首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Naturally occurring cell death in the developing dentate gyrus of the rat   总被引:2,自引:0,他引:2  
The rat dentate gyrus is a unique brain structure in that most of its neurons are born postnatally. Cell death is known to be an important phenomenon in brain development and yet it is at present unknown whether the dentate gyrus undergoes a period of naturally occurring cell death. In order to determine whether or not cell death plays a role in the development of the dentate gyrus, we examined the density of degenerating cells and healthy cells in the suprapyramidal and infrapyramidal granule cell blades and the hilus during the postnatal period. Light microscopic examination of Nissl-stained brain tissue revealed substantial numbers of pyknotic cells throughout the dentate gyrus during the first postnatal week. Quantitative analysis of the suprapyramidal blade showed a peak in the density of pyknotic cells at the end of the first postnatal week. This peak in the density of degenerating cells coincided with a significant decrease in the density of healthy cells in this region. No rostrocaudal gradient in cell death was observed for the suprapyramidal blade. However, cell death in the suprapyramidal blade proceeded along superficial to deep as well as lateral to medial gradients. Within the infrapyramidal blade/hilus, cell death occurred at different times depending on the rostrocaudal level of the dentate gyrus. Peak density of pyknotic cells was observed the day after birth in the rostral part of the infrapyramidal blade/hilus while pyknosis did not reach a peak in the middle and temporal thirds of this region until the end of the first postnatal week. Cell death in the infrapyramidal blade proceeded in a superficial to deep and lateral to medial direction. These results indicate that the dentate gyrus undergoes a significant period of naturally occurring cell death during the early postnatal period.  相似文献   

2.
The influence of intrahippocampal injections of glutamate receptor agonists on neuropeptide Y (NPY) mRNA expression was investigated in granule cells and interneurons of the rat dentate gyrus. One day after local injection of non-neurodegenerative doses (20 and 70 nmol) of the metabotropic glutamate receptor agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylate [(1S,3R)ACPD], NPY mRNA levels were more than doubled in ipsilateral granule cells and interneurons. Doses of 200 and 400 nmol caused up to 15.9- and 4.6-fold mRNA increases in granule cells and interneurons, respectively. The group I metabotropic glutamate receptor agonist (RS)-3,5-dihydroxyphenylglycine (DHPG; 50 nmol), but not the group III receptor agonist L(+)-2-amino-4-phosphonobutyrate (L-AP4; 20 and 200 nmol) exerted a similar action. The general metabotropic glutamate receptor antagonist (+)-α-methyl-4-carboxyphenylglycine (MCPG; 200 nmol), the group I receptor antagonist (S)-4-carboxyphenylglycine (4-CPG; 200 nmol) and the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 (1 mg/kg; i.p.) partially blocked the (1S,3R)-1-aminocyclopentane-1,3-dicarboxylate-induced increase in NPY mRNA in granule cells, but not in interneurons. (S)-4-carboxyphenylglycine (200 nmol) by itself increased NPY mRNA levels in ipsilateral interneurons threefold, indicating the activation of phospholipase D coupled receptors. Non-neurodegenerative doses of (RS)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA, 0.3 nmol) caused modest increases in NPY mRNA levels in ipsilateral interneurons, whereas neurodegenerative doses (1–10 nmol) induced markedly increased NPY mRNA levels in granule cells (up to 11-fold) and interneurons (up to threefold). It is suggested that activation of metabotropic glutamate receptors stimulates NPY mRNA expression in granule cells and interneurons in the rat dentate gyrus. Whereas in granule cells NPY mRNA upregulation is preferentially mediated by group I metabotropic glutamate receptors, it may involve ionotropic and metabotropic glutamate receptors in interneurons. Hippocampus 1998;8:274–288. © 1998 Wiley-Liss, Inc.  相似文献   

3.
Ageing is accompanied by a decline in neurogenesis and in polysialylated isoforms of neural cell adhesion molecule (PSA-NCAM) expression within the hippocampus and by elevated basal levels of circulating corticosterone. In a companion study, we demonstrated that suppression of corticosterone by adrenalectomy increased neurogenesis and PSA-NCAM expression in the dentate gyrus of adult rats. Here we show that adrenalectomy increased neurogenesis in this structure in old rats, as measured by the incorporation of 5-bromo-2'-deoxyuridine in neuronal progenitors. This effect was prevented by corticosterone replacement. In contrast, PSA-NCAM expression remained unchanged in comparison with controls. Thus, in the aged brain, stem cells are still present and able to enter the cell cycle. This may point to ways of protecting or treating age-related cognitive impairments.  相似文献   

4.
The dentate gyrus is selectively reduced in size in the insulin-like growth factor 1 (IGF1) null mouse brain. The purpose of this study was to determine whether this defect is due to reduced granule cell numbers, and if so, to determine whether altered cell proliferation, survival, or both contribute to attenuation of dentate gyrus size. At postnatal day 10 (P10), granule cell numbers were not significantly different in IGF1 null and littermate wildtype (WT) dentate gyri. The subgranular zone cell population, however, was relatively increased, and the granule cell layer population relatively decreased in the IGF1 null dentate gyrus. By P50, total dentate cell numbers were decreased by 20% (P = 0.01) in the IGF1 null mouse, although IGF1 null subgranular zone progenitor cells remained relatively increased compared with WT (38%, P < 0.05). IGF1 null dentate cell proliferation, assessed by thymidine analogue incorporation, was actually increased at P10 (33%, P < 0.05) and P50 (167%, P = 0.001). Dentate granule cell death, assessed by the appearance of pycnotic cells and DNA fragmentation, was also significantly increased in the IGF1 null dentate (61%, P < 0.05 and 101%, P = 0.03). These data suggest that endogenous IGF1 serves an important role in dentate granule cell survival during the course of postnatal brain development. In addition, this work suggests the potential of a compensatory mechanism promoting increased dentate cell proliferation in the face of impaired cell survival during postnatal neurogenesis. J. Neurosci. Res. 64:341-347, 2001. Published 2001 Wiley-Liss, Inc.  相似文献   

5.
Characterizing the mechanisms by which endogenous factors stimulate neurogenesis is of special interest in view of the possible implication of newly generated cells in hippocampal functions or disorders. The aim of this study was to determine whether serotonin (5-HT) and oestradiol (E2) act through a common pathway to increase cell proliferation in the adult dentate gyrus (DG). We also investigated the effects of long-lasting changes in oestrogen levels on cell proliferation. Combining ovariectomy with inhibition of 5-HT synthesis using p-chlorophenylalanine (PCPA) treatment produced approximately the same decreases in the number of bromodeoxyuridine (BrdU) and PSA-NCAM immunolabelled cells in the subgranular layer as ovariectomy alone. Administration of 5-hydroxytryptophan (5-HTP) restored cell proliferation primarily decreased by ovariectomy, whereas oestradiol was unable to reverse this change in ovariectomized rats treated with PCPA. These findings demonstrate that 5-HT mediates oestrogen stimulation of cell proliferation in adult dentate gyrus. However, increase in ovarian hormones during pregnancy has no effect on dentate cell proliferation. This finding suggests that concomitant changes in other factors, such as glucocorticoids, may counterbalance the positive regulation of cell proliferation by 5-HT and oestradiol. Finally, oestrogen may regulate structural plasticity by stimulating PSA-NCAM expression independently of neurogenesis, as shown for instance by the increases in the number of PSA-NCAM labelled cells in pregnants. As 5-HT and oestrogen are involved in mood disorders, our data suggest that the positive regulation of cell proliferation and neuroplasticity by these two factors may contribute to restore hippocampal connectivity in depressive patients.  相似文献   

6.
In the dentate gyrus neurons continue to be generated from late embryonic to adult stage. Recent extensive studies have unveiled several key aspects of the adult neurogenesis, but only few attempts have so far been made on the analysis of the early postnatal neurogenenesis, a transition state between the embryonic and adult neurogenesis. Here, we focus on the early postnatal neurogenesis and examine the nature and development of neural progenitor cells in Wistar rats. Immunohistochemistry for Ki67, a cell cycle marker, and 5-bromo-2-deoxyuridine (BrdU) labelling show that cell proliferation occurs mainly in the hilus and partly in the subgranular zone. A majority of the proliferating cells express S100beta and astrocyte-specific glutamate transporter (GLAST) and the subpopulation are also positive for glial fibrillary acidic protein (GFAP) and nestin. Tracing with BrdU and our modified retrovirus vector carrying enhanced green fluorescent protein (GFP) indicate that a substantial population of the proliferating cells differentiate into proliferative neuroblasts and immature neurons in the hilus, which then migrate to the granule cell layer (66.8%), leaving a long axon-like process behind in the hilus, and the others mainly become star-shaped astrocytes (12.0%) and radial glia-like cells (4.7%) in the subgranular zone. These results suggest that the progenitors of the granule cells expressing astrocytic and radial glial markers, proliferate and differentiate into neurons mainly in the hilus during the early postnatal period.  相似文献   

7.
During adulthood, new neurons are continuously added to the mammalian dentate gyrus (DG). An increasing number of studies have correlated changes in rates of dentate neurogenesis with memory abilities. One study based on subchronic treatment with the toxin methylazoxymethanol acetate (MAM) has provided causal evidence that neurogenesis is involved in hippocampal-dependent trace conditioning. In contrast, spatial learning is not impaired following MAM treatment. We hypothesized that this was due to the small residual number of new cells produced following MAM treatment. In the present experiment, we attempted to achieve a higher level of reduction of adult-generated cells following MAM treatment in young and aged rats. We found only a partial reduction of adult-generated cells in the DG. More importantly, independently of the age of the animals, MAM treatment at a dose necessary to reduce neurogenesis altered the overall health of the animals. In conclusion, the behavioural results obtained following subchronic treatment with high doses of MAM in adulthood must be interpreted with extreme caution.  相似文献   

8.
Short-term and long-term survival of new neurons in the rat dentate gyrus   总被引:22,自引:0,他引:22  
New neurons continue to be generated in the dentate gyrus throughout adulthood. Previous studies have shown that a significant proportion of new granule cells labeled with the thymidine analogue bromodeoxyuridine (BrdU) are lost from the adult dentate gyrus within 2 weeks. How long this loss continues and the extent to which it represents cell death, as opposed to dilution of label, is unclear. To address these questions, adult rats were injected with BrdU, and BrdU labeling in the dentate gyrus was compared at several survival time points. Double labeling with BrdU and the cell cycle marker Ki-67 showed that BrdU is detectable for up to 4 days in some cells that continue to divide, indicating that any decrease in the number of BrdU-labeled cells after 4 days is likely to reflect cell death rather than BrdU dilution. Death of new cells in the granule cell layer occurred at a steady rate between 6 and 28 days after labeling, resulting in loss of 50% of BrdU-labeled cells over this 22-day period. New granule cells that survived this first month lived for at least 5 additional months. In contrast, 26% of the granule cells labeled with BrdU at the peak of dentate gyrus development on postnatal day (P) 6 died between 1 and 6 months after labeling. These findings suggest that granule cells born during adulthood that become integrated into circuits and survive to maturity are very stable and may permanently replace granule cells born during development.  相似文献   

9.
A large body of evidence exists to demonstrate that excitatory amino acids (EAA) and their receptors are involved in the pathophysiological mechanisms linking several acute brain insults, such as cerebral ischemia, to neuronal degeneration and death. Accordingly, the use of EAA receptor antagonists can be beneficial in attenuating or preventing the neuronal irreversible damage subsequent to various neuropathological syndromes. We have investigated the effect of 15 min of simulated ischemic conditions, i. e., oxygen/glucose deprivation, on hippocampal slices preparation measuring, as neurotoxicity indexes, both the amino acids efflux in the incubation medium, detected by HPLC, and the inhibition of protein synthesis, evaluated as 3H-Leucine incorporation into proteins. Accumulation of neurotransmitter amino acids was measured in the medium during the “ischemic” period. Glutamate increased 30-fold over the basal level while aspartate was sevenfold and GABA 12-fold higher than in normal conditions. After a reoxygenation period of 30 min, the rate of protein synthesis of hippocampal slices subjected to “ischemia” was reduced to 35–50% of controls. The non-competitive NMDA antagonist MK-801 (100 μM) and the competitive NMDA antagonist CGP 39551 (100–250 μM) as well as the non-NMDA receptor antagonist NBQX (100 μM) and AP3 (300 μM) were unable to counteract the metabolic impairment when they were present alone in the incubation fluid during simulated “ischemia.” An incomplete, but highly significant (p < 0.001), protection from protein synthesis impairment was achieved in the presence of an equimolar concentration (100 μM) of MK-801 and NBQX. A similar protective effect could be reproduced using 100 μM NBQX in concomitance with a high Mg++ (20 μM) voltage-dependent block of the NMDA receptor-associated channel but not exposing the slices to a NBQX (100 μM) and CGP 39551 (100–250 μM) mixture. The recovery of protein synthesis in the presence of the MK-801/NBQX effective combination was not paralleled by a detectable decrease in the amount of amino acids released in the incubation medium during the “ischemic” period. Taken together, the present data allow new insights into neurotoxicity-mediating mechanisms, suggesting that multiple additive processes are involved and that antagonists acting at different sites on excitatory amino acid receptor subtype can show different neuroprotective potency. © 1995 Wiley-Liss, Inc.  相似文献   

10.
Recent observations indicate that drugs of abuse, including alcohol and opiates, impair adult neurogenesis in the hippocampus. We have studied in rats the impact of cocaine treatment (20 mg/kg, daily, i.p.) on cell proliferation, survival and maturation following short-term (8-day) and long-term (24-day) exposure. Using 5'-bromo-2-deoxyuridine (BrdU) and Ki-67 as mitotic markers at the end of the drug treatments, we found that both short- and long-term cocaine exposures significantly reduced cell proliferation in the dentate gyrus (DG) of the hippocampus. By labelling mitotic cells with BrdU pulses before or during the early stages of the drug treatment, we determined that long-term cocaine exposure did not affect the survival of newly generated cells. In register with this finding, cocaine chronic exposure did not increase the number of apoptotic cells labelled by TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling). Using doublecortin (DCX) immunocytochemistry and electron microscopy, we next examined the effects of cocaine exposure on the maturation of the neural precursors and on synaptic output to CA3. DCX immunocytochemistry showed that immature hippocampal cells of rats exposed to cocaine displayed normal arborization patterns and similar degrees of colocalization with BrdU at two different developmental stages. Moreover, cocaine did not produce significant morphological alterations of the mossy fibre projection system to stratum lucidum in the CA3 area of the hippocampus. The results presented demonstrate that chronic cocaine exposure impairs proliferation dynamics in the DG without significantly altering either the survival and growth of immature cells or the structural features of terminal projections to CA3.  相似文献   

11.
Synaptic distributions of N-methyl-d -aspartate (NMDA) and α-amino-3-hydroxy-5-methylisoxazolepropionic acid (AMPA) receptor subunits, NMDAR1 and GluR2, respectively, were examined by electron microscopy with the high spatial resolution of postembedding immunogold localization. We provide direct evidence for colocalization at individual axodendritic asymmetric synapses within the CA1 subfield of rat hippocampus. AMPA/ NMDA receptor colocalization was found both in γ-aminobutyric acid (GABA)ergic dendrites and non-GABAergic dendritic shafts, as well as dendritic spines. Some asymmetric synapses were found to contain only NMDAR1 or GluR2; however, most immunopositive synapses contained both subunits. Many NMDAR1 and/ or GluR2 immunopositive profiles received GABAergic innervation at an adjacent synapse, providing a substrate for GABAergic modulation of both GluR classes. These data suggest that excitatory neuronal transmission in CA1 neurons may generally involve activation of both NMDA and AMPA receptor subunits at a single synapse, however, they also offer ultrastructural evidence for NMDAR1-only synapses that might represent silent synapses. J. Neurosci. Res. 54:444–449, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
Electroconvulsive shock (ECS) seizures provide an animal model of electroconvulsive therapy (ECT) in humans. Recent evidence indicates that repeated ECS seizures can induce long-term structural and functional changes in the brain, similar to those found in other seizure models. We have examined the effects of ECS on neurogenesis in the dentate gyrus of the adult rat using bromodeoxyuridine (BrdU) immunohistochemistry, which identifies newly generated cells. Cells have also been labeled for neuronal nuclear protein (NeuN) to identify neurons. One month following eight ECS seizures, ECS-treated rats had approximately twice as many BrdU-positive cells as sham-treated controls. Eighty-eight percent of newly generated cells colabeled with NeuN in ECS-treated subjects, compared to 83% in sham-treated controls. These data suggest that there is a net increase in neurogenesis within the hippocampal dentate gyrus following ECS treatment. Similar increases have been reported following kindling and kainic acid- or pilocarpine-induced status epilepticus. Increased neurogenesis appears to be a general response to seizure activity and may play a role in the therapeutic effects of ECT.  相似文献   

13.
Adult neurogenesis is a key feature of the hippocampal dentate gyrus (DG). Neurogenesis is accompanied by synaptogenesis as new cells become integrated into the circuitry of the hippocampus. However, little is known to what extent the embedding of new neurons rewires the pre-existing network. Here we investigate synaptic rewiring in the DG of gerbils (Meriones unguiculatus) under different rates of adult cell proliferation caused by different rearing conditions as well as juvenile methamphetamine treatment. Surprisingly, we found that an increased cell proliferation reduced the amount of synaptic rewiring. To help explain this unexpected finding, we developed a novel model of dentate network formation incorporating neurogenesis and activity-dependent synapse formation and remodelling. In the model, we show that homeostasis of neuronal activity can account for the inverse relationship between cell proliferation and synaptic rewiring.  相似文献   

14.
Type 1 diabetes mellitus correlates with several brain disturbances, including hypersensitivity to stress, cognitive impairment, increased risk of stroke and dementia. Within the central nervous system, the hippocampus is considered a special target for alterations associated with diabetes. Neurogenesis is a plastic event restricted to few adult brain areas: the subgranular zone of the dentate gyrus and the subventricular zone (SVZ). First, we studied the ability for neurogenesis in the dentate gyrus and SVZ of chronic diabetic mice induced by streptozotocin (STZ). Using bromodeoxyuridine (BrdU) labelling of cells in the S-phase, we observed a strong reduction in cell proliferation rate in both brain regions of diabetic mice killed 20 days after STZ administration. Second, because oestrogens are active neuroprotective agents, we investigated whether 17beta-oestradiol (200 micro g pellet implant in cholesterol during 10 days) restored brain cell proliferation in the diabetic mouse brain. Our results demonstrated a complete reversibility of dentate gyrus cell proliferation in oestrogen-treated diabetic mice. This plasticity change was not exclusive to the hippocampus because oestrogen treatment restored BrdU incorporation into newborn cells of the SVZ region of diabetic animals. Oestrogen treatment did not alter the hyperglycemic status of STZ-diabetic mice. Moreover, oestrogen did not modify BrdU incorporation in control animals. These data show that oestrogen treatment strongly stimulates brain neurogenesis of diabetic mice and open up new venues for understanding the potential neuroprotective role of steroid hormones in diabetic encephalopathy.  相似文献   

15.
Acute stress suppresses new cell birth in the hippocampus in several species. Relatively little is known, however, on how chronic stress affects the turnover, i.e. proliferation and apoptosis, of the rat dentate gyrus (DG) cells, and whether the stress effects are lasting. We investigated how 3 weeks of chronic unpredictable stress would influence the structural dynamic plasticity of the rat DG, and studied newborn cell proliferation, survival, apoptosis, volume and cell number in 10-week-old animals. To study lasting effects, another group of animals was allowed to recover for 3 weeks. Based on two independent parameters, bromodeoxyuridine (BrdU) and Ki-67 immunocytochemistry, our results show that both chronic and acute stress decrease new cell proliferation rate. The reduced proliferation after acute stress normalized within 24 h. Interestingly, chronically stressed animals showed recovery after 3 weeks, albeit with still fewer proliferating cells than controls. Apoptosis, by contrast, increased after acute but decreased after chronic stress. These results demonstrate that, although chronic stress suppresses proliferation and apoptosis, 3 weeks of recovery again normalized most of these alterations. This may have important implications for our understanding of the reversibility of stress-related hippocampal volume changes, such as occur, for example, in depression.  相似文献   

16.
Yuji Ikegaya 《Glia》2016,64(9):1508-1517
Microglia, which are the brain's resident immune cells, engulf dead neural progenitor cells during adult neurogenesis in the subgranular zone (SGZ) of the dentate gyrus (DG). The number of newborn cells in the SGZ increases significantly after status epilepticus (SE), but whether and how microglia regulate the number of newborn cells after SE remain unclear. Here, we show that microglia rapidly eliminate newborn cells after SE by primary phagocytosis, a process by which viable cells are engulfed, thereby regulating the number of newborn cells that are incorporated into the DG. The number of newborn cells in the DG was increased at 5 days after SE in the adult mouse brain but rapidly decreased to the control levels within a week. During this period, microglia in the DG were highly active and engulfed newborn cells. We found that the majority of engulfed newborn cells were caspase‐negative viable cells. Finally, inactivation of microglia with minocycline maintained the increase in the number of newborn cells after SE. Furthermore, minocycline treatment after SE induced the emergence of hilar ectopic granule cells. Thus, our findings suggest that microglia may contribute to homeostasis of the dentate neurogenic niche by eliminating excess newborn cells after SE via primary phagocytosis. GLIA 2016;64:1508–1517  相似文献   

17.
During adulthood, neural precursors located in the subgranular zone of the dentate gyrus continue to proliferate, leading to the generation of new granule neurons. These recently generated cells transiently express the polysialylated form of the neural cell adhesion molecule, PSA-NCAM, and are supported by radial glia-like cells that are likely to play a role in neuronal migration and differentiation, or even act as their precursors. Previous reports indicate that treatment with NMDA receptor antagonists stimulates adult neurogenesis in the dentate gyrus, and because of the potential therapeutic value of this approach, we were interested in further characterizing the consequences of pharmacologically modulating this process. We treated adult rats with the competitive NMDA receptor antagonist, CGP43487, and examined cell proliferation, PSA-NCAM expression, and changes in the radial glia cell population in the subgranular zone at different time points. In addition, we sought to determine if this treatment led to changes in cell death or gliotic reactions. The number of proliferating cells in the subgranular region of the dentate gyrus was increased significantly 2 days after treatment and it remained elevated 7 days postinjection. PSA-NCAM-immunoreactive granule cells and nestin-expressing radial glia-like cells also increased in number 7 days after the treatment. In contrast, we did not observe any change in granule cell death, and we were unable to detect any microglial or astroglial reaction during the first 7 days after treatment. Thus, NMDA receptor antagonist treatment serves as a valuable tool to increase neurogenesis in the adult hippocampus without undesirable collateral deleterious effects.  相似文献   

18.
After pilocarpine-induced status epilepticus, many granule cells born into the postseizure environment migrate aberrantly into the dentate hilus. Hilar ectopic granule cells (HEGCs) are hyperexcitable and may therefore increase circuit excitability. This study determined the distribution of their axons and dendrites. HEGCs and normotopic granule cells were filled with biocytin during whole-cell patch clamp recording in hippocampal slices from pilocarpine-treated rats. The apical dendrite of 86% of the biocytin-labeled HEGCs extended to the outer edge of the dentate molecular layer. The total length and branching of HEGC apical dendrites that penetrated the molecular layer were significantly reduced compared with apical dendrites of normotopic granule cells. HEGCs were much more likely to have a hilar basal dendrite than normotopic granule cells. They were about as likely as normotopic granule cells to project to CA3 pyramidal cells within the slice, but were much more likely to send at least one recurrent mossy fiber into the molecular layer. HEGCs with burst capability had less well-branched apical dendrites than nonbursting HEGCs, their dendrites were more likely to be confined to the hilus, and some exhibited dendritic features similar to those of immature granule cells. HEGCs thus have many paths along which to receive synchronized activity from normotopic granule cells and to transmit their own hyperactivity to both normotopic granule cells and CA3 pyramidal cells. They may therefore contribute to the highly interconnected granule cell hubs that have been proposed as crucial to development of a hyperexcitable, potentially seizure-prone circuit.  相似文献   

19.
Cell proliferation in the dentate gyrus of hippocampus was assessed using in vivo labeling with 5-bromo-2'-deoxyuridine (BrdU) in adult rats that were administered cocaine (20 mg/kg) for 14 consecutive days. Rats showed increased stereotypy at a challenge dose of cocaine after 1 week of withdrawal, suggesting the acquisition of behavioral sensitization. Twenty-four hours after final injection of repetitive cocaine administration, a 26% decrease in BrdU-positive cells was observed, compared with control rats. However, this returned to control level within 1 week. No differences were observed in rats that received a single injection of cocaine. Differentiation of newly formed cells was not influenced. These data imply that the regulation of hippocampal cell proliferation by cocaine may be involved in the development of certain symptoms of addiction, such as cognitive impairment and acquisition of behavioral sensitization.  相似文献   

20.
Adult neurogenesis in the dentate gyrus occurs at species-specific levels. Wood mice (Apodemus flavicollis) show higher proliferation rates than laboratory mice and voles (Clethrionomys glareolus, Microtus subterraneus). We compare rates of cell death and proliferation and investigate if cell proliferation leads to the long-term recruitment of granule cells. Granule and pyknotic cell numbers were estimated in wild-living rodents in different age classes and compared with laboratory mice of mixed genetic background. All species differ significantly in their number of granule cells, except for the comparison of laboratory mice with European pine voles. Granule cell number is significantly higher in old bank voles and wood mice as compared to adults (23 and 37%, respectively). The number of pyknotic cells is highest in wood mice and lowest in laboratory mice. Across all species, the numbers of proliferating and pyknotic cells correlate. Despite differences in cell proliferation and cell death, the ratio of proliferating to pyknotic cells does not differ between adults of the wild-living species, but in laboratory mice a significantly lower proportion of cells die compared with the other species. In addition, the ratio of proliferating to pyknotic cells was significantly higher in old wood mice than in adults. We conclude (i) that cell proliferation can lead to an increase in granule cell number in wild-living rodents and (ii) that species- and age-specific changes of the ratio between proliferating and pyknotic cells occur as deviations from a close correlation of these two numbers across all species and age groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号