.4 degrees.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Twenty-two fresh-frozen specimens were used to measure tensions generated in selected bands of the major ligaments of the flexed knee (40-90 degrees) when an axially prerotated tibia is subjected to passive anterior shear and when an anteriorly pretranslated tibia is subjected to passive axial torque. The tensions were measured using the buckle transducer attached to the anteromedial band of the anterior cruciate ligament [ACL (am)], the posterior fibers of the posterior cruciate ligament [PCL (pf)], the long fibers of the medial collateral ligament [MCL (lf)], and in the total lateral collateral ligament [LCL]. The knee specimens were subjected to the combined motions in a 6-df passive loading apparatus. The results indicated that the joint resistance to anterior translation increased markedly with internal prerotation and only marginally with external prerotation. This increase in joint resistance, however, was associated with a decrease in ACL function. It has been inferred that the posterior structures, capsular and meniscal, contribute significantly to joint resistance when the tibia is prerotated in either sense. For internal prerotation, the interference between the medial femoral condyle and the central tibial eminence was found to be an additional mechanism of resistance to anterior translation. Also, it has been found that although the ACL (am) tension increased with internal rotation in the normal case, it decreased with internal rotation in the presence of an anterior pretranslation. It is concluded that ACL response to combined joint motion cannot be ascertained by a simple summation of its responses to individual motions.  相似文献   

15.
Complete knee dislocation usually causes disruption of both the anterior and posterior cruciate ligaments. Four cases of complete knee dislocation without posterior cruciate ligament (PCL) disruption are reported. All cases involved either anterior or anteromedial dislocation with anterior cruciate ligament disruption and collateral ligament injury, but without posterior cruciate disruption. This is an uncommon finding in complete dislocation of the knee. The PCL may occasionally be spared significant injury in anterior type dislocations, however, thus favorably affecting treatment options.  相似文献   

16.
The incidence of meniscal tears in the chronically anterior cruciate ligament-deficient knee is increased, particularly in the medial meniscus because it performs an important function in limiting knee motion. We evaluated the role of the medial meniscus in stabilizing the anterior cruciate ligament-deficient knee and hypothesized that the resultant force in the meniscus is significantly elevated in the anterior cruciate ligament-deficient knee. To test this hypothesis, we employed a robotic/universal force-moment sensor testing system to determine the increase in the resultant force in the human medial meniscus in response to an anterior tibial load following transection of the anterior cruciate ligament. We also measured changes in the kinematics of the knee in multiple degrees of freedom following medial meniscectomy in the anterior cruciate ligament-deficient knee. In response to a 134-N anterior tibial load, the resultant force in the medial meniscus of the anterior cruciate ligament-deficient knee increased significantly compared with that in the meniscus of the intact knee; it increased by a minimum of 10.1 N (52%) at full knee extension to a maximum of 50.2 N (197%) at 60 degrees of flexion. Medial meniscectomy in the anterior cruciate ligament-deficient knee also caused a significant increase in anterior tibial translation in response to the anterior tibial load, ranging from an increase of 2.2 mm at full knee extension to 5.8 mm at 60 degrees of flexion. Conversely, coupled internal tibial rotation in response to the load decreased significantly, ranging from a decrease of 2.5 degrees at 15 degrees of knee flexion to 4.7 degrees at 60 degrees of flexion. Our data confirm the hypothesis that the resultant force in the medial meniscus is significantly greater in the anterior cruciate ligament-deficient knee than in the intact knee when the knee is subjected to anterior tibial loads. This indicates that the demand on the medial meniscus in resisting anterior tibial loads is increased in the anterior cruciate ligament-deficient knee compared with in the intact knee, suggesting a mechanism for the increased incidence of medial meniscal tears observed in chronically anterior cruciate ligament-deficient patients. The large changes in kinematics due to medial meniscectomy in the anterior cruciate ligament-deficient knee confirm the important role of the medial meniscus in controlling knee stability. These findings suggest that the reduction of resultant force in the meniscus may be a further motive for reconstructing the anterior cruciate ligament, with the goal of preserving meniscal integrity.  相似文献   

17.
A cadaver knee-testing system was used to analyze the effect of an extraarticular reconstruction for anterolateral rotatory instability in which the lateral one third of the patellar tendon with a patellar bone block was transposed to the lateral femoral condyle. Ligament and reconstruction tendon forces were measured using buckle transducers, and joint motion was measured using an instrumented spatial linkage as 90 N anteriorly directed tibial loads were applied to seven knee specimens at 0 degree, 30 degrees, 60 degrees, and 90 degrees of flexion by a pneumatic load apparatus. This was done for each knee with first an intact, then an excised anterior cruciate ligament, and finally the extraarticular reconstruction. Forces in the transposed graft exhibited an isotonic pattern over the flexion range, unlike the intact anterior cruciate ligament, which was more highly loaded in extension than in flexion. The transposition of the patellar tendon led to external rotation of the tibia in both unloaded and anterior load conditions throughout flexion. Collateral ligament forces increased with anterior cruciate ligament excision, with the force in the medial ligament remaining higher than normal with the reconstruction, while the lateral forces became lower than normal.  相似文献   

18.
We measured the effects of serial section of the medial collateral ligament and anterior cruciate ligament and of the anterior cruciate ligament and medial collateral ligament on anterior-posterior force-versus-displacement and tibial torque-versus-rotation response curves for seven fresh frozen cadaver knees at zero and 20 degrees of flexion before and after application of as much as 925 newtons of compressive load on the tibiofemoral joint. Section of the anterior cruciate ligament always increased anterior laxity in an unloaded specimen; joint load reduced this increase by a greater amount at zero degrees than at 20 degrees of flexion. Joint load was more effective in limiting anterior laxity in anterior cruciate-deficient specimens at low levels of applied anterior force; at higher levels of applied force, the effects of joint congruency were overcome and ligament restraints came into play. Section of the medial collateral ligament increased anterior laxity in an unloaded knee only for specimens in which the anterior cruciate ligament had been previously sectioned; joint load eliminated this increase at full extension but did not do so at 20 degrees of flexion. The medial collateral ligament was the more important of the two ligaments in controlling torsional laxity. Secondary section of either ligament (the other ligament having been sectioned first) produced a greater increase in laxity than did primary section of that ligament in an intact knee. Increases in torsional laxity due to primary section of either ligament were unaffected by the application of joint load. Joint load reduced increases in laxity that were due to secondary section of the medial collateral ligament.  相似文献   

19.
A cadaver knee-testing system was used to analyze the effect of an extraarticular reconstruction for anterolateral rotatory instability in which the lateral one third of the patellar tendon with a patellar bone block was transposed to the lateral femoral condyle. Ligament and reconstruction tendon forces were measured using buckle transducers, and joint motion was measured using an instrumented spatial linkage as 90 N anteriorly directed tibial loads were applied to seven knee specimens at 0°, 30°, 60°, and 90° of flexion by a pneumatic load apparatus. This was done for each knee with first an intact, then an excised anterior cruciate ligament, and finally the extraarticular reconstruction.

Forces in the transposed graft exhibited an isotonic pattern over the flexion range, unlike the intact anterior cruciate ligament, which was more highly loaded in extension than in flexion. The transposition of the patellar tendon led to external rotation of the tibia In both unloaded and anterior load conditions throughout flexion. Collateral ligament forces increased with anterior cruciate ligament excision, with the force in the medial ligament remaining higher than normal with the reconstruction, while the lateral forces became lower than normal.  相似文献   

20.
Background  The knowledge of in vivo anterior cruciate ligament (ACL) deformation is fundamental for understanding ACL injury mechanisms and for improving surgical reconstruction of the injured ACL. This study investigated the relative elongation of the ACL when the knee is subject to no load (<10 N) and then to full body weight (axial tibial load) at various flexion angles using a combined dual fluoroscopic and magnetic resonance imaging (MRI) technique. Methods  Nine healthy subjects were scanned with MRI and imaged when one knee was subject to no load and then to full body weight using a dual fluoroscopic system (0°–45° flexion angles). The ACL was analyzed using three models: a single central bundle; an anteromedial and posterolateral (double functional) bundle; and multiple (eight) surface fiber bundles. Results  The anteromedial bundle had a peak relative elongation of 4.4% ± 3.4% at 30° and that of the posterolateral bundle was 5.9% ± 3.4% at 15°. The ACL surface fiber bundles at the posterior portion of the ACL were shorter in length than those at the anterior portion. However, the peak relative elongation of one posterolateral fiber bundle reached more than 13% whereas one anteromedial fiber bundle reached a peak relative elongation of only about 3% at 30° of flexion by increasing the axial tibial load from no load to full body weight. Conclusions  The data quantitatively demonstrated that under external loading the ACL experiences nonhomogeneous elongation, with the posterior fiber bundles stretching more than the anterior fiber bundles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号