共查询到20条相似文献,搜索用时 15 毫秒
1.
In larval frogs the retina and tectum grow in topologically dissimilar patterns: new cells are added as peripheral annuli in the retina and as caudal crescents in the tectum. Retinotopy is maintained by the continual caudalward shifting of the terminals of the optic axons. After metamorphosis the pattern of growth changes. The retina continues to add new ganglion cells peripherally, but there is no neurogenesis in the tectum. To maintain retinotopy in postmetamorphic frogs, the terminals of the optic axons must continually shift toward the central tectum. We tested the proposal of centripetally shifting axons by making punctate injections of horseradish peroxidase (HRP) in the tectum of adult Rana pipiens and observing the patterns of filled cells in the contralateral retina, as was done in the goldfish (Easter and Stuermer, '84). Punctate applications of HRP in the tectum should be taken up: 1) by fascicles, and label a partial anulus of cells, 2) by terminals, and label a cluster of cells in the corresponding retinotopic site, and 3) by the extrafascicular axonal segments, and label a band of cells connecting the partial annulus to the cluster. If the terminals have shifted centripetally, the band of cells labeled through their extrafascicular segments should have a spoke-like orientation, with the center of the retina as the hub. As the tectal site moves from rostral to caudal, this band of cells should move, pendulum-like, from temporal to nasal retina. In general, the patterns of HRP-filled retinal cells we observed were consistent with our predictions. In addition, HRP taken up by the oldest (rostral) tectal axons produced more complex patterns of filled cells that indicated that these axons had shifted both caudally before metamorphosis and centripetally after. 相似文献
2.
The projection of the nucleus isthmi to the ipsilateral optic tectum was examined in normal goldfish. This was compared to the projection in animals in which the entire visual field had been induced to compress onto a rostral half tectum by caudal tectal ablation. The isthmo-tectal projection was examined by making localized injections of horseradish peroxidase into the optic tecta and observing the patterns of labeled cells within the nucleus isthmi. The teleost nucleus isthmi consists of a cell sparse medulla covered by a cellular cortex, which is thick on the rostral, medial, and dorsal surfaces of the nucleus. Almost all isthmic cells projecting to the tectum were located in the area of thick cortex. In normal fish, rostral tectal injections labeled cells in the rostroventral portion of the thick cortex; injections midway in the rostrocaudal tectal axis labeled more caudodorsally located cells, and caudal tectal injections labeled cells a little further caudally in extreme dorsal cortex. The rostroventral to caudodorsal isthmic axis was therefore seen to project rostrocaudally along the tectum. This topography contrasts somewhat with the situation seen in amphibia where the rostrocaudal tectal axis receives projections from the rostrocaudal isthmic axis. In fish with half-tectal ablations, injections near the caudal edge of the half tectum (at a site that had originally been midtectal) labeled cells that had previously projected to caudal tectum. Rostral tectal injections in fish with compression of the visual field gave a normal pattern of labeled isthmic cells. The results indicate that a topographically ordered isthmo-tectal projection exists in goldfish that may be induced to compress onto a half tectum. 相似文献
3.
Topographic projections between the nucleus isthmi and the tectum of the frog Rana pipiens. 总被引:1,自引:0,他引:1
The connections between the nucleus isthmi and the tectum in the frog have been determined by several anatomical techniques: iontophoresis of horseradish peroxidase into the tectum, iontophoresis of 3H-porline into the nucleus isthmi and the tectum, and Fink-Heimer degeneration staining after lesions of the nucleus isthmi. The results show that the nucleus isthmi projects bilaterally to the tectal lobes. The ipsilateral isthmio-tectal fibers are distributed in the superficial layers of the tectum, coincident with the retionotectal terminals. The contralateral isthmio-tectal fibers travel anteriorly adjacent to the lateral optic tract and cross the midline in the supraoptic ventral decussation, where they turn dorsally and caudally; upon reaching the tectum, the fibers end in two discrete layers, layers 8 and A of Potter. The tectum projects to the ipsilateral nucleus isthmi and there is a reciprocal topographic relationship between the two structures. Thus, a retino-tecto-isthmio-tectal route exists which may contribute to the indirect ipsilateral retinotectal projection which is observed electrophysiologically. The connections between the nucleus isthmi and the tectum in the frog are strinkingly similar to the connections between the parabigeminal nucleus and the superior colliculus of mammals. 相似文献
4.
The morphology of single retinal terminals in the optic tectum of the eastern garter snake was demonstrated by orthograde filling from extracellular injections of horseradish peroxidase (HRP) into the optic tract. HRP-filled terminals share a characteristic shape and structure. Their parent axons course caudally in the stratum opticum within fascicles of 200-300 fibers of varying diameters. Single axons exit a fascicle and course into either the stratum fibrosum et griseum superficiale, ventrally, or the stratum zonale, dorsally, where they bifurcate successively two or three times into preterminal branches. Each preterminal branch gives rise to many thin, terminal branchlets laden with boutons. The arbors are ellipsoidal with their long axes oriented mediolaterally and their short axes oriented rostrocaudally. Arbors vary in their overall size (from 45 to 150 micron), in the diameters of their parent axons (from less than 0.5 to 3.0 micron), and in the size of their terminal boutons (from 0.5 to 3.5 micron). Bouton size increased with increasing diameter of the parent axon. The great majority of arbors are confined to one of three retinorecipient sublayers in the superficial tectum. However, the full range of arbor sizes and axon diameters is present in each sublayer. 相似文献
5.
S J Zottoli K J Rhodes J G Corrodi E J Mufson 《The Journal of comparative neurology》1988,273(3):385-398
The nucleus isthmi of fish and amphibians has reciprocal connections with the optic tectum, and biochemical studies suggested that it may provide a major cholinergic input to the tectum. In goldfish, we have combined immunohistochemical staining for choline acetyltransferase with retrograde labeling of nucleus isthmi neurons after tectal injections of horseradish peroxidase. Seven fish received tectal horseradish peroxidase injections, and brain tissue from these animals was subsequently processed for the simultaneous visualization of horseradish peroxidase and choline acetyltransferase. In many nucleus isthmi neurons the dense horseradish peroxidase label obscured the choline acetyltransferase reaction product but horseradish peroxidase and choline acetyltransferase were colocalized in 54 cells from nine nuclei isthmi. The somata of nucleus reticularis mesencephali neurons stained so intensely for choline acetyltransferase that we could not determine whether they were labelled also with horseradish peroxidase. However, the large choline acetyltransferase-immunoreactive axons of nucleus reticularis mesencephali neurons stained intensely enough for us to follow them rostrally; the axons are clustered together until the level of the rostral tectum where two groupings form: one travels into the tectum and the other travels rostroventrally to cross the midline and enter the contralateral diencephalic preoptic area. We conclude therefore that cholinergic neurons project to the optic tectum from the nucleus isthmi as well as nucleus reticularis mesencephali in goldfish. 相似文献
6.
In order to trace individual axons in the tectum, a curved structure, we have modified the HRP method of Adams for use on unsectioned, flattened tecta. Filled axons appear dark and uniformly filled and can be followed without the necessity for reconstructions from serial sections. 相似文献
7.
Reconstruction of serial sections through the nucleus isthmi in the frog Rana pipiens shows that the cortex of the nucleus consists of a sheet of cells which is folded back on itself to form two more or less parallel faces. Cyto-architectural features allow three regions to be distinguished: a 7“rim region,” which previous work had suggested may be involved in the physiological pathway from one eye to the ipsilateral tectal lobe, and two additional regions which are here termed the anterior and posterior “nonrim cortex,” re-spectively. The cytoarchitectural features which distinguish the rim region from the other two regions are largely absent in the tadpole. Analysis of retrograde transport of horseradish peroxidase (HRP) following widespread injections into one tectal lobe indicates that the anterior nonrim cortex projects ipsilaterally while the rim cortex and posterior nonrim cortex both project contralaterally. The differing projections of the three regions are paralleled by the pattern of retrograde degeneration observed after unilateral tectal lesions. We have studied the topographic organization of the connections between the nucleus isthmi and the two tectal lobes by making small injections of HRP at tectal loci with known visual field input. Patterns of retrograde cellular labelling show that the anterior nonrim cortex projects topographically to the entirety of the tectal lobe on the same side of the brain. The rim region projects topographically to the binocularly activated part of the opposite tectal lobe; the posterior nonrim cortex projects to the monocularly activated part. There is a discontinuity in the mapping from the nucleus to the opposite tectal lobe which corresponds to the border between binocular and monocular tectum. Patterns of anterograde labelling indicate that the afferent projection from the ipsilateral tectal lobe is topographic and organized so that afferents from a given tectal locus contact cells in the rostral part of the nucleus which project back to that locus. Afferents from tectal re-gions representing binocular visual field in addition continue across the nucleus to terminate within the rim region. The organization of the afferent and efferent projections of this region is such as to link tectal loci which relate to the same direction in visual space. Our findings provide new evidence that the nucleus isthmi is involved in the pathway from one eye to the ipsilateral tectal lobe. They also show how the nucleus is organized to distribute information from a given locus in one tectal lobe to cells which project to the visually corresponding but in general anatomically different pairs of loci in the two tectal lobes. Finally, our findings confirm the existence of a projection from the nucleus isthmi to the opposite monocular tectum and suggest that this may be part of an intertectal circuit linking anatomically corresponding rather than visually corresponding pairs of tectal loci. 相似文献
8.
An immunohistochemical method for choline acetyltransferase (ChAT) identifies presumably cholinergic axons in two retino-receptive laminae in the optic tectum of the frog Rana pipiens. Following eye enucleation there is no loss of immunoreactive axons in the optic tectum. Following unilateral ablation of the nucleus isthmi there is a near-total loss of ChAT-positive axons in the superficial cholinergic lamina contralaterally and in the deeper cholinergic lamina ipsilaterally. Thus, the cholinergic innervation of the tectum appears to derive from the nucleus isthmi. However, ChAT-positive staining of the basal optic nucleus does depend upon an intact retinal input and could derive from either retinal axons or some system trophically dependent on them. 相似文献
9.
Synaptic connections between spinal motoneurons and dorsal root ganglion cells in the cat 总被引:2,自引:0,他引:2
Light- and electron-microscopical horseradish peroxidase (HRP) studies have been employed in conjunction with a degeneration study in order to clarify the origin and axonal passage of afferent synaptic terminals in cat dorsal root ganglia. After injection of HRP into ganglia (C3) without involvement of the ventral roots and spinal nerves, a few ipsilateral spinal ventral horn neurons (C3) were retrogradely labeled with HRP. The labeled neurons were localized in the dorsomedial and the ventromedial nuclei. Following ventral rhizotomy of C3, the afferent terminals in the ganglia (C3) anterogradely degenerated and contained accumulated and disintegrated neurofilaments, depleted, aggregated and enlarged synaptic vesicles. Subsequent to an HRP and wheat germ agglutinin (WGA)-HRP-mixture injection into the dorsal neck or suboccipital muscles, many spinal motoneurons (C3) were labeled retrogradely with an HRP mixture. On the other hand, the afferent synaptic terminals in ganglia contained the membrane-bound and electron-dense bodies which were anterogradely labeled with an HRP mixture in addition to the normal synaptic elements. The present findings strongly suggest that some spinal motoneurons send their axon collaterals to the dorsal root ganglia, in which the terminals of the axon collaterals directly synapse with the dorsal root ganglion cells. 相似文献
10.
Neurogenesis in the optic tectum of larval Rana pipiens following unilateral enucleation 总被引:1,自引:0,他引:1
V B Eichler 《The Journal of comparative neurology》1971,141(3):375-395
DNA synthesis and interlayer migrations of cells in the optic tectum of larval Rana pipiens were investigated, using several series of larvae which had been subjected to unilateral enucleation at stage 25, the last embryonic stage. It has been found that DNA synthesis occurs in all cellular layers of the tectum with least activity in peripheral layers. The location of the most active DNA synthesis during the larval period is the same as the location of cell division in the larval tectum, namely, in the layers bordering the ventricle of the optic lobe Unilateral enucleation of stage 25 embryos results in a decrease in DNA synthesis in all cellular layers of the optic tectum contralateral to the operation when compared to the corresponding layers in the ipsilateral tectum. The differences in rate of incorporation of 3H-thymidine between the control and affected lobes become greater during development. Fewer cells are found in each layer of the affected larval tectum than in the corresponding layer of the control tectum. The decrease is greatest in more peripheral layers, whose cells are more intimately associated with the visual circuit than are cells of the deeper layers. Peripheral to layers 1 and 2, the percentages of labeled cells found in each layer are very similar on the two sides, suggesting common factors which control migration. Differences in cell number, therefore, reflect differential cell production rather than differential cell migrations. The distribution of label resulting from 3H-thymidine incorporation at stage III indicates that the distribution of mitotic activity is not uniform in the cephalocaudal axis of the tectum. Greater cell proliferation occurs in the posterior portion of the tectum than in the anterior region throughout larval development. The peripheral control of mitotic divisions in the frog optic tectum remains unknown. The data in the present study, however, support the hypothesis that influences from afferent fibers of the optic tract modify the rates or timing of DNA synthesis in the optic tectum. The data support the notion that the deepest tectal cells respond earliest to the stimulus and these may be ependymal cells which have processes extending to the outer surface of the tectum. 相似文献
11.
We examined the role of nucleus isthmi in enhancing intracellular calcium concentrations in retinotectal fibers in the frog optic tectum in vitro. The intracellular calcium levels were measured using the fluorescent calcium-sensitive dye, Calcium Green-1 3000 mw dextran conjugate (CG-1), which was injected into one optic nerve. Electrical stimulation of the labeled optic nerve alone increased tectal CG-1 fluorescence whereas electrical stimulation of nucleus isthmi alone had no effect on CG-1 fluorescence. Electrical stimulation of the nucleus isthmi ipsilateral to the labeled tectum, followed by electrical stimulation to the optic nerve can enhance calcium uptake more than a double pulse stimulation of the optic nerve alone. Maximum enhancement of the calcium signal by nucleus isthmi occurs when optic nerve stimulation follows the ipsilateral nucleus isthmi stimulation by 10 ms. These results suggest that nucleus isthmi input can facilitate retinotectal neurotransmission, and the mechanism could be used to allow the frog to attend to a single prey stimulus in an environment of several prey stimuli. 相似文献
12.
Following horseradish peroxidase injections into the optic tectum of a teleost,Navodon modestus, reciprocal and topographic projections between the nucleus isthmi and the ipsilateral optic tectum were determined. The isthmo-tectal fibers diverge to the optic tectum while maintaining the spatial arrangements of the isthmic cells from which the fibers originate. The tecto-isthmic projections also keep the spatial arrangements in the optic tectum. The tectal fibers converge near the nucleus isthmi and terminate in the non-cellular portion of the nucleus. The reciprocal topography is apparent in the combined results of 9 experiments with one tectal injection in each region. No labeled cells and fibers were found in the contralateral nucleus isthmi. 相似文献
13.
Extracellular, iontophoretic injections of horseradish peroxidase were used to anterogradely fill axons efferent from the optic tectum in garter snakes. The tectal efferent pathways consist of six axon types with distinct projections and terminal morphologies. Tectogeniculate axons pass into the diencephalon via the optic tract, bearing collaterals that form spatially restricted, rodlike arbors in the pretectum, the ventral lateral geniculate nucleus, and the ventrolateral nucleus. Tectoisthmi axons exit the tectum as a thin-caliber component of the ventral tectobulbar tract. They form spatially restricted, spherical arbors within nucleus isthmi. Tectoisthmobulbar axons also give rise to small, spherical arbors within nucleus isthmi, but the parent axons continue caudally into the pontine and medullary reticular formation issuing many short collateral branches. Tectorotundal axons reach the diencephalon via the tectothalamic tract and give rise to fine terminal collaterals in the nucleus of the tectothalamic tract ipsilaterally and in nucleus rotundus bilaterally. Single axons form sheetlike terminal fields that span the rostrocaudal extent of nucleus rotundus. Ipsilateral tectobulbar axons descend into the midbrain tegmentum where they issue several thick collaterals that terminate widely throughout the nucleus lateralis profundus mesencephali. The parent axon continues caudally giving off several widely spreading collaterals within the pontine and medullary reticular formation. Crossed tectobulbar axons enter the dorsal tectobulbar tract and cross the midline to form the predorsal bundle. Single axons give rise to terminal collaterals in the nucleus lateralis profundus mesencephali bilaterally, the contralateral pontine and medullary reticular formation, and the intermediate gray of the cervical spinal cord. 相似文献
14.
A quantitative electron microscopic analysis of the corticorubral projection was performed in the red nucleus (RN) of adult cats to determine morphological correlates of synaptic reorganization that occur following a lesion of the interpositus nucleus (IP).Corticorubral synaptic endings were identified by lesioning the sensorimotor cortex 2–6 days before electrophysiological experiments. Horseradish peroxidase (HRP) was injected into electrophysiologically identified RN neurons. Sagittal sections 100 μm thick were cut and reacted by diaminobenzidine. Sections containing HRP-positive neurons were selected and embedded in Epon.In normal cats, degenerating corticorubral terminals in the RN region frequently made contact with dendritic profiles, having small cross-sections, while a few made contact with somatic profiles. Similar results were obtained when degenerating terminals making contact with HRP-filled dendrites were analyzed.In the experimental animals, the cortical lesion was performed more than 8 weeks after lesion of the IP. In these animals, degenerating corticorubral terminals were frequently found on proximal dendrites and somata in RN region and HRP-positive neurons in contrast to the findings in normal cats.The results indicate that new corticorubral synapses were formed on proximal dendrites and somata of RN neurons as a consequence of IP lesions. 相似文献
15.
Objective
Many studies have reported that animals will display collision avoidance behavior when the size of retinal image of an object reaches a threshold. The present study aimed to investigate the neural correlates underlying the frog collision avoidance behavior.Methods
Different types of visual stimuli simulating the retinal image of an approaching or a recessing object were generated by a computer and presented to the right eye of frog. A multielectrode array was used to examine the activity of collision-sensitive neurons, and single electrode recordings were employed to quantify visual parameter (s) of the frog collision-sensitive neurons.Results
The multielectrode array revealed that 40 neurons in the optic tectum showed selective responsiveness to objects approaching on a direct collision course. The response profiles of these collision-sensitive neurons were similar to those of lobula giantmovement detector (LGMD) in the locust or to those of η neurons in the pigeon. However, the receptive field (RF) size of the frog neurons [(18.5±3.8) °, n=33)] was smaller than those of collision-sensitive neurons of the locust and the pigeon. Multielectrode recordings also showed that the collision-sensitive neurons were activated only when the focus of expansion of a looming retinal image was located within the center of its RF. There was a linear relationship between the parameter l/v (l denotes half-size of the object, v denotes approaching velocity) and time-to-collision (time difference between the peak of the neuronal activity and the predictive collision) in 16 collisionsensitive neurons. Theoretical consideration showed that the peak firing rate always occurred at a fixed delay of (60.1 ± 39.5) ms (n=16) after the object had reached a constant angular size of (14.8 ± 3.4)° (n=16) on the retina.Conclusion
The results may help clarify the mechanisms underlying the collision avoidance behavior in bullfrog. 相似文献16.
Thomas A. Reh Eleanor Pitts Martha Constantine-Paton 《The Journal of comparative neurology》1983,218(3):282-296
We have examined the detailed order of retinal ganglion cell (RGC) axons in the optic nerve and tract of the frog, Ranapipiens. By using horseradish peroxidase (HRP) injections into small regions of theretina, the tectum, and at various points along the visual pathway, it hasbeen possible to follow labelled fibers throughout their course in the nerve and tract. Several surprising features in the order of fibers in the visual pathway were discovered in our investigation. The fascicular pattern of RGC axons in che retina is similar to that described in other vertebrates; however, immediately central to their entry into the optic nerve head, approximately half of the fibers from the nasal or temporal retina cross over to the opposite side of the nerve. Although the axons from the dorsal and ventral regions of the retina generally remain in the dorsal and ventral regions of the nerve, some fiber crossing occurs in those axons as well. The result of this seemingly complex rearrangement is that the optic nerve of Rana pipiens contains mirror symmetric representations of the retinal surface on either side of the dorsal ventral midline of the nerve. The fibers in each of these representation are arranged as semicircles representing the full circumference of the retina. This precise fiber order is preserved in the nerve until immediately periphearal to the optic chiasm, at which point age-related axon from both side of the nerve bundle together. Consequently, when a small pellet of HRP is placed in the chiasmic region of the nerve, an annualus of retinal ganglion cells and a corresponding annulus of RGC terminals in the tectum are la belled. As the age-related bundles of fibers emerge from the chiasm they split to form a medial bundle and a lateral bundle, which grow in the medial and lateral branches of the optic tract, respectively. Although the course followed by RGC axons in the visual pathv/ay is complex, we propose a model in which the organization of fibers in the nerve and tract can arise from a few rules of axon guidance. To determine whether the optic tecta, the primary retinal targets, play a role in the development and organization of the optic nerve and tract, we removed the tectal primordia in Rana embryos and examined the order in the nerve when the animals had reached larval stages. We found that the order in the nerve and tract was well preserved in tectumless frogs. Therefore, we propose that guidance factors independent of the target direct axon growth in the frog visual system. 相似文献
17.
Acetylcholine allows the elicitation of visually evoked behaviors mediated by the frog optic tectum, but the mechanisms behind its effects are unknown. Although nicotinic acetylcholine receptors (nAChRs) exist in the tectum, their subtype has not been assessed. By using quantitative autoradiography, we examined the binding of [(3)H]cytisine and [(125)I]alpha-bungarotoxin in the laminated tectum. In mammalian systems, these radioligands bind with high affinity to alpha4 nAChR subunits and alpha7 nAChR subunits, respectively. [(3)H]Cytisine demonstrated high specific binding in adult frogs in retinorecipient layer 9, intermediate densities in layer 8, and low binding in layers 1-7 of the tectum. [(3)H]Cytisine binding was significantly higher in the tecta of adults than in those of tadpoles. Lesioning the optic nerve for 6 weeks decreased [(3)H]cytisine binding in layers 8/9 by 70+/-1%, whereas 6-month lesions decreased binding by 76+/-3%. Specific binding of [(125)I]alpha-bungarotoxin in adults was present only at intermediate levels in tectal layers 8 and 9, and undetectable in the deeper tectal layers. However, the nucleus isthmi, a midbrain structure reciprocally connected to the tectum, exhibited high levels of binding. There were no significant differences in tectal [(125)I]alpha-bungarotoxin binding between tadpoles and adults. Six-week lesions of the optic nerve decreased tectal [(125)I]alpha-bungarotoxin binding by 33+/-10%, but 6-month lesions had no effect. The pharmacokinetic characteristics of [(3)H]cytisine and [(125)I]alpha-bungarotoxin binding in the frog brain were similar to those demonstrated in several mammalian species. These results indicate that [(3)H]cytisine and [(125)I]alpha-bungarotoxin identify distinct nAChR subtypes in the tectum that likely contain non-alpha7 and alpha7 subunits, respectively. The majority of non-alpha7 receptors are likely associated with retinal ganglion cell terminals, whereas alpha7-containing receptors appear to have a different localization. 相似文献
18.
Shu-Rong Wang Kun Yan Yin-Ting Wang Shi-Ying Jiang Xuan-Shen Wang 《Brain research》1983,275(2):355-360
The presynaptic membranes of synapses in sympathetic ganglia of 4-aminopyridine treated guinea pigs and rats were investigated in either freeze-fractured or thin-sectioned material. After freeze-fracture many presynaptic membranes showed dimples in the P face and corresponding crater-like protrusions in the E face. In about 45% of the thin-sectioned synapses small clear omega-shaped invaginations were present at the active zone of the presynatic membrane. Larger omega profiles with dense cores were sometimes also seen. These membrane features were very rarely observed in non-treated material. 相似文献
19.
The afferent and efferent innervation patterns of the frog dorsal medullary nucleus (DMN; anuran homolog of the cochlear nucleus) were examined by studying the anterograde and retrograde transport patterns of horseradish peroxidase injected focally into the nucleus. It was found that this structure projected bilaterally to the superior olivary nuclei (SON) and dorsal midbrain tegmental nuclei, and contralaterally to the opposite DMN, the lateral lemniscus nucleus (LLN) and the torus semicircularis (TS). The termination sites in the TS were restricted to the laminar and principal nuclei. The DMN in turn received projections from these structures with the exception of the TS and dorsal tegmental nuclei. The projection to the ipsilateral LLN and TS was not pronounced. In addition to the above findings, the ascending projection to the DMN, SON and TS, as well as the centrifugal projection from the SON, were found to be organized tonotopically. 相似文献
20.
An excitatory connection between an extensor and several flexor tibiae motor neurons that innervate antagonistic muscles in the hind leg of a locust has been characterized using physiological and ultrastructural methods. Simultaneous intracellular recordings from the single fast extensor (FETi) motor neuron and up to three flexor motor neurons show that a spike in FETi is followed by a short latency depolarizing synaptic potential in the flexors that is powerful enough to evoke a burst of flexor spikes. The chemically mediated excitatory postsynaptic potential (EPSP) is caused centrally as it persists when sensory feedback from the leg is removed, and has a latency of 1.6-2.0 ms depending upon the position of the recording electrodes in the somata or neuropilar segments of the pre- and postsynaptic neurons. The amplitude of the EPSP declines gradually in a saline containing no calcium but high magnesium, indicating that no spiking interneuron is interposed in the pathway. With repetitive stimulation, the EPSP decrements markedly so that at intervals of 50 ms the second EPSP of a pair is reduced by 90%. The amplitude of the EPSP is also dependent on the amplitude of the presynaptic spike. The physiological evidence suggesting a monosynaptic connection is directly confirmed by electron microscopy of ganglia in which FETi and a flexor were both labelled with horseradish peroxidase. Direct chemical synapses between the two identified neurons, in which FETi is the presynaptic element, occur in three regions of the neuropil examined. At a synapse, the flexor motor neuron may be the only postsynaptic neuron or it may be one element in a dyad. The synaptic arrangements between the two neurons are complex with serial synapses through unlabelled processes linking FETi to flexor motor neurons and with frequent reciprocal synaptic connections between FETi and unlabelled processes. Unidentified processes also make input synapses on both neurons close to the synapses from FETi. The behavioural significance of the connection lies in the mechanical requirements for kicking and jumping. To prepare for these powerful movements the extensor and flexor tibiae muscles must co-contract. The connection from FETi enhances the depolarization and frequency of spikes in the flexors during the co-contraction. 相似文献