首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The exfoliated cell micronucleus (MN) assay using fluorescent in situ hybridization (FISH) with a centromeric probe is a rapid method for determining the mechanism of MN formation in epithelial tissues exposed to carcinogenic agents. Here, we describe the use of this assay to detect the presence or absence of centromeric DNA in MN induced in vivo by radiation therapy and chronic arsenic (As) ingestion. We examined the buccal cells of an individual receiving 6,500 rads of photon radiation to the head and neck. Exfoliated cells were collected before, during, and after treatment. After radiation exposure a 16.6-fold increase in buccal cell MN frequency was seen. All induced MN were centromere negative (MN −) resulting from chromosome breakage. This finding is consistent with the clastogenic action of radiation and confirmed the reliability of the method. Three weeks post-therapy, MN frequencies returned to baseline. We also applied the assay to exfoliated bladder cells of 18 people chronically exposed to high levels of inorganic arsenic (In-As) in drinking water (average level, 1,312 μg As/L) and 18 matched controls (average level, 16 μg As/L). The combined increase in MN frequency was 1.8-fold (P = 0.001, Fisher's exact test). Frequencies of micronuclei containing acentric fragments (MN −) and those containing whole chromosomes (MN+) both increased (1.65-fold, P = 0.07, and 1.37-fold, P = 0.15, respectively), suggesting that arsenic may have both clastogenic and weak aneuploidogenic properties in vivo. After stratification on sex, the effect was stronger in male than in female bladder cells. In males the MN-frequency increased 2.06-fold (P = 0.07) while the frequency of MN+ increased 1.86-fold (P = 0.08). In addition, the frequencies of MN − and MN+ were positively associated with urinary arsenic and its metabolites. However, the association was stronger for micronuclei containing acentric fragments. By using FISH with centromeric probes, the mechanism of chemically induced genotoxicity can now be determined in epithelial tissues. © 1996 Wiley-Liss, Inc.  相似文献   

2.
The objective of this study was to evaluate the effect of the generation of reactive oxygen species (ROS) on the integrity of the DNA of human spermatozoa, and to determine if pretreatment with antioxidants can reduce DNA damage. Samples were obtained from 47 men undergoing infertility investigation. ROS were generated in the samples by the addition of xanthine/xanthine oxidase (X/XO) with or without antioxidants. After incubation at timed intervals (0-2 h) with X/XO, the percentage of spermatozoa with DNA fragmentation was determined using the method of TdT-mediated DNA end-labelling (TUNEL). Time intervals were selected to mimic the clinical situation in which spermatozoa are held for a period of time after swim-up while the oocytes are prepared for ICSI. A significant increase in sperm DNA damage was evident when samples were incubated in the presence of ROS for intervals of 1 and 2 h, but not when incubated with ROS for <1 h (P = 0.0001). The addition of antioxidants significantly decreased the amount of DNA damage induced by ROS generation (P < 0.04). ROS can cause an increase in DNA fragmentation and pretreatment with antioxidants can reduce DNA damage.   相似文献   

3.
Unstimulated lymphocytes from individuals with Down Syndrome (trisomy 21) are more sensitive to the induction of dicentric and ring aberrations by X rays than normal lymphocytes. Several explanations involving the more rapid rejoining of X-ray--induced lesions in Down cells have been offered. It is shown here that the repair of the DNA damage converted into chromosome aberrations is more rapid in Down cells than normal cells. This more rapid repair results in a higher probability of producing chromosomes aberrations, and hence higher aberration frequencies in Down than normal cells.  相似文献   

4.
Hypertension is often treated with diuretics, like hydrochlorothiazide (HCTZ). Previous results on the in vitro genotoxicity of HCTZ are equivocal. In the present study, we have evaluated the genotoxicity of HCTZ in cultured human lymphocytes using the Cytokinesis Blocked Micronucleus (CBMN) assay. In addition, micronucleus (MN) induction was analyzed by Fluorescence In Situ Hybridization (FISH) with an alpha-satellite DNA centromeric probe to distinguish between clastogenic and aneugenic effects. Lymphocyte cultures from 32 healthy adults were exposed to 5 and 40 microg/ml HCTZ. Age, gender, and smoking were evaluated as factors affecting the MN analysis. We found that HCTZ increased MN frequencies. FISH analysis revealed that HCTZ exerts its genotoxicity more strongly at the 40 microg/ml concentration, and principally through chromosome delay (aneugenicity). Multiregression analysis of our results confirmed the known effect of age and gender on MN induction in human lymphocytes. Smoking was also a confounding factor for MN induction, especially for centromere-negative MN frequencies. Under the experimental conditions used, only age had a clear positive effect on the response of lymphocytes to HCTZ. These data indicate that HCTZ produces micronuclei in cultured human lymphocytes by a mechanism that involves chromosome delay and to a lesser extent through chromosome breakage.  相似文献   

5.
Systemic lupus erythematosus (SLE) and systemic sclerosis (SS) are autoimmune diseases characterized by the presence of antibodies against ubiquitous self antigens. The presence of clastogenic factors (CF) capable of inducing chromosome breakage has also been reported in the plasma of some patients. We aimed to assess basal frequency of cytogenetic damage in lymphocytes and presence of CF in the plasma of two groups of SLE and SS patients displaying a different antibody status (ACA-/Scl70+ or ACA+/Scl70-), using the micronucleus (MN) assay and FISH analysis with a pancentromeric DNA probe. As compared with controls, we found significantly higher MN frequencies in SS patients, but not in SLE patients. In addition, our data showed a significant prevalence of C-MN in SLE and ACA-/Scl70+ patients and of C + MN in ACA+/Scl70- patients. We observed a positive response in three out of the five CF experiments performed on plasma of SS patients. The three patients whose plasma caused MN induction were subtyped as ACA-/Scl70+, whereas the other subjects had ACAs. The same tests on six SLE patients gave negative results.  相似文献   

6.
Studies associate particulate matter (PM) exposure with pulmonary, cardiovascular, and neurologic diseases. Elevated levels of coarse (PM10) and fine (PM2.5) PM have been reported in the Mexico City metropolitan area during the last two decades. There is limited information if these conditions affect newborns. We associated maternal exposure to PM reported by the monitoring stations considering the place of residence of each participant with the presence of genotoxic damage (cytome analysis) in maternal and umbilical cord blood (UCB) lymphocytes. Eighty-four healthy women in their last quarter of pregnancy met the inclusion criteria. Each volunteer exposure was estimated according to the average PM2.5 and PM10 levels during the last month of gestation. The micronuclei (MN) frequencies in UCB lymphocyte cultures ranged between 0 and 9. They also showed lower cell proliferation indexes than their mothers. There was a strong correlation between the maternal and the UCB MN frequency (ρ = 0.3767, P = 0.0002). Multiple regression analysis including PM10 and PM2.5 levels, maternal age, and occupation, showed a significant and positive association between UCB MN frequency and PM2.5. A statistically significant increase in the MN frequency in both maternal and UCB lymphocytes was observed in samples obtained during the dry season (higher PM levels) as compared with the MN frequency in blood samples obtained during the rainy season (lower PM levels). These results suggest that PM, mainly PM2.5, can cross the placenta causing DNA damage in fetal cells which may increase the potential for diseases during childhood or adult life. Environ. Mol. Mutagen. 60:421–427, 2019. © 2019 Wiley Periodicals, Inc.  相似文献   

7.
Hydroxyl radical scavengers and xanthine oxidase inhibitors protect cultured bovine pulmonary endothelial cells (BPAEC) from lytic injury by the endotoxin lipopolysaccharide (LPS). We hypothesized that exposure of BPAEC to cytotoxic concentrations of LPS activated intracellular xanthine oxidase, and that intracellular iron-dependent hydroxyl radical formation (a Fenton reaction) ensued, resulting in cell lysis. To test this, the protective effects of deferoxamine against H2O2 and LPS-induced cytotoxicity to BPAEC was assessed by 51Cr release. Preincubation with 0.4 mM deferoxamine conferred 67 +/- 15% (mean +/- SE) protection from LPS-induced cytotoxicity but 48 h of preincubation were required to induce significant protection. Significant protection form a classical Fenton reaction model, injury by 50 microM H2O2, could be induced by a 1-h preincubation with a 0.4 mM deferoxamine. The dissociated time course suggested that deferoxamine might work by different mechanisms in these models. The effects of LPS and deferoxamine on BPAEC-associated xanthine oxidase (XO) and xanthine dehydrogenase (XD) activity were assessed using a spectrofluorophotometric measurement of the conversion of pterin to isoxanthopterin. BPAEC had 106 +/- 7 microU/mg XD+XO activity; XO activity constituted 48 +/- 1% of total XO+XD activity. LPS at a cytotoxic concentration did not alter XO, XD, or percent XO. Deferoxamine had striking proportional inhibitory effects on XO and XD in intact cells. XO+XD activity fell to 6 +/- 1% of control levels during a 48-h exposure of BPAEC to deferoxamine. Deferoxamine did not inhibit XO+XD ex vivo.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Styrene–acrylonitrile Trimer (SAN Trimer), a by‐product in production of acrylonitrile styrene plastics, was identified at a Superfund site in Dover Township, NJ, where childhood cancer incidence rates were elevated for a period of several years. SAN Trimer was therefore tested by the National Toxicology Program in a 2‐year perinatal carcinogenicity study in F344/N rats and a bacterial mutagenicity assay; both studies gave negative results. To further characterize its genotoxicity, SAN Trimer was subsequently evaluated in a combined micronucleus (MN)/Comet assay in juvenile male and female F344 rats. SAN Trimer (37.5, 75, 150, or 300 mg/kg/day) was administered by gavage once daily for 4 days. Micronucleated reticulocyte (MN‐RET) frequencies in blood were determined by flow cytometry, and DNA damage in blood, liver, and brain cells was assessed using the Comet assay. Highly significant dose‐related increases (P < 0.0001) in MN‐RET were measured in both male and female rats administered SAN Trimer. The RET population was reduced in high dose male rats, suggesting chemical‐related bone marrow toxicity. Results of the Comet assay showed significant, dose‐related increases in DNA damage in brain cells of male (P < 0.0074) and female (P < 0.0001) rats; increased levels of DNA damage were also measured in liver cells and leukocytes of treated rats. Chemical‐related cytotoxicity was not indicated in any of the tissues examined for DNA damage. The results of this subacute MN/Comet assay indicate induction of significant genetic damage in multiple tissues of weanling F344 male and female rats after oral exposure to SAN Trimer. Environ. Mol. Mutagen. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Ozone is an important constituent of ambient air pollution and represents a major public health concern. Oxidative injury due to ozone inhalation causes the generation of reactive oxygen species and can be genotoxic. To determine whether ozone exposure causes genetic damage in peripheral blood lymphocytes, we used a well‐validated cytokinesis‐block micronucleus Cytome assay. Frequencies of micronuclei (MN) and nucleoplasmic bridges (NB) were used as indicators of cytogenetic damage. Samples were obtained from 22 non‐smoking healthy subjects immediately before and 24‐hr after controlled 4‐hr exposures to filtered air, 100 ppb, and 200 ppb ozone while exercising in a repeated‐measure study design. Inhalation of ozone at different exposure levels was associated with a significant dose‐dependent increase in MN frequency (P < 0.0001) and in the number of cells with more than one MN per cell (P < 0.0005). Inhalation of ozone also caused an increase in the number of apoptotic cells (P = 0.002). Airway neutrophilia was associated with an increase in MN frequency (P = 0.033) independent of the direct effects of ozone exposure (P < 0.0001). We also observed significant increases in both MN and NB frequencies after exercise in filtered air, suggesting that physical activity is also an important inducer of oxidative stress. These results corroborate our previous findings that cytogenetic damage is associated with ozone exposure, and show that damage is dose‐dependent. Further study of ozone‐induced cytogenetic damage in airway epithelial cells could provide evidence for the role of oxidative injury in lung carcinogenesis, and help to address the potential public health implications of exposures to oxidant environments. Environ. Mol. Mutagen. 56:378–387, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
Reactive oxygen species can directly damage tissue. In this setting, amplification of tissue damage also occurs through infiltration of inflammatory cells either acutely or chronically. Several recent studies suggest that reactive oxygen species stimulate production of certain chemokines, which are potent chemoattractants for inflammatory cells. In the present study, we examined whether oxidants, generated by the combination of xanthine and xanthine oxidase (X/XO), alter chemokine production by monocytes and U937 cells. Our findings demonstrate that X/XO stimulates monocytes, but not U937 cells, to produce increased amounts of interleukin-8 (IL-8) and monocyte chemoattractant protein. This effect is attenuated by pretreatment with dimethylsulfoxide (DMSO), a scavenger of hydroxyl radicals, but is not affected by superoxide dismutase or catalase. In contrast, X/XO-induced cytotoxicity, evidenced by lactate dehydrogenase release, is mediated primarily by hydrogen peroxide, as catalase reverses this effect. Finally, exposure to X/XO causes an increase in nuclear factor kappa B (NF-kappaB), and this effect is attenuated by DMSO. These studies suggest that reactive oxygen species can induce production of molecules that amplify inflammation through attraction of inflammatory cells. It appears the hydroxyl radical is the principal oxidant species involved in stimulation of chemokine production.  相似文献   

11.
In the biomonitoring of human genotoxic effects, micronuclei (MN) usually are scored in phytohaemagglutinin-stimulated cultured lymphocytes. MN also can be examined in uncultured lymphocytes, which facilitates the analysis of genotoxic damage incurred in vivo. Characterization of MN in cultured lymphocytes by fluorescence in situ hybridization (FISH) has shown a clear over-representation of the X and Y chromosomes in the MN of males. However, it is not known if this phenomenon also occurs in vivo. The purpose of the present study was to assess the frequency and composition of MN formed in vivo from immunomagnetically isolated uncultured T-lymphocytes of men. To evaluate the possible effects of genotoxic exposure on in vivo MN, we examined 17 railroad workers occupationally exposed to complex chemical mixtures and 14 referents, all nonsmokers. The results showed similar total frequencies of micronucleated cells among the exposed workers and the referents. When the MN were characterized by FISH, there were no significant differences between the exposed and referents with regards to the frequency of centromere-positive or centromere-negative MN. Centromeric label was observed in 69% of all MN, indicating that most of the MN contained whole chromosomes (or chromatids). 80% of the centromere-positive MN harbored autosomes, 12% Y chromosomes, and 8% X chromosomes. The occurrence of the Y- and X-chromosomes in MN was, respectively, 5.5- and 3.8-times greater than would be expected assuming an equal contribution by all chromosomes. Thus, sex chromosomes appear to be over-represented in lymphocyte MN of men in vivo, confirming previous results obtained in vitro.  相似文献   

12.
The possible genotoxic potential of the 2-furylethylene derivative UC-245 has been evaluated in vitro using human cells as a test system. This compound was synthesized at the Centro de Bioactivos Químicos, Universidad Central de Las Villas (Cuba) and it appears to be effective against leishmaniosis. The induced genetic damage was determined by scoring the frequency of micronuclei (MN) and the frequency of sister chromatid exchanges (SCE) in primary lymphocyte cultures set up from two different donors. The DNA breakage level was also evaluated by the Comet assay, using an established human lymphoblastoid cell line (TK6). For the MN and SCE studies, to detect eventual metabolic modification in the genotoxicity of this compound, the cultures were treated with S9 microsomal fraction. The results obtained indicate that, under the experimental conditions used, the test agent does not induce significant increases in the frequency of micronucleated cells, irrespective of presence/absence of the metabolic fraction, which would indicate a lack of clastogenic and/or aneugenic potential. Nevertheless, a clear and significant increase in the SCE frequency was observed in the treatments without S9. This would support the 2-furylethylene derivative UC-245 inducing DNA primary damage. In addition, the results obtained in the Comet assay also show that UC-245 induces a significant increase in the level of DNA breakage, which would confirm its genotoxicity.  相似文献   

13.
Umegaki K  Fenech M 《Mutagenesis》2000,15(3):261-269
We have developed a method that can detect the DNA-damaging and cytotoxic effects of physiological levels of reactive oxygen species (ROS) and activated human neutrophils. This was achieved using WIL2-NS cells, a human B lymphoblastoid cell line, as target cells and the cytokinesis-block micronucleus (CBMN) assay. With this method, we observed a 4- and a 30-fold increase in the frequency of micronucleated binucleated cells (MNed BNC) when cells were exposed to 10 and 30 microM hydrogen peroxide, for 1 h, respectively. A dose-dependent increase in the frequency of MNed BNC was also detected when cells were exposed to hypoxanthine (HX)/xanthine oxidase (XO), a superoxide generating system: a 50-fold increase in the frequency of MNed BNC was observed at the highest XO dose (12.5 mU/ml). In this CBMN assay, nucleoplasmic bridges (NPB) in BNC and necrotic cells were also readily detected, especially at the higher exposure doses of hydrogen peroxide or HX/XO. When WIL2-NS cells were exposed to neutrophils stimulated with phorbol 12-myristate acetate (PMA) for 1 h, the frequencies of MNed BNC in WIL2-NS cells increased in a dose-dependent manner (30-fold increase at 100 nM PMA) and with an increasing neutrophil:WIL2-NS co-culture ratio. The frequencies of MNed BNC were closely related to the production of ROS, especially hydrogen peroxide, by the neutrophils. Differentiated HL60 cells (DMSO-treated HL60) also produced ROS in response to PMA. In this case, we used a 'Transwell' system to expose WIL2-NS cells to DMSO-treated HL60 cells, because direct contact with DMSO-treated HL60 cells impaired cell division in WIL2-NS target cells. Exposure to PMA-stimulated DMSO-treated HL60 cells resulted in a PMA dose-dependent increase in the frequency of MNed BNC in WIL2-NS cells. MNed BNC frequencies were positively correlated with NPB (r = 0.61-0.93) and necrosis (r = 0.55-0.86) and negatively correlated with nuclear division index (r = -0.72 to -0. 91) in all of the above experiments. These results suggest that the CBMN assay using WIL2-NS cells is a sensitive assay system to examine ROS-induced chromosomal damage and necrosis by activated human neutrophils.  相似文献   

14.
The DNA probe p82H was used to visualize centromeric DNA in micronuclei (MN) of human cells. Slides prepared from cultures treated by the aneugen (causing aneuploidy) colcemid showed significantly more MN with centromeric signals than those treated by the clastogen (causing chromosome breakage) bleomycin. These results indicate that in situ hybridization with the alphoid p82H DNA probe is a suitable method with which to distinguish between MN containing whole chromosomes and acentric fragments, and hence allows one to discriminate between the clastogenic and aneugenic effects in MN formation.  相似文献   

15.
自由基对体外培养兔关节软骨细胞的影响   总被引:2,自引:0,他引:2  
  相似文献   

16.
NFAT5 (nuclear factor of activated T cells), a well‐known osmoprotective factor, can be activated by isotonic stimuli such as Toll‐like receptor (TLR) triggering. However, it is unclear how NFAT5 discriminates between isotonic and hypertonic stimuli to produce different functional and molecular outcomes. Here, we identified a novel XO–ROS–p38 MAPK–NFAT5 pathway (XO is xanthine oxidase, ROS is reactive oxygen species) that is activated in RAW 264.7 macrophages upon isotonic TLR stimulation. Unlike what is seen under hypertonic conditions, XO‐derived ROS were selectively required for the TLR‐induced NFAT5 activation and NFAT5 binding to the IL‐6 promoter in RAW 264.7 macrophages under isotonic conditions. In mouse peritoneal macrophages and human macrophages, TLR ligation also induced NFAT5 activation, which was dependent on XO and p38 kinase. The involvement of XO in NFAT5 activation by TLR was confirmed in RAW 264.7 macrophages implanted in BALB/c mice. Moreover, allopurinol, an XO inhibitor, suppressed arthritis severity and decreased the expression of NFAT5 and IL‐6 in splenic macrophages in C57BL/6 mice. Collectively, these data support a novel function of the XO–NFAT5 axis in macrophage activation and TLR‐induced arthritis, and suggest that XO inhibitor(s) could serve as a therapeutic agent for chronic inflammatory arthritis.  相似文献   

17.
Somatic DNA damage has been linked to coronary artery disease (CAD). However, whether genetic instability is linked to CAD per se or to concomitant potentially genotoxic metabolic and pharmacological factors remains still unclear. The aim of this study was to evaluate the determinants of somatic DNA damage in a large population of patients undergoing coronary angiography. A total of 278 in-hospital patients (215 men, age 61.8±0.7 years) were studied by using micronucleus assay (MN) in human lymphocytes, which is one of the most commonly used biomarker for somatic DNA damage. Significant CAD (>50% diameter stenosis) was present in 210 patients (179 men, age 62.3±0.7 years). Normal coronary arteries were observed in 68 patients (35 men, age 60.2±1.7 years). There were no significant differences between patients with and without CAD, but patients with multivessel disease had the highest MN levels (P=0.01). MN frequency was also found significantly higher in presence of type 2 diabetes (P<0.0001), dyslipidemia (P=0.048) and nitrate therapy (P=0.0002). A significant additive effect was also observed between diabetes and nitrate therapy (P=0.02). On multivariate logistic regression analysis, diabetes [odds ratio =6.8 (95% confidence interval, 3.2–14.5), P<0.0001] and nitrate therapy [odds ratio =2.4 (95% confidence interval, 1.3–4.7), P=0.01] remained the only significant determinants for the 50th percentile of MN (>12). These results indicated that diabetes and, to a lesser extent, chronic nitrate therapy are major determinants of somatic DNA instability in patients with CAD. DNA damage might represent an additional pathogenetic dimension and a possible therapeutic target in the still challenging management of coronary artery disease concerning diabetics.  相似文献   

18.
Molybdenum is an essential element in plants and animals as a cofactor for enzymes. Molybdenum trioxide is used in metallurgical processes, in cosmetics as a pigment, and in contact lens solution, yet limited information is available on molybdenum genotoxicity. In the present study the micronucleus (MN) assay in human lymphocytes and mouse bone marrow and the dominant lethal assay in mice were used to assess the genotoxic effects of molybdenum salts in vitro and in vivo. Two salts of molybdenum were tested in whole blood cultures. Ammonium molybdate was more potent than sodium molybdate in causing a dose-dependent decrease in viability and replicative index and an increase in MN formation in binucleated lymphocytes (P < 0.001). A dose–response in both kinetochore-positive MN (caused by chromosome lagging) and kinetochore-negative MN (associated with chromosome breakage) was observed. Based on the results of a toxicity study of sodium molybdate, two doses, 200 and 400 mg/kg, were assessed in the bone marrow MN assay in mice (two i.p. injections 24 and 48 hr prior to euthanasia). A modest but statistically significant increase in MN frequency in polychromatic erythrocytes was observed (P < 0.05). The same treatment protocol was used to analyze dominant lethality. A dose-dependent increase in postimplantation loss represented mostly by early resorptions was observed the first week after treatment (P = 0.003). These preliminary data suggest that sodium molybdate induces dominant lethality at the postmeiotic stage of spermatogenesis. Overall, molybdenum salts produced moderately positive results both in vitro in human cells and in vivo in mice. Environ. Mol. Mutagen. 32:251–259, 1998 © 1998 Wiley-Liss, Inc.  相似文献   

19.
Restriction fragment length polymorphisms were studied among the Japanese population using 12 polymorphic DNA probes on the q24–q28 region of X chromosome. The frequency distribution for probes p22–33, p482.6a, p43–15, 52A, pPM101, cX33.2 and cpx234, was the same as that for Caucasians, and that for probes 4D-8 and St14-1 (MspI) was slightly different (p<0.05). however,="" it="" was="" quite="" different=""><0.01) for="" probes="" p114.12,="" st14-1="">TaqI), 36B-2 and MN12. Probe p114.12 showed noHindIII polymorphism for the Japanese people. On the contrary, probe MN12, which has a low PIC value (0.15) for Caucasians, was found to be useful for Japanese (PIC value=0.50). These results suggest that 7 DNA probes (p482.6a, p43–15, 52A, St14-1, p114.12 (BclI), 36B-2 and MN12) are useful (PIC>0.42) for linkage analysis of X-linked disease in Japan.  相似文献   

20.
采用激光共聚焦扫描显微镜,观察黄嘌呤黄嘌呤氧化酶反应系统(X/XO)生成不同浓度的超氧阴离子自由基(O2)致培养的大鼠肝卵圆细胞(WB细胞)胞质内钙浓度的变化,结果发现:仅小剂量的O2引起胞质内钙浓度升高,约30S后达到峰值,60s后恢复正常。部分细胞观察到数次钙浓度间断升高、幅度逐渐下降的现象。超氧化物歧化酶(SOD)可抑制此变化,过氧化氢酶(CAT)无效果,细胞在无钙液中观察仍出现钙峰,但受  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号