首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
There are many reports that basal forebrain grafts ameliorate behavioral impairments produced by dorsal septo-hippocampal pathway lesions, but several studies have either found that this recovery may be unrelated to concomitant restitution of cholinergic markers, may be modest and depend on certain experimental conditions, or instead that grafts may actually exacerbate lesion-induced impairments. In this study, rats received one of three lesions of the dorsal septo-hippocampal pathways or a sham lesion, at 32 days of age, and intrahippocampal basal forebrain grafts or the vehicle control 10 days later. In grafted rats with total aspirative lesion of the fimbria-fornix, there was a substantial AChE-positive hippocampal reinnervation but no improvement of the severe lesion-induced spatial learning deficits, either reference memory or working memory, whether tested at 1 or 5 months post-grafting. In rats with bilateral medial fimbria lesions, grafts were successful, normal in appearance and produced substantial hippocampal cholinergic reinnervation; relative to non-grafted counterparts, however, grafted medial fimbria rats showed an early reference memory impairment and a persistent exacerbation of a working memory deficit. Exacerbation of learning impairments was also apparent in grafted rats with partial hippocampal denervation due to lesion of the cingulate and adjacent cortex above the fimbria-fornix. Nonetheless, basal forebrain grafts normalised general activity in these lesion groups, irrespective of whether the lesion-induced change was an increase or a decrease relative to controls. Graft-derived AChE-positive innervation was more marked than expected in both grafted cingulate-lesioned rats and grafted sham-lesioned rats, while control grafts of fetal cortex (above the septum) produced little or no AChE-positive innervation. Size of basal forebrain grafts, originally 3μ1 at two dorsal sites per hippocampus, increased markedly from rostral to caudal dorsal hippocampus in all groups but did not differ significantly across grafted groups, even with respect to non-lesioned rats. This study adds further evidence that basal forebrain grafts, successful with respect to cholinergic reinnervation, do not always enhance cognitive functions in rat hippocampal lesion models, and confirms that these grafts may have adverse effects after partial septo-hippocampal system lesions. It is important to attend to both the potential negative and positive effects of neural grafts.  相似文献   

2.
Lesions restricted to the dorsal, but not the ventral, hippocampus severely impair the formation of spatial memory. This dissociation was first demonstrated using the water maze task. The present study investigated whether the dorsal and the ventral hippocampus are involved differentially in spatial reference and spatial working memory using a four-baited/four-unbaited version of the eight-arm radial maze task. This test allows the concurrent evaluation of reference and working memory with respect to the same set of spatial cues, and thereby enables a within-subjects within-task comparison between the two forms of memory functions. Rats with N-methyl-d-aspartic acid-induced excitotoxic lesions of the dorsal hippocampus, ventral hippocampus or both were compared with sham and unoperated controls. We showed that dorsal lesions were as effective as complete lesions in severely disrupting both reference and working spatial memory, whereas rats with ventral lesions performed at a level comparable with controls. These results lend further support to the existence of a functional dissociation between the dorsal and the ventral hippocampus, with the former being preferentially involved in spatial learning.  相似文献   

3.
Chang Q  Gold PE 《Hippocampus》2004,14(2):170-179
To lesion the cholinergic input to the hippocampus, rats received injections of 192 IgG-saporin into the medial septum/vertical limb of the diagonal band (MS/VDB). The lesions produced near-total loss of choline acetyltransferase (ChAT)-positive neurons in the MS/VDB. The loss was accompanied, however, by only partial decreases (to 40% of control levels) in acetylcholine (ACh) release in the hippocampus. Moreover, ACh release in the hippocampus increased when lesioned and control rats were tested on a spontaneous alternation task, indicating that there was significant residual cholinergic function in the hippocampus. The lesions were sufficient to impair spontaneous alternation scores. However, this impairment could be reversed by either systemic or intra-hippocampal injections of the indirect cholinergic agonist, physostigmine, providing additional evidence of residual and effective cholinergic functions in the hippocampus of lesioned rats. Moreover, systemic injections of physostigmine at doses that produced mild tremors in control rats led to more severe tremors in the lesioned rats, suggesting upregulation of cholinergic mechanisms after saporin lesions, likely in brain areas other than the hippocampus. Thus, these findings provide evidence for decreases in cholinergic input to the hippocampus accompanied by deficits on a spontaneous alternation tasks. The findings also provide evidence for considerable residual cholinergic input to the hippocampus after saporin lesions of the MS/VDB. Together, the results suggest that 192 IgG-saporin lesions of the MS/VDB, using methods often employed, do not fully remove septohippocampal cholinergic input to the hippocampus but are nonetheless sufficient to produce impairments on a task impaired by hippocampal lesions.  相似文献   

4.
Male Long-Evans rats received micro-injections of either (NMDA) in the medial septum/vertical diagonal band (MS/DB), 5,7-dihydroxytryptamine (5,7-DHT) in the fimbria/fornix and cingulate bundle or combined NMDA/5,7-DHT micro-injections. NMDA administration caused considerable damage to the MS and enlarged the lateral ventricles. It reduced the activity of choline acetyltransferase as well as the intensity of acetylcholinesterase staining in the hippocampus. 5,7-DHT selectively reduced the concentration of hippocampal serotonin. The rats were assessed for spatial memory in the Morris water maze and the radial arm maze (reference and working memory version). The 5,7-DHT-induced lesion of hippocampal serotonin had no effect by itself on either task. However, it augmented the reference memory impairment caused by the NMDA-induced lesion and delayed the recovery from NMDA-induced impairment of working memory on the radial maze. Combined damage of hippocampal cholinergic and serotonergic afferents did not severely affect spatial memory.  相似文献   

5.
Chronic nicotine infusions have been found to significantly improve working memory performance in the radial-arm maze. This effect is blocked by co-infusions of the nicotinic antagonist mecamylamine. Acute nicotine injections also improve working memory performance in the radial-arm maze. This effect is also blocked by mecamylamine co-administration. Recent local infusions studies have demonstrated the importance of the ventral hippocampus for nicotinic involvement in memory. Local infusions of mecamylamine, DHβE or MLA impair working memory performance on the radial-arm maze. The current study was conducted to determine the importance of the ventral hippocampus for the chronic effects of nicotine. Rats were trained on the working memory task in an eight-arm radial maze. After acquisition they underwent either infusions of ibotenic acid lesions or vehicle infusions and received subcutaneous implants of osmotic minipumps that delivered either nicotine at a dose of 5 mg kg−1 day−1 or vehicle in a 2×2 design. The rats then were given 2 days of recovery and were tested on the radial-arm maze three times per week for the next 4 weeks. As seen in previous studies, in the sham lesioned group nicotine infusions caused a significant improvement in choice accuracy. In contrast no nicotine-induced improvement was seen in the rats after ibotenic acid lesions of the ventral hippocampus. The effect of nicotine was blocked even though this lesion did not cause a deficit in performance. Previous work showed that chronic nicotine infusion still caused a significant improvement in working memory performance in the radial-arm maze after knife-cut lesions of the fimbria–fornix carrying the septo-hippocampal cholinergic innervation. Thus it appears that it is the postsynaptic nicotinic receptors in the ventral hippocampus which are critically important for the expression of the chronic nicotine induced working memory improvement.  相似文献   

6.
Y He  Z Yao  Y Gu  G Kuang  Y Chen 《Brain research》1992,586(1):27-35
Nerve growth factor (NGF) was injected intraventricularly into aged (24 months) rats with unilateral fimbria transection. Controls received intraventricular injections of cytochrome c. A quantitative analysis of acetylcholinesterase (AChE)-positive fibers was used to evaluate whether the NGF treatment can stimulate regeneration and reinnervation of the cholinergic axons in the septohippocampal system of aged rats with fimbria transection. A marked increase in the density of AChE-positive fibers was observed in the lateral septum, the dorsal fornix and the dorsal hippocampus of the NGF-treated animals, as compared to the controls. In the lateral septum, the increase was observed in the 2-month NGF-treated animals but not in the 15-day NGF-treated animals. In the dorsal fornix at the level of the dorsal hippocampus, the increase was observed on both the lesioned and unlesioned sides of both the 15-day and 2-month NGF-treated animals. In the denervated (lesioned side) hippocampus, the increase took place in the dorsal hippocampus but not in the ventral hippocampus of both the 15-day and 2-month NGF-treated animals. There was no recovery of AChE-positive fibers on the lesioned side of the fimbria distal to the lesion site even in the 2-month NGF-treated animals. These results demonstrate that intraventricular injections of NGF can stimulate collateral sprouting of intact cholinergic axons in the septohippocampal system and promote cholinergic reinnervation of the denervated hippocampus of aged rats with fimbria transection.  相似文献   

7.
Nicotine has been shown to improve working memory. The neural mechanisms underlying this effect are still being determined. The ventral hippocampus is critical for nicotinic effects on memory. Local ventral hippocampal infusions of either the nicotinic alpha7 nicotinic receptor antagonist methyllycaconitine (MLA) or the alpha4beta2 nicotinic receptor antagonist dihydro-beta-erythroidine (DHbetaE) caused working memory impairments, but no additive effects were seen. Other areas, such as the amygdala, also likely play important roles in nicotinic effects on memory. Amygdalar lesions cause memory impairment and there is a dense concentration of nicotinic receptors in the basolateral amygdala. The current study used local basolateral amygdalar infusions of the nicotinic antagonists MLA and DHbetaE to determine the involvement of alpha7 and alpha4beta2 nicotinic receptors in spatial working and reference memory. Rats (n=8) were trained in the 16-arm radial maze and were implanted with bilateral infusion cannulae into the basolateral amygdala. Acute infusions of MLA (6.75 micro g/side, P<0.0005) or DHbetaE (3.38 micro g/side, P<0.025) caused significant working memory impairments. When given together MLA and DHbetaE did not produce an additive effect. In fact, the 6.75 micro g/kg dose of DHbetaE produced a significant (P<0.0005) attenuation of the MLA-induced working memory impairment. Significant effects were not seen with reference memory or response latency. Nicotinic systems in the basolateral amygdala, as in the ventral hippocampus, are important for spatial working memory. In both the basolateral amygdala and the ventral hippocampus, MLA and DHbetaE individually caused working memory impairments. The lowest effective dose of DHbetaE was lower in the basolateral amygdala than in the ventral hippocampus. In both the basolateral amygdala and the ventral hippocampus, combined MLA and DHbetaE treatment did not produce additive working memory deficits. Unlike in the ventral hippocampus, the addition of DHbetaE to MLA in the basolateral amygdala significantly reduced the MLA-induced working memory deficit.  相似文献   

8.
In order to clarify the roles of hippocampal M1 and M2 muscarinic receptors in working and reference memory performance of rats, the effects of intrahippocampal injections of selective antagonists at both receptors on this behavior were examined with a three-panel runway task. In the working memory task, the M1 muscarinic receptor antagonist pirenzepine, injected bilaterally at 0.32 and 1.0 μg/side into the dorsal hippocampus, significantly increased the number of errors (attempts to pass through two incorrect panels of the three panel-gates at four choice points). This effect of intrahippocampal pirenzepine (1.0 μg/side) on working memory was attenuated by concurrent injection of 10 μg/side AF102B, the selective M1 muscarinic receptor agonist. Intrahippocampal injection of the M2 muscarinic receptor antagonist methoctramine at doses up to 1.0 μg/side had no significant effect on the number of working memory errors. Intrahippocampal methoctramine injection at 3.2 μg/side produced a significant increase in working memory errors, an effect that was reversed by concurrent injection of 10 μg/side AF102B. Concurrent injection of 0.32 μg/side methoctramine significantly reduced the increase in working memory errors induced by intrahippocampal pirenzepine (1.0 μg/side). In the reference memory task, neither pirenzepine nor methoctramine affected the number of errors when injected into the hippocampus at doses up to 1.0 and 3.2 μg/side, respectively. These results suggest that processes mediated by M1 muscarinic receptors in the hippocampus are involved in working memory, but not in reference memory, and that blockade of hippocampal M2 muscarinic receptors ameliorates working memory deficits produced by M1 muscarinic blockade, possibly by increasing acetylcholine release.  相似文献   

9.
Three-month-old Long-Evans female rats sustained aspirative lesions of the dorsal septohippocampal pathways and, 2 weeks later, received intrahippocampal suspension grafts containing cells from the mesencephalic raphe, cells from the medial septum and the diagonal band of Broca, or a mixture of both. Lesion-only and sham-operated rats were used as controls. All rats were tested for locomotor activity 1 week, 3 and 5 months after lesion surgery, for spatial working memory in a radial maze from 5 to 9 months, and for reference and working memory in a water tank during the 9th month after lesioning. Determination of hippocampal concentration of acetylcholine, noradrenaline, and serotonin was made after completion of behavioral testing. Compared to sham-operated rats, all rats with lesions, whether grafted or not, exhibited increased levels of locomotor activity and made more errors in the radial maze. The lesioned rats were also impaired in the probe trial (30 first seconds) of the water-tank test made according to a protocol requiring intact reference memory capabilities. While rats with septal or raphe grafts were also impaired, the rats with co-grafts showed performances not significantly different from those of sham-operated rats. With a protocol requiring intact working memory capabilities, all lesioned rats, whether grafted or not, were impaired in the water-tank test. In the dorsal hippocampus of lesion-only rats, the concentration of acetylcholine and serotonin was significantly reduced. In rats with septal grafts or co-grafts, the concentration of acetylcholine was close to normal, as was that of serotonin in rats with raphe grafts or co-grafts. These results confirm previous findings showing that co-grafts enabled the neurochemical properties of single grafts to be combined. Data from the water-tank test suggest that cholinergic and serotonergic hippocampal reinnervations by fetal cell grafts may induce partial recovery of spatial reference, but not working memory capabilities in rats.  相似文献   

10.
Izaki Y  Hori K  Nomura M 《Brain research》2000,860(1-2):199-202
To determine whether the medial prefrontal cortex (PFC), ventral hippocampus and hippocampo-PFC pathway are involved in operant lever-press learning, we conducted lidocaine injections to these brain sites. Rats were injected immediately after lever-press acquisition in the first training, and the second 5-min test the next day. Results showed the response rate of either PFC- or ventral hippocampus-inactivated rats to be lower than that of control rats in the test the next day. Rats having lidocaine injected into the unilateral ventral hippocampus combined with contralateral medial PFC also showed lower response rate in their tests. These results suggest that hippocampo-PFC disconnection disturbs operant learning.  相似文献   

11.
We analyzed the development of the hippocamposeptal projection and the morphology of the neurons giving rise to this projection. The fluorescent tracer Dil was injected into the septal region or the hippocampus in fixed brains of embryonic and early postnatal rats. Anterogradely labeled hippocampal axons first reached the septal region at E16. They ran along the midline of the brain, thereby approaching the medial septum. Axons to the lateral septum were first observed around E18/19. The lateral septum is partly innervated by collaterals of axons that travel to the medial septum. The projection to the lateral septal nuclei becomes more massive during early postnatal stages, whereas that to the medial septum becomes smaller. Cells in the medial septum retrogradely labeled by injection into the hippocampus were first observed at E18. Thus, the hippocamposeptal projection is established earlier than the septohippocampal projection. The first hippocampal projection neurons are nonpyramidal neurons that appear to pioneer the pathway to the septum. Pyramidal cell axons follow this first cohort of axons into the medial septum. Pyramidal cells could be retrogadely labeled from the medial septum during the perinatal period but then diminished in number. At P10, only nonpyramidal cells were labeled by medial septal injections. This indicates that the pyramidal component of this projection is transient and is removed shortly after birth. However, as is known from ther studies, hippocampal pyramidal cells give rise to a powerful projection to the lateral septum in adult animals. Our results show that there is a considerable remodeling of the projection from the hippocampus to the septum during ontogenetic development. © 1995 Willy-Liss, Inc.  相似文献   

12.
The role of forebrain cholinergic projections in place navigation learning was assessed in two experiments. Following surgery, rats were required to learn the spatial location of an underwater platform on the basis of distal room cues. Bilateral injections of ibotenic acid into the nucleus basalis magnocellularis depleted choline acetyltransferase (ChAT) from the anterior and temporoparietal cortex but not the hippocampus. Separate histological studies confirmed the accuracy of the lesions and demonstrated a marked loss of cortical acetylcholinesterase. These rats subsequently showed no deficits in spatial learning or memory. In a second experiment, bilateral lesions of the vertical limb of the diagonal band of Broca and medial septum depleted ChAT from the hippocampus and posterior cortex but not the anterior cortex. Histological studies confirmed the accuracy of the lesion and showed a pronounced loss of acetylcholinesterase from the hippocampus. These rats were deficient in spatial learning and showed reduced spatial bias during transfer tests. The data are discussed in the light of the hypothesis that the cholinergic innervation of the hippocampus plays a key role in spatial reference memory processes involved in place navigation.  相似文献   

13.
Rats were bilaterally implanted with indwelling cannulae in the CA1 region of the dorsal hippocampus. After recovery from surgery, they were trained in a one-trial, step-down inhibitory avoidance task using a 0.5 mA foot shock. The animals received intrahippocampal infusions of either vehicle or anandamide (100 microM, 0.5 microl/side) 30 min before training. Then, either immediately post-training or 3 h later, they received infusions of saline, noradrenaline (0.5 microg/side), SKF 38393 (1.5 microg/side), oxotremorine (0.6 microg/side) or Sp-cAMPs (0.5 microg/side) also in the hippocampus. All animals were tested for retention 24-h post-training. Anandamide produced anterograde amnesia. Immediate, but not delayed, post-training treatment with Sp-cAMPs and noradrenaline reversed this effect. SKF 38393 and oxotremorine had no influence on the amnesia caused by anandamide either when given immediately or 3 h after training. The results suggest that the amnesic effect of anandamide is related to the known noradrenergic regulation of cAMP-dependent protein kinase (PKA) activity previously described in the hippocampus immediately after avoidance training, which is crucial to long-term memory (LTM) formation.  相似文献   

14.
The contribution of the medial septum to different aspects of spatial information processing was assessed by examining the effects of reversible septal inactivation on radial maze performance of rats. In addition, the selectivity with which the medial septum affects learning was studied by testing the effects of septal inactivation on the acquisition of non-spatial information. Rats were first trained according to a spatial working memory procedure that included a 30-min delay between the first 4 (forced) choices and subsequent test (free) choices. The forced choices comprised the sample phase of the experiment while the free choices comprised the test phase. Saline or tetracaine (a local anesthetic) was injected into the medial septal area either before the sample phase, after the sample phase (i.e. at the beginning of the delay period), or just before the test phase. In contrast to the saline injections, tetracaine injected just before the sample or test phases produced a significant increase in errors at test. Tetracaine injection at the beginning of the delay period did not affect test choice accuracy. EEG records showed that septal inactivation drastically, yet temporarily, reduced the hippocampal theta rhythm. Thus, when septal inactivation occurred either before the sample phase or at the beginning of the delay period, hippocampal theta recovered by the time of the test phase. Septal inactivation also produced a significant retardation of learning on a non-spatial reference memory task, although clear improvement over trials did occur. Moreover, the results of subsequent saline injections suggest that at least some of the performance deficit was due to variables other than learning per se.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
This study was aimed at testing the effects of a reversible inactivation of the hippocampal formation on long-term and short-term acquisition of spatial information. Rats chronically equipped with either bilateral cannulae into the ventral hippocampus or a single cannula into the medial septum had to locate, in a circular platform with 18 holes on the periphery, the unique hole leading to a hidden shelter in order to avoid bright light. In Expt. 1, following 16 days of training (1 trial/day, 24 h ITI) without physical intervention, the location of the correct hole was changed on both Days 17 and 23, and the rats were either sham-injected or injected with lidocaine. Both hippocampally and septally lidocaine-injected rats relearned the new location at a rate similar to corresponding sham-injected animals. In Expt. 2, a massed-trial version of the task was used, in which the rats had to learn a new hole location on each daily session (3 trials, ITI = 1 min). Animals were sham-injected or lidocaine-injected on alternate sessions. While sham-injected rats improved in orientational accuracy over successive trials, both hippocampally and septally lidocaine-injected rats failed to display any between-trial improvement. The impairment displayed by lidocaine-injected rats when their hippocampus was inactivated confirms the role of the hippocampus in short-term spatial memory (Expt. 2). In contrast, short-lasting inactivation of the hippocampus did not prevent long-term spatial learning (Expt. 1). These results suggest that the hippocampus could process information 'off-line' in the delay between temporally discontiguous learning trials, and show that short-term and long-term spatial learning rely on distinct neurobiological mechanisms.  相似文献   

16.
Rats with extensive lesions to the mammillary body region, the hippocampus, or rats which had received a control operation were trained postoperatively on two visuo-spatial conditional associative learning tasks in which they had to learn to associate spatial cues with particular visual/auditory stimuli. The animals were subsequently trained on a spatial working memory task, the eight-arm radial maze. Rats with lesions to the mammillary body region were able to acquire the conditional associative learning tasks at a rate comparable to that of operated control animals, whereas those with hippocampal lesions were not. By contrast, rats with a lesion of the mammillary body region or the hippocampus were significantly impaired in comparison with the operated control animals in the radial maze. The findings suggest that lesions to the mammillary body region impair spatial working memory without affecting the capacity to associate particular exteroceptive cues with spatial locations.  相似文献   

17.
Infusion of 192 IgG-saporin (SAP) into the medial septum (MS) of rats selectively destroys cholinergic neurons projecting to the hippocampus and impairs acquisition of a delayed matching to position (DMP) T-maze task. The present study evaluated whether introduction of a mild aversive stimulus 30 min prior to training would attenuate the deficit in DMP acquisition caused by the SAP lesions. Male Sprague-Dawley rats received medial septal infusions of either artificial cerebrospinal fluid or SAP (0.22 microg in 1.0 microl). Fourteen days later, all animals were trained to perform the DMP task. Half of the SAP-treated animals and controls received an intraperitoneal injection of saline each day, 30 min prior to training. Results show that intraperitoneal saline attenuated the impairment in DMP acquisition in SAP lesioned rats. These results suggest that a mild aversive stimulus can attenuate cognitive deficits caused by medial septal cholinergic lesions.  相似文献   

18.
The purpose of this study was to identify brain sites that contribute to the Δ9-tetrahydrocannabinol (Δ9-THC)-induced impairment of spatial memory in rats. Rats were tested in the eight-arm radial maze after microinjections of Δ9-THC into one of 14 different brain regions. The bilateral microinjection of Δ9-THC (20 μg/side) impaired spatial memory when injected into the dorsal hippocampus (DH), ventral hippocampus (VH) or dorsomedial thalamus nucleus (DMT). However, rats treated with Δ9-THC into DMT produced perseverative behavior which has not been observed by systemic administration of Δ9-THC. On the other hand, spatial memory was unaffected by microinjections of Δ9-THC into the other 11 areas examined: frontal (FC) and frontoparietal (FPC) cortex, central (ACE) and basolateral (ABL) amygdaloid nucleus, medial caudate putamen (CPM), lateral hypothalamus (LH), mammillary body (MB), basal forebrain (BF), medial septal nucleus (SEP) and dorsal (DR) and median (MR) raphe nucleus. These results suggest that DH and VH may be important brain sites for the Δ9-THC-induced impairment of spatial memory.  相似文献   

19.
The importance of the hippocampus in spatial learning is well established, but the precise relative contributions by the dorsal (septal) and ventral (temporal) subregions remain unresolved. One debate revolves around the extent to which the ventral hippocampus contributes to spatial navigation and learning. Here, separate small subtotal lesions of dorsal hippocampus or ventral hippocampus alone (destroying 18.9 and 28.5% of total hippocampal volume, respectively) spared reference memory acquisition in the water maze. By contrast, combining the two subtotal lesions significantly reduced the rate of acquisition across days. This constitutes evidence for synergistic integration between dorsal and ventral hippocampus in mice. Evidence that ventral hippocampus contributes to spatial/navigation learning also emerged early on during the retention probe test as search preference was reduced in mice with ventral lesions alone or combined lesions. The small ventral lesions also led to anxiolysis in the elevated plus maze and over‐generalization of the conditioned freezing response to a neutral context. Similar effects of comparable magnitudes were seen in mice with combined lesions, suggesting that they were largely due to the small ventral damage. By contrast, small dorsal lesions were uniquely associated with a severe spatial working memory deficit in the water maze. Taken together, both dorsal and ventral poles of the hippocampus contribute to efficient spatial navigation in mice: While the integrity of dorsal hippocampus is necessary for spatial working memory, the acquisition and retrieval of spatial reference memory are modulated by the ventral hippocampus. Although the impairments following ventral damage (alone or in combination with dorsal damage) were less substantial, a wider spectrum of spatial learning, including context conditioning, was implicated. Our results encourage the search for integrative mechanism between dorsal and ventral hippocampus in spatial learning. Candidate neural substrates may include dorsoventral longitudinal connections and reciprocal modulation via overlapping polysynaptic networks beyond hippocampus.  相似文献   

20.
This study investigated the ability of animals to learn both reference memory and delayed matching-to-place variants of the watermaze after large lesions of the hippocampus that deliberately spared only small remnants of the structure. Groups were created that had differing blocks of residual tissue in the septal pole of the hippocampus (15% or 30% of total volume), located either unilaterally (30 or 50% on one side, 0% on the other) or bilaterally (30 + 30%). These groups were capable of learning the reference memory task, as indexed by normal spatially focused searching in a probe trial, but their rate of learning was slower than that of sham-lesioned rats. An impairment in the rate of learning was also seen in the delayed match-to-place task, where one-trial memory was observed only at the shortest (5 s) intertrial interval in the lesioned groups with the largest sparing. In both tasks performance was proportional to the volume of hippocampus spared and independent of whether this was unilaterally or bilaterally located. The findings are compatible with distributed processing accounts of hippocampal memory storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号