首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the expression profile of subunits of ionotropic glutamate receptors [N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole-proprionate (AMPA)] during postnatal development of connectivity in the rat vestibular nucleus. Vestibular nuclear neurons were functionally activated by constant velocity off-vertical axis rotation, a strategy to stimulate otolith organs in the inner ear. These neurons indicated Fos expression as a result. By immunodetection for Fos, otolith-related neurons that expressed NMDA/AMPA receptor subunits were identified as early as P7, and these neurons were found to increase progressively up to adulthood. Although there was developmental invariance in the percentage of Fos-immunoreactive neurons expressing the NR1, NR2A, GluR1, or GluR2/3 subunits, those expressing the NR2B subunit decreased from P14 onward, and those expressing the GluR4 subunit decreased in adults. These double-immunohistochemical data were corroborated by combined immuno-/hybridization histochemical data obtained from Fos-immunoreactive neurons expressing NR2B mRNA or GluR4 mRNA. The staining of both NR2B and GluR4 in the cytoplasm of these neurons decreased upon maturation. The percentage of Fos-immunoreactive neurons expressing the other ionotropic glutamate receptor subunits (viz. NR1, NR2A, GluR1, and GluR2/3) remained relatively constant throughout postnatal maturation. Triple immunofluorescence further demonstrated coexpression of NR1 and NR2 subunits in Fos-immunoreactive neurons. Coexpression of NR1 subunit with each of the GluR subunits was also observed among the Fos-immunoreactive neurons. Taken together, the different expression profiles of ionotropic glutamate receptor subunits constitute the histological basis for glutamatergic neurotransmission in the maturation of central vestibular connectivity for the coding of gravity-related horizontal head movements.  相似文献   

2.
Wang WW  Cao R  Rao ZR  Chen LW 《Brain research》2004,998(2):174-183
Dopamine and cyclic adenosine 3',5'-monophosphate-regulated phosphoprotein, 32 kDa (DARPP-32) is a key element of dopamine/D1/DARPP-32/protein phosphatase-1 (PP-1) signaling cascades of mammalian brain. We are interested in the expression patterns of N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors in DARPP-32-containing neurons, which may constitute morphological basis for interaction between dopamine and ionotropic glutamate receptors in dopaminoceptive cells. Double immunofluorescence was performed to visualize neurons showing coexpression of DARPP-32 with NMDA or AMPA receptor subunits (i.e., NR1, NR2a/b, glutamate receptor subunit 1 [GluR1], GluR2/3, and GluR4) in the forebrains of rats. Distribution of DARPP-32-positive neurons completely or partially overlapped with that of NMDA receptor- or AMPA receptor-immunoreactive ones in the frontal and parietal cortex, hippocampus and neostriatum, and neurons double-labeled with DARPP-32/NR1, DARPP-32/NR2a/b, DARPP-32/GluR1, DARPP-32/GluR2/3, or DARPP-32/GluR4 immunoreactivity were numerously observed. Semiquantification analysis indicated that most of DARPP-32-containing neurons (86-98%) expressed NR1, NR2a/b and GluR2/3, while less of them (14-90%) expressed GluR1 and GluR4. Although high rates (90-98%) of DARPP-32-positive cells expressed NMDA receptors in all regions above, variant percentages of them expressing AMPA receptor subunits were observed among the cortex (54-90%), hippocampus (59-97%) and neostriatum (14-97%). The study presents differential expression patterns of NMDA and AMPA receptors in DARPP-32-postive neurons in these forebrain regions. Taken together with previous reports, the present data suggest that interaction between dopamine and glutamate receptors may occur in the dopaminoceptive neurons with distinct receptor compositions and may be involved in modulating neuronal properties and excitotoxicity in mammalian forebrain.  相似文献   

3.
Excitatory amino acids (EAAs), particularly glutamate, have been implicated in the control of luteinizing hormone (LH) secretion through facilitation of gonadotropin-releasing hormone release. The effects of EAAs are mediated by means of ionotropic glutamate receptors, which are divided into N-methyl-D-aspartate (NMDA) and non-NMDA (kainate and AMPA) subtypes. Moreover, ovarian steroids are responsible for inducing the preovulatory surge of LH and are involved in the actions of EAAs on LH release. Progesterone is directly involved in the potentiating effect of ovarian steroids on the stimulating effect of AMPA neurotransmission on gonadotropin secretion. To broaden our understanding of the role of hypothalamic AMPA receptors in the steroid-induced LH surge, we determined the cellular localization of AMPA receptors in the hypothalamus of guinea pigs by using antibodies that recognize the GluR1, GluR2, GluR2/3, or GluR4 subunits, and then we examined the neuroanatomic relationships between these receptors and the progesterone receptor (PR). Different patterns of immunostaining within the preoptic area and hypothalamus were evident with the antibodies to the four subunits with marked contrasts between moderate staining for GluR1, intensely stained structures for GluR2 and GluR2/3, and little specific staining for GluR4. Immunoreactive (IR) neurons were visualized in many regions, including the two regions known to contain a dense population of estradiol-induced PR-IR cells: the preoptic periventricular and ventrolateral hypothalamic nuclei. Approximately 60% of GluR1-IR and 39% of GluR2-IR cells in the preoptic region possessed PR, whereas 46% of GluR1-IR and 54% of GluR2-IR cells in the ventrolateral nucleus expressed PR. These neuroanatomic results suggest that the coordinated actions of progesterone and glutamatergic inputs on mammalian reproductive functions are integrated at the cellular level.  相似文献   

4.
Identification of the neurotransmitter receptor subtypes within the suprachiasmatic nuclei (SCN) will further understanding of the mechanism of the biological clock and may provide targets to manipulate circadian rhythms pharmacologically. We have focused on the ionotropic GABA and glutamate receptors because these appear to account for the majority of synaptic communication in the SCN. Of the 15 genes known to code for GABA receptor subunits in mammals we have examined the expression of 12 in the SCN, neglecting only the α6, γ3, and ϱ2 subunits. Among glutamate receptors, we have focused on the five known genes coding for the NMDA receptor subunits, and two subunits which help comprise the kainate-selective receptors. Expression was characterized by Northern analysis with RNA purified from a large number of mouse SCN and compared to expression in the remaining hypothalamus, cortex and cerebellum. This approach provided a uniform source of RNA to generate many replicate blots, each of which was probed repeatedly. The most abundant GABA receptor subunit mRNAs in the SCN were α2, α5, β1, β3, γ1 and γ2. The ϱ1 (rhol) subunit, which produces GABAC pharmacology, was expressed primarily in the retina in three different species and was not detectable in the mouse SCN despite a common embryological origin with the retina. For several GABA subunits we detected additional mRNA species not previously described. High expression of both genes coding for glutamic acid decarboxylase (GAD65 and GAD67) was also found in the SCN. Among the NMDA receptor subunits, NR1 was most highly expressed in the SCN followed in order of abundance by NR2B, NR2A, NR2C and NR2D. In addition, both GluR5 and GluR6 show clear expression in the SCN, with GluR5 being the most SCN specific. This approach provides a simple measure of receptor subtype expression, complements in situ hybridization studies, and may suggest novel isoforms of known subunits.  相似文献   

5.
The excitatory amino acid neurotransmitter glutamate participates in the control of most (and possibly all) neuroendocrine systems in the hypothalamus. This control is exerted by binding to two classes of membrane receptors, the ionotropic and metabotropic receptor families, which differ in their structure and mechanisms of signal transduction. To gain a better understanding about the precise sites of action of glutamate and the subunit compositions of the receptors involved in the glutamatergic neurotransmission in the hypothalamus and septum, in situ hybridization was used with 35S-labeled cRNA probes for the different ionotropic receptor subunits, including glutamate receptor subunits 1-4 (GluR1-GluR4), kainate-2, GluR5-GluR7, N-methyl-D-aspartate (NMDA) receptor 1 (NMDAR1), and NMDAR2A-NMDAR2D. The results showed that subunits of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate-preferring, kainate-preferring, and NMDA-preferring receptor subunits are distributed widely but heterogeneously and that the GluR1, GluR2, kainate-2, NMDAR1, NMDAR2A, and NMDAR2B subunits are the most abundant in the hypothalamus. Thus, GluR1 subunit mRNA was prominent in the lateral septum, preoptic area, mediobasal hypothalamus, and tuberomammillary nucleus, whereas kainate-2 subunit mRNA was abundant in the medial septum-diagonal band, median and anteroventral preoptic nuclei, and supraoptic nuclei as well as the magnocellular portion of the posterior paraventricular nucleus. Regions that contained the highest levels of NMDAR1 subunit mRNA included the septum, the median preoptic nucleus, the anteroventral periventricular nucleus, and the supraoptic and suprachiasmatic nuclei as well as the arcuate nucleus. Together, the extensive distribution of the different GluR subunit mRNAs strengthen the view that glutamate is a major excitatory neurotransmitter in the hypothalamus. The overlap in the distribution of the various subunit mRNAs suggests that many neurons can express GluR channels that belong to different families, which would allow a differential regulation of the target neurons by glutamate.  相似文献   

6.
Subcortical and corticothalamic inputs excite thalamic neurons via a diversity of glutamate receptor subtypes. Differential expression of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), kainate, and N-methyl-D-aspartate (NMDA) receptor subunits (GluR1–4; GluR5–7; NR1, NR2A–D) on a nucleus- and cell type-specific basis was examined by quantitative in situ hybridization histochemistry and by immunocytochemical staining for receptor subunits and colocalized γ-aminobutyric acid (GABA) or calcium binding proteins. Levels of NMDA subunit expression, except NR2C, are higher than for the most highly expressed AMPA (GluR1,3,4) and kainate (GluR6) receptor subunits. Expression of NR2C, GluR2, GluR5, and GluR7 is extremely low. Major differences distinguish the reticular nucleus and the dorsal thalamus and, within the dorsal thalamus, the intralaminar and other nuclei. In the reticular nucleus, GluR4 is by far the most prominent, and NMDA receptors are at comparatively low levels. In the dorsal thalamus, NMDA receptors predominate. Anterior intralaminar nuclei are more enriched in GluR4 and GluR6 subunits than other nuclei, whereas posterior intralaminar nuclei are enriched in GluR1 and differ among themselves in relative NMDA receptor subunit expression. GABAergic intrinsic neurons of the dorsal thalamus express much higher levels of GluR1 and GluR6 receptor subunits than do parvalbumin- or calbindin-immunoreactive relay cells and low or absent NMDA receptors. Relay cells are dominated by NMDA receptors, along with GluR3 and GluR6 subunits not expressed by GABA cells. High levels of NR2B are found in astrocytes. Differences in NMDA and non-NMDA receptor profiles will affect functional properties of the thalamic GABAergic and relay cells. J. Comp. Neurol. 397:371–393, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
Ionotropic glutamate receptors during the development of the chick retina.   总被引:5,自引:0,他引:5  
Glutamate is the main neurotransmitter of photoreceptors, bipolar cells, and ganglion cells of the vertebrate retina. Three main classes of ionotropic glutamate receptors comprising different subunits can be distinguished: AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxasolepropionate), KA (kainate), and NMDA (N-methyl-D-aspartate). This study was undertaken to characterize the AMPA (GluR1, GluR2/3, and GluR4), KA (GluR5/6/7), and NMDA (NR1) ionotropic glutamate receptor subunits and to determine their distribution during the development of the chick retina by Western blotting and immunohistochemistry. Western blotting analysis at 1 day after hatching indicated that the antibodies against GluR1, 2/3, 4, and 5/6/7 and NR1 recognized specifically a single band of 100-110 kDa. In turn, immunohistochemistry at P1 showed that all subunits were expressed in cells of the inner nuclear and ganglion cell layers of the chick retina, mostly amacrine and ganglion cells, and their processes in the inner plexiform layer. In addition, stained processes in the outer plexiform layer were observed with the antibodies against GluR2/3, GluR4, and GluR5/6/7. Although all subunits appeared around E5-E6 in the prospective ganglion cell layer, and later in the prospective inner nuclear layer, the distribution of cells containing these glutamate receptor subunits revealed distinct ontogenetic patterns. This multiplicity of glutamate receptors may contribute to different processes that occur in the chick retina during development.  相似文献   

8.
The hypopthalamic paraventricular nucleus (PVN) coordinates multiple aspects of homeostatic regulation, including pituitary-adrenocortical function, cardiovascular tone, metabolic balance, fluid/electrolyte status, parturition and lactation. In all cases, a substantial component of this function is controlled by glutamate neurotransmission. In this study, the authors performed a high-resolution in situ hybridization analysis of ionotropic glutamate receptor subunit expression in the PVN and its immediate surround. N-methyl-D-aspartate (NMDA) receptor 1 (NMDAR1), NMDAR2A, and NMDAR2B mRNAs were expressed highly throughout the PVN and its perinuclear region as well as in the subparaventricular zone. NMDAR2C/2D expression was limited to subsets of neurons in magnocellular and hypophysiotrophic regions. In contrast with NMDA subunit localization, AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate)-preferring and kainate (KA)-preferring receptor subunit mRNAs were expressed heterogeneously in the PVN and surround. Glutamate receptor 1 (GluR1) mRNA labeling was most intense in preautonomic subregions, whereas GluR2, GluR4, GluR5, and KA2 were expressed in hypophysiotrophic cell groups. It is noteworthy that GluR5 mRNA expression was particularly robust in the dorsolateral region of the medial parvocellular PVN, suggesting localization in corticotropin-releasing hormone neurons. All four AMPA subunits and GluR6 and GluR7 mRNAs were expressed highly in the perinuclear PVN region and the subparaventricular zone. These data suggest the capacity for multifaceted regulation of PVN function by glutamate, with magnocellular neurons preferentially expressing NMDA subunits, preautonomic neurons preferentially expressing AMPA subunits, and hypophysiotrophic neurons preferentially expressing KA subunits. Localization of all species in the perinuclear PVN suggests that glutamate input to the immediate region of the PVN may modulate its function, perhaps by communication with local gamma-aminobutyric acid neurons.  相似文献   

9.
To determine the distributions of glutamate receptors throughout the macaque hypothalamus, we utilized highly specific antipeptide antibodies to visualize α-amino-3-hydroxy-5-methyl4-isoxazole propionate receptor subunits (GluRl, GluR2 and GluR3 {designated as GluR2/3}, and GluR4); kainate receptor subunits (GluR6 and GluR7, {Idesignated as GluR6/7}), and a metabotropic receptor (mGluRlα). The results indicate that these glutamate receptors are distributed differentially throughout the monkey hypothalamus. α-Amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors are the dominant non-N-methyl-D-aspartate glutamate receptors within the monkey hypothalamus, and the GluR2 subunit is most abundant. GluR1-immunoreactive neurons and neuropil are observed predominantly in the tuberal and mammillary nuclei. GluR2/3-immunoreactive neurons and neuropil have a broader distribution within preoptic, anterior, tuberal, and caudal regions. Separate (but partially overlapping) distributions of GluRl- and GluR2/3-immunoreactive neurons were found, suggesting that the GluR1, GluR2, and/or GluR3 subunits may be coexpressed in subsets of hypothalamic neurons. In contrast, GluR4 immunoreactivity was expressed minimally within monkey hypothalamus. GluR6/7 immunoreactivity was enriched selectively within the suprachiasmatic nucleus. mGluRlα immunoreactivity was present in the mammillary complex. The localization of non-N-methyl-D-aspartate glutamate receptor subunits to neurons throughout the macaque hypothalamus provides further evidence for the glutamatergic regulation of neuroendocrine, autonomic, and limbic circuits. Differential distributions of glutaniate receptor subunits may increase the dynamic range of the effects of presynaptic glutamate, allowing for the regulation of several distinct functions subserved by hypothalamic neurons. © 1995 Wiley-Liss, Inc.  相似文献   

10.
Glutamate is the major excitatory neurotransmitter in the CNS and its effects on neurons are dependent on the type and composition of glutamate receptors with which it interacts. In this study, the protein expression levels of several ionotropic glutamate receptor subunits (N-methyl-D-aspartate (NMDA) subunits NR1, NR2A, NR2B, and alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) receptor subunits GluR1, GluR2, GluR4) were quantified in particulate preparations from rat spinal cord at various ages after birth. We found that all six subunits showed high expression in the early postnatal period, followed by a subsequent decline as the rats matured to adults. The levels of two subunits (NR2A and GluR4) were found to initially increase during the first postnatal week prior to the decline to adult levels. The high levels of expression observed of these subunits in the early postnatal period may have implications for mechanisms of neural injury and cell death in the immature nervous system that involve cation influx through ionotropic glutamate receptors.  相似文献   

11.
At least 10 different types of bipolar cells have been distinguished in the primate retina. The axon terminals of these cells stratify in distinct strata in the inner plexiform layer and are involved in parallel pathways to distinct types of ganglion cells. Ionotropic glutamate receptor (GluR) subunits also show a stratified distribution in the inner plexiform layer. Here, we investigated whether different types of bipolar cells are associated with different types of ionotropic glutamate receptors in the inner retina of a New World primate, the common marmoset Callithrix jacchus. Vertical cryostat sections through central retina were double labeled with immunohistochemical markers for bipolar cell types and with antibodies to alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor subunits GluR1 to 4, kainate receptor subunits GluR6/7, and the NR1C2' subunit of the N-methyl-D-aspartate (NMDA) receptor. The axon terminals of bipolar cell types were reconstructed from confocal sections, and the colocalized immunoreactive puncta were quantified. For all bipolar cell types, immunoreactive puncta for the AMPA receptor subunits GluR2, 2/3, and 4 were colocalized at highest densities, whereas GluR1-immunoreactive puncta were expressed at very low densities. The kainate receptor subunits GluR6/7 were predominantly associated with diffuse bipolar (DB6) and rod bipolar cells. The NMDA receptor subunit NR1C2' was specifically colocalized with flat midget and DB3 axons. These findings suggest that rod and cone bipolar cell types contribute to multiple but distinct glutamate receptor pathways in primate retina.  相似文献   

12.
Glutamate mediates its effects in mammals through both ionotropic and metabotropic receptors. Antagonists of ionotropic N-methyl-d-aspartate (NMDA) glutamate receptors elicit neuroprotective and neurotropic effects that have been attributed to Ca2+ block through the membrane ion channel. Nonetheless, molecular and biochemical effects of NMDA receptor antagonism on other glutamate receptor subunits remain poorly understood. We investigated the effects of acute administration of the noncompetitive NMDA receptor antagonist MK-801 on the mRNA expression of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and metabotropic glutamate receptor (mGluR) subunits to determine the contribution of different glutamate receptors in response to blockade of NMDA receptor channels. In situ hybridization to rat brain sections revealed that AMPA receptor subunits GluR3 and GluR4, and mGluR3 were modestly but significantly decreased ∼10–20%, 8 h following 5 mg/kg MK-801 administration. A time course and dose response study revealed that the effect on mGluR3 was reversed by 24 h and occurred significantly at a dose range from 1 to 5 mg/kg. These results indicate that selected AMPA and mGluR subunit mRNAs respond at the RNA level to the blockade of NMDA receptors.  相似文献   

13.
14.
Systemic administration of kainic acid in C57BL/6 and FVB/N mice induces a comparable level of seizure induction yet results in differential susceptibility to seizure-induced cell death. While kainate administration causes severe hippocampal damage in mice of the FVB/N strain, C57BL/6 mice display no demonstrable cell loss or damage. At present, while the cellular mechanisms underlying strain-dependent differences in susceptibility remain unclear, some of this variation is assumed to have a genetic basis. As glutamate receptors are thought to participate in seizure induction and the subsequent neuronal degeneration that ensues, previous studies have proposed that variation in the precise subunit composition of glutamate receptors may result in differential susceptibility to excitotoxic cell death. Thus, we chose to examine the relationship between the cellular distribution and expression of glutamate receptor subunit proteins and cell loss within the hippocampus in mouse strains resistant and susceptible to kainate-induced excitotoxicity. Using semi-quantitative Western blot techniques and immunohistochemistry with the use of antibodies that recognize subunits of the KA (GluR5,6,7), AMPA (GluR1, GluR2, and GluR4), and NMDA (NMDAR1 and NMDAR2A/2B) receptors, we found no significant strain-dependent differences in the expression or distribution of these glutamate receptor subunits in the intact hippocampus. Following kainate administration, expression changes in ionotropic glutamate receptor subunits paralleled the development of susceptibility to cell death in the FVB/N strain only. Strain differences in hippocampal vulnerability to kainate-induced status epilepticus are not due to glutamate receptor protein expression.  相似文献   

15.
To elucidate the morphological changes in immunopositive cells of ionotropic glutamate receptors within intrastriatal 'developing' grafts of fetal ventral mesencephalon (VM) in 6-hydroxydopamine-lesioned rats, immunohistochemistry was performed to detect cells expressing N-methyl-D-aspartate (NMDA) receptor subunit 1 (NR1), the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor subunits (GluR1, GluR2/3, and GluR4), or tyrosine hydroxylase (TH) in the intrastriatal VM grafts at 1, 4, and 12 weeks following transplantation. One week after transplantation, TH-positive cells were detected without any immunoreactivity of the NMDA and AMPA receptor subunits in the grafts. Four weeks after transplantation, TH-positive cells, distributed homogeneously in the grafts, appeared to be multipolar and larger compared to those at 1 week post-grafting. At this stage, we could observe immunopositive cells of NMDA and AMPA receptors distributed homogeneously in the grafts. Twelve weeks after transplantation, the numbers of NR1- and GluR1-positive cells were smaller than that at 4 weeks post-grafting, whereas TH-positive cells appeared to be more matured in shape and size. On the other hand, the numbers of GluR2/3- and GluR4-positive cells were not changed as compared with those at 4 weeks post-grafting. These results suggest that the ionotropic glutamate receptors have differential roles during the developmental period of the intrastriatal VM grafts.  相似文献   

16.
Thyroid hormone is an essential modulator of brain development, but little is known about its actions in the adult brain. Hypothyroidism is associated with gene expression changes in both central and peripheral nervous tissue. Functional consequences of adult-onset hypothyroidism include an inability to produce long-term potentiation in rat hippocampus and impaired learning and memory in both rats and man. Long-term potentiation is a form of learning that is dependent on functional N-methyl-d-aspartic acid (NMDA)-preferring ionotropic glutamate receptors. This work examines the expression of ionotropic glutamate receptor subunit mRNA following surgical thyroidectomy with or without thyroid hormone replacement. In situ hybridization histochemistry was used to determine the mRNA levels of the NMDA receptor subunits NR1, NR2A, NR2B, the AMPA receptor subunit GluR1, and the kainate receptor subunit KA2. Reducing circulating concentrations of thyroid hormone by surgical removal of the thyroid gland 2 weeks before sacrifice decreased the expression of NR1 mRNA exclusively in the hippocampus. Conversely, hyperthyroidism selectively reduced NR2B mRNA expression in the dorsal hippocampus. Altering thyroid hormone status had no effect on the expression of KA2 or GluR1 subunit mRNA. The regulation of expression of NR1 and NR2B mRNA by thyroid hormone is a novel mechanism for explaining the relationship between thyroid hormone and cognitive function.  相似文献   

17.
N-Methyl-d-aspartate (NMDA)-type glutamate receptors in the hippocampus are important mediators of both memory formation and excitotoxicity. It is thought that glutamatergic neurons of the CA1, CA3 and dentate gyrus regions of the hippocampus contribute differentially to memory formation and are differentially sensitive to excitotoxicity. The subunit and/or splice variant composition of the NMDA receptor controls many aspects of receptor function such as ligand affinity, calcium permeability and channel kinetics, as well as interactions with intracellular anchoring and regulatory proteins. Thus, one possible explanation of the differences in NMDA receptor-dependent processes, such as synaptic plasticity and excitotoxicity, among the hippocampal sub-regions is that they differ in subunit and/or splice variant expression. Here we report that the NMDA receptor subunits NR1 and NR2B, along with the four splice variant cassettes of the NR1 subunit are differentially expressed in the CA1, CA3 and dentate gyrus of the hippocampus. Expression of the AMPA receptor subunits GluR1 and GluR2 also differ. These differences may contribute to functional differences, such as with excitotoxicity and synaptic plasticity, that exist between the sub-regions of the hippocampus.  相似文献   

18.
Among the 18 ionotropic glutamate receptor subunits identified in the mammalian central nervous system, five (delta1, delta2, GluR7, chi2 and NR3A, formerly called NMDAR-L or chi1) reportedly fail to form functional ion channels in heterologous expression systems. Four of these subunits, delta1, delta2, chi2 and NR3A, have not even been shown to bind glutamatergic ligands, relegating them to the status of 'orphan' receptors. We used a domain transplantation approach to investigate potential functional properties of the putative ion channel domains of four of these subunits. By exchanging ion pore domains between functional glutamate receptors (GluR1, GluR6 and NMDAR1) with known pore properties we first tested the feasibility of the domain swapping method. We demonstrate that ion channel domains can be transplanted between all three functional subfamilies of ionotropic glutamate receptors. Furthermore, exchange of ion pore domains allows identification of those channel properties determined exclusively by the ion pore. We then show that transplanting the pore domain of GluR7 into either GluR1 or GluR6 generates perfectly functional ligand-gated ion channels that allow characterization of electrophysiological and pharmacological properties of the GluR7 pore domain. In contrast, delta1, delta2 and NR3A do not produce functional receptors when their pore domains are transplanted into either the AMPA receptor, GluR1, the kainate receptor, GluR6, or the NMDA receptor, NMDAR1. We speculate that the orphan receptors delta1 and delta2, and the NMDA receptor-like subunit NR3A may serve some modulatory function, rather than contributing to the formation of ion channels.  相似文献   

19.
The involvement of neurotransmission in neuronal development is a generally accepted concept. Nevertheless, the precise regulation of neurotransmitter receptor expression is still unclear. To investigate the expression profiles of the most important ionotropic neurotransmitter receptors, namely GABAA receptors (GABAARs), NMDA receptors (NMDARs), and AMPA receptors (AMPARs), quantitative RT-PCR, immunoblot analysis and patch clamp studies were performed in in vitro-generated neural stem cells (NSCs). This clearly defined cell line is closely related to radial glia cells, the stem cells in the neonate brain.We found functional GABAARs of the subunit composition α2, β3, and γ1 to be expressed. Unexpectedly, functional ionotropic glutamate receptors were absent. However, NSCs expressed the NMDAR subunits NR2A and NR3A, and the AMPAR subunit GluR4 at the protein level, and GluR3 at the mRNA level.The overexpression of functional NMDARs in NSCs led to an increased mRNA level of AMPAR subunits, indicating a role in synaptogenesis. Early neuronal markers remained unchanged. These data extend our knowledge about ionotropic neurotransmitter receptor expression during neuronal development and will aid further investigations on activity-dependent neurogenesis.  相似文献   

20.
Tegmental cholinergic neurons vary their discharge patterns across the sleep-wake cycle, and glutamate is suggested to play an important role in determining these firing patterns. Cholinergic and noncholinergic neurons in the mesopontine tegmentum have different susceptibilities to various excitotoxins, presumably because of heterogeneity in the expression of glutamate receptor subtypes in this area. By using a double-labeling procedure that combines nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-diaphorase) histochemistry and avidin-biotin-peroxidase immunocytochemistry with diaminobenzidine as the chromogen, we compared the colocalization of AMPA receptor subunits GluR1, GluR2/3, and GluR4, kainate receptor subunits GluR5/6/7, and an NMDA receptor subunit NMDAR1 on NADPH-diaphorase-positive (cholinergic) neurons in the mesopontine tegmentum. Throughout the brainstem, neurons immunoreactive for GluR2/3 and NMDAR1 were most numerous, whereas neurons labeled for GluR1, GluR4, and GluR5/6/7 were less common. Specifically within the mesopontine tegmentum, the proportion of double-labeled neurons in the diaphorase-containing cell population was highest with GluR1 (43%) and lowest with GluR5/6/7 (12%). Regardless of the receptor subunit type, the greatest numbers of double-labeled neurons were observed in the pedunculopontine tegmental nucleus pars compacta and the fewest in the dorsal aspect of the laterodorsal tegmental nucleus. In addition, there were regional differences in the relative expression of receptor subunits and diaphorase-positive neurons across the subdivisions of the tegmental cholinergic column. Because each ionotropic subunit confers distinctive properties to a receptor channel, the present results suggest that mesopontine cholinergic neurons have nonuniform responses to glutamate and are also discriminable from basal forebrain cholinergic neurons in terms of glutamate receptor configuration. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号