共查询到20条相似文献,搜索用时 15 毫秒
1.
The structures that comprise the medial temporal lobe (MTL) have been implicated in learning and memory. The question of primary concern in the present research was whether the group of anatomically related structures (hippocampus, subiculum, presubiculum/parasubiculum, entorhinal cortex, perirhinal/postrhinal cortex) are involved in mediating a similar memory process or whether the individual structures are differentially involved in memory processes and/or in handling various types of information. A series of five experiments were carried out that involved selectively lesioning the main MTL structures and testing each animal on radial-maze tasks and procedures that provided measures of two different memory processes (reference memory, working memory) and the utilization of two kinds of information (spatial, nonspatial). The structures were found to differ functionally, with the hippocampus and the presubiculum/parasubiculum being especially involved in processing spatial information, and the perirhinal/postrhinal cortex having a specific role in remembering information over a brief time period (working memory). Lesions of the entorhinal cortex failed to affect consistently either memory process or type of information handled, but they did result in impairments in learning the complex spatial discrimination requiring reference memory and in working memory involving nonspatial information. The pattern of behavioral impairments resulting from damage to these discrete MTL structures suggests that several of the structures make unique contributions to learning and memory. 相似文献
2.
The medial temporal lobe (MTL) is known to play an essential role in recognition memory (the ability to judge the prior occurrence of a stimulus). Electrophysiological studies in nonhuman primates have suggested the presence of more than one type of recognition signal in the medial temporal lobe (e.g., novelty, familiarity, and recency). It has also been suggested that the perirhinal cortex plays an essential role in visual recognition memory. Here, we present fMRI results from 16 college-aged participants who underwent a continuous yes/no recognition task of novel and familiar pictures with multiple stimulus presentations. Our goal was to understand the dynamics of recognition in the MTL over multiple trials. We hypothesized that we could see changes in signal with repeated exposure that carry information related to novelty, familiarity, and recency. Whole brain activation maps demonstrated a strong novelty effect, marked by activity in several frontal and occipital regions that decreases with increasing number of presentations. The opposite pattern was observed in several other regions that include the supramarginal gyrus and inferior parietal lobule. In the MTL region, we observed monotonic decreases in activity across trials in the parahippocampal cortex as well as the anterior perirhinal cortex. We also observed monotonic increases in activity in the posterior perirhinal cortex with increasing memory strength. In addition, we observed clear effects of pre-experimental familiarity with the stimulus in several regions. Consistent with previously reported electrophysiological data, we found evidence for several medial temporal lobe signals carrying recency, familiarity, and novelty information. 相似文献
3.
We investigated the effects of damage to the medial temporal lobe (MTL) and anterolateral temporal cortex on semantic knowledge. We studied eight male controls, two patients with lesions limited to the hippocampal formation, three postencephalitic patients with extensive MTL lesions and variable damage to the lateral temporal cortex, and patient H.M. (whose lesion is limited mostly to the MTL, but who also has minimal damage to the anterolateral cortex). On 13 tests of semantic memory, patients with lesions limited to the hippocampal formation performed similarly to controls. Postencephalitic patients were mildly to moderately impaired on most tests. Patient H.M.'s performance was impaired on only a few tests and was less severely impaired overall than the three postencephalitic patients. A ranking of test scores showed a direct relationship between impairment and the extent of damage to lateral temporal cortex. These findings, and related findings from other studies, point to the importance of anterolateral temporal cortex for semantic knowledge. Patient H.M. performed uniquely in certain respects. For example, when providing definitions of objects, he made many grammatical errors. In contrast, the other patients with large MTL lesions made no more errors than those made by controls. Considering that H.M.'s lesion, both medially and laterally, is less extensive than the lesions in these other patients, it appears unlikely that his shortcomings in language production are related to his temporal lobe lesion. 相似文献
4.
Pihlajamäki M Tanila H Könönen M Hänninen T Hämäläinen A Soininen H Aronen HJ 《The European journal of neuroscience》2004,19(7):1939-1949
A number of studies in rodents and monkeys report a distinction between the contributions of the hippocampus and perirhinal cortex to memory, such that the hippocampus is crucial for spatial memory whereas the perirhinal cortex has a pivotal role in perception and memory for visual objects. To determine if there is such a distinction in humans, we conducted a functional magnetic resonance imaging study to compare the medial temporal lobe responses to changes in object identity and spatial configurations of objects. We found evidence for the predicted distinction between hippocampal and perirhinal cortical activations, although part of the hippocampus was also activated by identification of novel objects. Additionally, an anterior-posterior activation gradient emerged inside the hippocampus and parahippocampal cortex. The anterior hippocampus, perirhinal cortex and anterior parahippocampal cortex are involved in perception of contextually novel objects, whereas the posterior hippocampus and posterior parahippocampal cortex are involved in processing of novel arrangements of familiar objects. These results demonstrate that there is a functional dissociation between processing of novel object identities and new spatial locations of objects among the subregions of medial temporal lobe structures in humans also. 相似文献
5.
Sandhitsu R. Das John Pluta Lauren Mancuso Dasha Kliot Sylvia Orozco Bradford C. Dickerson Paul A. Yushkevich David A. Wolk 《Hippocampus》2013,23(1):1-6
Pathology at preclinical and prodromal stages of Alzheimer's disease (AD) may manifest itself as measurable functional change in neuronal networks earlier than detectable structural change. Functional connectivity as measured using resting‐state functional magnetic resonance imaging has emerged as a useful tool for studying disease effects on baseline states of neuronal networks. In this study, we use high resolution MRI to label subregions within the medial temporal lobe (MTL), a site of early pathology in AD, and report an increase in functional connectivity in amnestic mild cognitive impairment between entorhinal cortex and subregions of the MTL, with the strongest effect in the anterior hippocampus. However, our data also replicated the effects of decreased connectivity of the MTL to other nodes of the default mode network reported by other researchers. This dissociation of changes in functional connectivity within the MTL versus the MTL's connection with other neocortical structures can help enrich the characterization of early stages of disease progression in AD. © 2012 Wiley Periodicals, Inc. 相似文献
6.
Regional distribution of cholecystokinin receptors in macaque medial temporal lobe determined by in vitro receptor autoradiography 总被引:1,自引:0,他引:1
Cholecystokinin (CCK) binding sites were localized in the hippocampus, amygdala, and medial temporal cortices of macaque monkeys by using techniques of in vitro receptor autoradiography. Binding sites were labeled with 3H-CCK-8 and 125I-CCK-33, and nonspecific binding was assessed in the presence of 1 microM CCK-8. Comparison of autoradiograms with Nissl-stained sections allowed precise correlation of autoradiographic grain distribution with cytoarchitecture. CCK binding in the amygdala varied among nuclear subdivisions. It was dense in the lateral, basomedial, endopiriform, and cortical nuclei, in the parvicellular portion of the accessory basal nucleus, the periamygdaloid cortex, the cortical transition area, and in the amygdalohippocampal area. Labeling was sparse in the central, medial, and basolateral nuclei as well as in the magnocellular accessory basal nucleus. In the hippocampal formation, a single dense band of CCK binding was observed over the granule cell layer and adjacent few millimeters of the molecular layer of the dentate gyrus, while in the polymorph and remaining portions of this layer binding was of very low density. Prominent label over the pyramidal layer in the presubiculum clearly distinguished this region from the adjacent subiculum in which binding just exceeded background levels. Moderate to light label was observed in the hilus and stratum pyramidale of CA3, CA2, and CA1, while other hippocampal layers showed minimal specific binding. Variation in CCK binding in the medial temporal cortex showed close correspondence to cytoarchitectonic subdivisions. In entorhinal cortex, for example, binding was concentrated in layers III-VI while label in area 35 was prominent in all laminae except layer IV. Area TH of von Bonin and Bailey ('47) was distinguished from other regions by evenly distributed binding across all layers, while in area TF a bilaminar pattern of label in layers II and IV was observed. The highly specific patterns of CCK binding in amygdala and transitional cortices of the medial temporal lobe can be related to terminal fields of neo- and allocortical afferents to these regions, while label in the hippocampal formation coincides with the terminals of intrinsic neurons which ramify among the somata of cells that are targets of neocortical afferents. Thus, in all structures of the medial temporal lobe the disposition of peptidergic binding sites suggests that CCKergic systems may be important in the modulation of cortical afferents. 相似文献
7.
This single case analysis of memory performance in a patient with an ischemic lesion affecting posterior but not anterior right medial temporal lobe (MTL) indicates that source memory can be disrupted in a domain-specific manner. The patient showed normal recognition memory for gray-scale photos of objects (visual condition) and spoken words (auditory condition). While memory for visual source (texture/color of the background against which pictures appeared) was within the normal range, auditory source memory (male/female speaker voice) was at chance level, a performance pattern significantly different from the control group. This dissociation is consistent with recent fMRI evidence of anterior/posterior MTL dissociations depending upon the nature of source information (visual texture/color vs. auditory speaker voice). The findings are in good agreement with the view of dissociable memory processing by the perirhinal cortex (anterior MTL) and parahippocampal cortex (posterior MTL), depending upon the neocortical input that these regions receive. 相似文献
8.
Memory for context information (source memory) has been reported to rely on structures in the medial temporal lobe (MTL). Perirhinal cortex (anterior MTL) and parahippocampal cortex (posterior MTL) have distinct connectivity patterns with sensory neocortex, suggesting a possible modality-dependent organization of memory processes. The present study investigated the neural substrates of two different types of source information of newly encoded material using functional magnetic resonance imaging: auditory (speaker voice) and visual (texture and colour). Source judgements during retrieval were reliably above chance level for both modalities and performance did not differ between the auditory and visual condition. During encoding, activity predictive of subsequent source recollection was observed in the anterior hippocampus/parahippocampal gyrus, irrespective of source modality. During retrieval, on the other hand, a regional dissociation emerged: bilateral parahippocampal cortex discriminated between correct and incorrect auditory but not visual source judgements, whereas left perirhinal/entorhinal cortex showed the reverse pattern. These findings are consistent with recent lesion evidence of disrupted auditory but intact visual source memory following damage to the parahippocampal cortex. Results are discussed with respect to anatomical models of corticoparahippocampal connectivity and the functional organization of the MTL. 相似文献
9.
The medial temporal lobe cortex (MTLC) occupies a pivotal position at the interface between neocortical association areas and the hippocampus. It has been suggested that the MTLC contains functionally distinct regions, with perirhinal cortex (PRc) preferentially supporting object processing and posterior parahippocampal cortex (PHc) preferentially supporting encoding of spatial information. Measuring differential BOLD responsiveness to objects, scenes, and other stimulus categories, we find a double dissociation between an anterior PRc response to objects and a posterior PHc response to scene stimuli. Furthermore, an anatomical ROI based approach was undertaken in an effort to understand the response profile underlying this double dissociation. We did not see any evidence for a sharp border between putatively distinct scene-preferential and object-preferential MTLC regions. Instead, scene-preferential responsiveness was noted to drop off in a graded, linear fashion in successively anterior MTLC regions until object-preferential responsiveness emerged in anterior PRc, although objects produced above baseline responses across the anterior-posterior extent of the parahippocampal gyrus. Other stimulus categories, such as faces and words, led to above baseline activation in either a few confined regions (faces) or none at all (words). Thus, what differentiated regions along the parahippocampal gryus was the relative response to objects and scenes, not simply above baseline responses to either category. This pattern raises the possibility that posterior PHc, and anterior PRc are situated at the ends of a single organizational continuum supported by the entire length of MTLC. 相似文献
10.
Studies of memory-impaired patients will be most useful when quantitative neuroanatomical information is available about the patients being studied. Toward that end, in the case of medial temporal lobe amnesia, protocols have been developed from histological material that identify the boundaries of relevant structures on magnetic resonance images. Because the size of these structures varies considerably in the normal population, some correction for overall brain size is usually employed when calculating volume measurements. Although different correction procedures have been used to normalize for brain size, there has been little study of how well different methods reduce variability and which methods might be most useful. We measured the volume of the hippocampal region (hippocampus proper, dentate gyrus, and subicular complex) and the volumes of the temporopolar, entorhinal, perirhinal, and parahippocampal cortices in five memory-impaired patients and 30 controls. We then compared three different methods for normalizing the volume measurements: normalization by intracranial volume, normalization by aligning the brain to a standard atlas, and normalization by brain area at the level of the anterior commissure. Normalization by intracranial volume reduced variability in the volume measurements of nearly all brain regions to a greater extent than did normalization by other methods. When normalized by intracranial volume, the patients exhibited a mean reduction in hippocampal volume of about 40% and negligible reductions in the volumes of other medial temporal lobe structures. On the basis of earlier histological analysis of two other patients (L.M. and W.H.), who also had reductions in hippocampal size of about 40%, we suggest that a volume reduction in this range likely indicates a nearly complete loss of hippocampal neurons. 相似文献
11.
To minimize the variability in the extent of lesions made by injections of the excitotoxin ibotenic acid in rhesus monkeys, we developed and validated an MRI-based method to determine the efficacy of the injections soon after surgery. T2-weighted MR images were obtained 6-11 days after surgery from 17 brain hemispheres of monkeys that had received bilateral lesions of either the hippocampal formation (HF), perirhinal cortex, or parahippocampal cortex. The extent of lesion estimated from the hypersignal that appeared in and outside of the targeted area on these MR images was compared with the extent of damage assessed histologically after survival periods ranging from 120-370 days. Highly significant correlations (r values between 0.85-0.99) were found between these two measures for several regions in the medial temporal lobe. Based on this finding, lack of hypersignal in the targeted area of some Ss was followed by successful reinjection of the neurotoxin to create more complete cell loss prior to the postoperative phase of the study. We also assessed the relationship between a postoperative reduction in HF volume, measured from T1-weighted MR images, and the extent of damage determined histologically in 14 hemispheres of monkeys with bilateral excitotoxic HF lesions. The HF volume decreases sharply after surgery until 40-50 days postoperatively, after which there is only a minor further decrease. Based on this finding, we obtained T1-weighted MR images at least 44 days but in most cases close to 1 year after surgery. A highly significant positive correlation (r = 0.95, P < 0.001) was found between neuronal damage and volume reduction, with nearly complete neuronal damage (96-99%) corresponding to a volume reduction of 68-79%. These MRI-based methods thus provide an accurate in vivo evaluation of the locus and extent of neurotoxic lesions. Application of these methods can ensure that each animal in the experiment is used effectively. 相似文献
12.
Multivariate pattern analysis of the human medial temporal lobe revealed representationally categorical cortex and representationally agnostic hippocampus 下载免费PDF全文
Contemporary theories of the medial temporal lobe (MTL) suggest that there are functional differences between the MTL cortex and the hippocampus. High‐resolution functional magnetic resonance imaging and multivariate pattern analysis were utilized to study whether MTL subregions could classify categories of images, with the hypothesis that the hippocampus would be less representationally categorical than the MTL cortex. Results revealed significant classification accuracy for faces versus objects and faces versus scenes in MTL cortical regions—parahippocampal cortex (PHC) and perirhinal cortex (PRC)—with little evidence for category discrimination in the hippocampus. MTL cortical regions showed significantly greater classification accuracy than the hippocampus. The hippocampus showed significant classification accuracy for images compared to a nonmnemonic baseline task, suggesting that it responded to the images. Classification accuracy in a region of interest encompassing retrosplenial cortex (RSC) and the posterior cingulate cortex (PCC) posterior to RSC, showed a similar pattern of results to PHC, supporting the hypothesis that these regions are functionally related. The results suggest that PHC, PRC, and RSC/PCC are representationally categorical and the hippocampus is more representationally agnostic, which is concordant with the hypothesis of the role of the hippocampus in pattern separation. © 2014 Wiley Periodicals, Inc. 相似文献
13.
Lee AC Buckley MJ Pegman SJ Spiers H Scahill VL Gaffan D Bussey TJ Davies RR Kapur N Hodges JR Graham KS 《Hippocampus》2005,15(6):782-797
There has been considerable debate as to whether the hippocampus and perirhinal cortex may subserve both memory and perception. We administered a series of oddity tasks, in which subjects selected the odd stimulus from a visual array, to amnesic patients with either selective hippocampal damage (HC group) or more extensive medial temporal damage, including the perirhinal cortex (MTL group). All patients performed normally when the stimuli could be discriminated using simple visual features, even if faces or complex virtual reality scenes were presented. Both patient groups were, however, severely impaired at scene discrimination when a significant demand was placed on processing spatial information across viewpoint independent representations, while only the MTL group showed a significant deficit in oddity judgments of faces and objects when object viewpoint independent perception was emphasized. These observations provide compelling evidence that the human hippocampus and perirhinal cortex are critical to processes beyond long-term declarative memory and may subserve spatial and object perception, respectively. 相似文献
14.
Debate continues regarding the role of medial temporal lobe regions in object and scene processing. Considerable evidence indicates that the perirhinal cortex (PRC) plays an important role in the perception of objects—namely, in disambiguating complex objects that share conjunctions of features. These findings support a content‐specific view of medial temporal lobe functioning in which PRC is critically important for processing complex objects, while the parahippocampal cortex (PHC) and hippocampus (HC) may be selectively engaged during scene processing. However, emerging evidence from both animal and human studies suggest that the PRC is sensitive to spatial configural information as well as object information. In this fMRI study, we observed preliminary evidence for BOLD activation in the PRC during a complex visual discrimination task for objects and scenes, as well as robust activation for both stimulus types in PHC and HC. The results are discussed in light of a recent process‐based model of medial temporal lobe functioning. 相似文献
15.
Repetition suppression in the medial temporal lobe and midbrain is altered by event overlap 下载免费PDF全文
Repeated encounters with the same event typically lead to decreased activation in the medial temporal lobe (MTL) and dopaminergic midbrain, a phenomenon known as repetition suppression. In contrast, encountering an event that overlaps with prior experience leads to increased response in the same regions. Such increased responding is thought to reflect an associative novelty signal that promotes memory updating to resolve differences between current events and stored memories. Here, we married these ideas to test whether event overlap significantly modulates MTL and midbrain responses—even when events are repeated and expected—to promote memory updating through integration. While undergoing high‐resolution functional MRI, participants were repeatedly presented with objects pairs, some of which overlapped with other, intervening pairs and some of which contained elements unique from other pairs. MTL and midbrain regions showed widespread repetition suppression for nonoverlapping pairs containing unique elements; however, the degree of repetition suppression was altered for overlapping pairs. Entorhinal cortex, perirhinal cortex (PRc), midbrain, and PRc—midbrain connectivity showed repetition‐related increases across overlapping pairs. Notably, increased PRc activation for overlapping pairs tracked individual differences in the ability to reason about the relationships among pairs—our behavioral measure of memory integration. Within the hippocampus, activation increases across overlapping pairs were unique to CA1, consistent with its hypothesized comparator function. These findings demonstrate that event overlap engages MTL and midbrain functions traditionally implicated in novelty processing, even when overlapping events themselves are repeated. Our findings further suggest that the MTL—midbrain response to event overlap may promote integration of new content into existing memories, leading to the formation of relational memory networks that span experiences. Moreover, the results inform theories about the division of labor within MTL, demonstrating that the role of PRc in episodic encoding extends beyond familiarity processing and item‐level recognition. © 2016 Wiley Periodicals, Inc. 相似文献
16.
GABABR1 receptor protein expression in human mesial temporal cortex: changes in temporal lobe epilepsy 总被引:1,自引:0,他引:1
Immunocytochemistry was used to examine gamma-aminobutyric acid beta (GABA)(B)R1a-b protein expression in the human hippocampal formation (including dentate gyrus, hippocampus proper, subicular complex, and entorhinal cortex) and perirhinal cortex. Overall, GABA(B)R1a-b immunostaining was intense and widespread but showed differential areal and laminar distributions of labeled cells. GABA(B)R1a-b-immunoreactive (-ir) neurons were found in the three main layers of the dentate gyrus, the most intense labeling being present in the polymorphic layer, whereas the granule cells were moderately immunoreactive. Except for slight variations, similar distribution patterns of GABA(B)R1a-b immunostaining were found along the different subfields of the Ammon's horn (CA1-CA4). The highest density of GABA(B)R1a-b-ir neurons was localized in the stratum pyramidale, where virtually every pyramidal cell was intensely immunoreactive, including the proximal part of the apical dendrites. Within the subicular complex, a more intense GABA(B)R1a-b immunostaining was found in the subiculum than in the presubiculum or parasubiculum, especially in the pyramidal and polymorphic cell layers. In the entorhinal cortex, distribution of GABA(B)R1a-b immunoreactivity was localized mainly in both pyramidal and nonpyramidal cells of layers II, III, and VI and in the superficial part of layer V, with layers I, IV, and deep layer V being less intensely stained. In the perirhinal cortex, the most intense GABA(B)R1a-b immunoreactivity was located in the deep part of layer III and in layer V and was mainly confined to medium-sized and large pyramidal cells. Thus, the differential expression, but widespread distribution, of GABA(B)R1a-b protein found in the present study suggests the involvement of GABA(B) receptors in many circuits of the human hippocampal formation and adjacent cortical structures. Interestingly, the hippocampal formation of epileptic patients (n = 8) with hippocampal sclerosis showed similar intensity of GABA(B)R1a-b immunostaining in the surviving neurons located within or adjacent to those regions presenting neuronal loss than in the controls. However, surviving neurons in the granule cell layer of the dentate gyrus displayed a significant reduction in immunostaining in 7 of 8 patients. Therefore, alterations in inhibitory synaptic transmission through GABA(B) receptors appears to affect differentially certain hippocampal circuits in a population of epileptic patients. This reduction in GABA(B)R1a-b expression could contribute to the pathophysiology of temporal lobe epilepsy. 相似文献
17.
Although the hippocampal formation is essential for verbal memory, it is not fully understood how it contributes to language comprehension. We recorded event-related potentials (ERPs) directly from two substructures of the medial temporal lobe (MTL), the rhinal cortex and the hippocampus proper, while epilepsy patients listened to sentences that either were correct or contained semantic or syntactic violations. Semantic violations elicited a large negative ERP response peaking at approximately 400 ms in the rhinal cortex. In contrast, syntactically incorrect sentences elicited a negative deflection of 500-800 ms in the hippocampus proper. The results suggest that functionally distinct aspects of integration in language comprehension are supported by different MTL structures: the rhinal cortex is involved in semantic integration, whereas the hippocampus proper subserves processes of syntactic integration. An analysis of phase synchronization within the gamma band between rhinal and hippocampal recording sites showed that both of the above-mentioned ERP components were preceded by an increase of phase synchronization. In contrast to these short phasic increases of phase synchronization in both violation conditions, correct sentences were associated with a long-lasting synchronization in a late time window, possibly reflecting the integration of semantic and syntactic information as required for normal comprehension. 相似文献
18.
Medial temporal lobe (MTL) structures often respond to stimulus repetition with a reduction in neural activity. Such novelty/familiarity responses reflect the mnemonic consequences of initial stimulus encounter, although the aspects of initial processing that lead to novelty/familiarity responses remain unspecified. The current functional magnetic resonance imaging (fMRI) experiment examined the sensitivity of MTL to changes in the semantic representations/processes engaged across stimulus repetitions. During initial study blocks, words were visually presented, and participants made size, shape, or composition judgments about the named referents. During repeated study blocks, the initial words were visually re-presented along with novel words, and participants made size judgments for all items. Behaviorally, responses were faster to repeated words in which the same task was performed at initial and repeated exposure (i.e., size-->size) relative to repeated words in which the tasks differed (i.e., composition-->size and shape-->size). fMRI measures revealed activation reductions in left parahippocampal cortex following same-task and different-task repetition; numerically, the effect was larger in the same-task condition. Accordingly, left parahippocampal cortex demonstrates sensitivity to perceptual novelty/familiarity, and it remains unclear whether this region also is sensitive to novelty/familiarity in the conceptual domain. In left perirhinal cortex, a novelty/familiarity effect was observed in the same-task condition but not in the different-task condition, thus revealing sensitivity to the degree of semantic overlap across exposures but insensitivity to perceptual repetition of the visual word form. Perirhinal sensitivity to semantic repetition and insensitivity to perceptual repetition suggests that human perirhinal cortex receives conceptual inputs, with perirhinal contributions to declarative memory perhaps partially stemming from its role in processing semantic aspects of experiences. 相似文献
19.
Animacy and real‐world size shape object representations in the human medial temporal lobes 下载免费PDF全文
《Human brain mapping》2018,39(9):3779-3792
Identifying what an object is, and whether an object has been encountered before, is a crucial aspect of human behavior. Despite this importance, we do not yet have a complete understanding of the neural basis of these abilities. Investigations into the neural organization of human object representations have revealed category specific organization in the ventral visual stream in perceptual tasks. Interestingly, these categories fall within broader domains of organization, with reported distinctions between animate, inanimate large, and inanimate small objects. While there is some evidence for category specific effects in the medial temporal lobe (MTL), in particular in perirhinal and parahippocampal cortex, it is currently unclear whether domain level organization is also present across these structures. To this end, we used fMRI with a continuous recognition memory task. Stimuli were images of objects from several different categories, which were either animate or inanimate, or large or small within the inanimate domain. We employed representational similarity analysis (RSA) to test the hypothesis that object‐evoked responses in MTL structures during recognition‐memory judgments also show evidence for domain‐level organization along both dimensions. Our data support this hypothesis. Specifically, object representations were shaped by either animacy, real‐world size, or both, in perirhinal and parahippocampal cortex, and the hippocampus. While sensitivity to these dimensions differed across structures when probed individually, hinting at interesting links to functional differentiation, similarities in organization across MTL structures were more prominent overall. These results argue for continuity in the organization of object representations in the ventral visual stream and the MTL. 相似文献
20.
Alterations in the basal forebrain cholinergic system have been widely studied in brain aging and Alzheimer's disease, but the magnitude of decline and relationship to cognitive impairment are still a matter of debate. The rhesus monkey (Macaca mulatta) provides a compelling model to study age-related memory decline, as the pattern of impairment closely parallels that observed in humans. Here, we used antibodies against the vesicular acetylcholine transporter and a new stereological technique to estimate total cholinergic fiber length in hippocampal subregions of behaviorally characterized young and aged rhesus monkeys. The analysis revealed an age-related decline in the length of cholinergic fibers of 22%, which was similar across the hippocampal subregions studied (dentate gyrus granule cell and molecular layers, CA2/3-hilus, and CA1), and across the rostral-caudal extent of the hippocampus. This effect, however, was unrelated to performance on the delayed nonmatching-to-sample task, a test of recognition memory sensitive to hippocampal system dysfunction and cognitive aging in monkeys. These findings indicate that a decline in cholinergic input fails to account for the influence of normal aging on memory supported by the primate hippocampal region. 相似文献