首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
目的采用高效液相色谱-电喷雾-离子阱多级质谱法定性分析黄芪醇提物主要有效成分群。方法超声法制备黄芪的醇提物,反相高效液相色谱分离各主要有效成分,电喷雾-离子阱多级质谱对有效成分进行鉴定。结果定性分析了黄芪醇提物中的10种有效成分。结论 HPLC-ESI-MSn法有望用于黄芪有效成分群的定性分析,为黄芪药材的指纹图谱研究提供方法。  相似文献   

2.
建立了高效液相色谱-串联离子阱质谱法检测保健食品中违禁添加的6种雌激素类化学药品:雌三醇、雌二醇、炔雌醇、雌酮、己烯雌酚和美雌醇,并建立了包含保留时问与MSn谱图的标准谱库.采用C18色谱柱,流动相为乙腈-20 mmol/L乙酸铵溶液,梯度洗脱,采用离子阱质谱,正离子电喷雾电离源检测.6种雌激素均产生[M+H]+分子离子峰,MSn谱图的特征碎片离子明显.  相似文献   

3.
目的:对藏泌清胶囊的主成分进行定性鉴别。方法:分别采用了电喷雾-单级四极杆质谱、电喷雾-离子阱-飞行时间质谱、高效液相色谱以及质谱库检索的方法对藏泌清胶囊主成分进行了定性鉴别。结果:鉴别出藏泌清胶囊的主成分并非其标示的头孢拉定,而是四环素。结论:建立了一个系统地利用高效液相色谱以及高效液相-质谱法对未知物质定性的方法,可应用于假药的鉴别。  相似文献   

4.
目的:通过高分离度快速液相色谱(RRLC)-离子阱质谱联用技术定性分析参麦注射液及其中间体的化学成分。方法:色谱分离采用Agilent Rapid Resolution HT Extend-C18色谱柱(2.1 mm×50 mm,1.8μm),5 mmol.L-1醋酸铵-乙腈梯度洗脱,流速0.4 mL.min-1。质谱条件为电喷雾离子源,负离子模式检测。结果:利用多级质谱信息,结合对照品对照和文献分析,确定了数十种化合物的可能结构。结论:通过RRLC-离子阱质谱联用技术,为中药注射液的化学成分研究提供了一种快速、灵敏、高效的分析方法。  相似文献   

5.
目的建立“君-使”对药黄连-栀子兔含药血浆中相关成分的高效液相色谱-电喷雾-离子阱质谱分析方法。方法采用乙腈沉淀法去除血浆样品中的蛋白,高效液相色谱法分离,电喷雾电离源离子化样品,离子阱质谱步进式碰撞法获得待测化合物的多级质谱信息,推测其结构及形成途径。结果含药血浆中共有6个成分来源于黄连-栀子。结论该方法稳定性好,可用于黄连-栀子兔含药血浆中相关成分的进一步研究。  相似文献   

6.
用液相色谱-质谱联用法测定滨蒿中的茵陈色原酮   总被引:8,自引:0,他引:8  
以薄层色谱、高效液相色谱、三维高效液相色谱对滨蒿中利胆保肝活性成分进行了分离分析 ,采用液相色谱 质谱联用仪、电喷雾离子阱质谱对其结构进行鉴定 .结果表明 :滨蒿中的利胆有效成分除含有绿原酸、对羟基苯乙酮、6 ,7 二甲氧基香豆素外 ,还首次分离鉴定出具有保肝活性的茵陈色原酮 .  相似文献   

7.
目的:建立液相色谱-紫外光谱-离子阱质谱法分析灰黄霉素原料中主要杂质。方法:采用反相梯度色谱系统对灰黄霉素溶液进行分离,以紫外检测。对其中的主要杂质采用电喷雾离子阱质谱进行多级质谱分析,鉴定结构。结果:经多级质谱解析,鉴定了灰黄霉素原料中的6个杂质,分别为去氯灰黄霉素、去氢灰黄霉素、异灰黄霉素、灰黄霉酸、4-去甲灰黄霉素和6-去甲灰黄霉素。结论:本研究为测定灰黄霉素中相关杂质提供了新的分析方法,有助于加强灰黄霉素的质量控制。  相似文献   

8.
目的:建立高效液相色谱-离子肼质谱法鉴别阿胶真伪.方法:高效液相色谱-离子肼质谱法,以C 18化学键和硅胶为固定相,以0.1%甲酸溶液为流动相A,以乙腈为流动相B.电喷雾正离子模式.流速为0.3mL/min,柱温30℃.结果:提取的样品离子流色谱中,同时呈现出与对照药材保留一致的色谱峰,稳定性试验RSD为1.12%,重复性试验为0.79%.结论:此方法简便,准确,专属性强,可用于真伪阿胶的鉴别.  相似文献   

9.
目的:运用高效液相色谱-电喷雾离子阱质谱联用技术(HPLC-ESI-ITMSn)分析中药红花的主要化学成分。方法:采用水蒸汽蒸馏方法提取中药红花,色谱柱为Agilent EC-C18(4.6mm×100mm,2.7μm),以甲醇-0.1%甲酸为流动相进行梯度洗脱,流速为0.6mL.min-1,以ESI离子阱多级质谱仪进行检测。结果:获得中药红花水提物的一级总离子流图以及二级碎片离子,并从中鉴定出10种化合物。结论:HPLC-ESI-ITMSn法可用于中药红花水提物的成分解析。  相似文献   

10.
目的复方栀黄提取物由大黄、黄芩、栀子和白芷共四味中药组成。采用高效液相色谱与飞行时间质谱(HPLC-Q/TOF-MS)法对复方栀黄提取物中主要化学成分进行精确分子量定性研究,采用高效液相色谱与线性离子阱质谱联用技术(HPLC-QTRAP-MS)进行了不同类型对照品质谱裂解规律研究。方法以Vydac C4柱(250 mm×4.6 mm,5μm)为分析柱,以乙腈和体积分数为0.1%甲酸水溶液为流动相,梯度洗脱,紫外检测波长为238 nm和278 nm。结果在电喷雾离子源的正、负离子模式下用全扫描方式获得高分辨质谱数据和特定波长的紫外吸收色谱图,对比对照品保留时间并结合文献,通过分析鉴定了该提取物的44个成分。结论该方法为复方栀黄提取物中化学成分分析和结构鉴定提供了理论依据。  相似文献   

11.
目的:应用肿瘤细胞提取和色谱联用分析技术快速预测管花蒲公英中潜在的抗肿瘤活性化合物。方法:使用管花蒲公英醇提取物与人子宫颈癌细胞株(Hela)以及人胃腺癌细胞株(MK-1)孵育培养,HPLC-ESI-MS/MS及NMR技术分析和鉴定肿瘤细胞破碎液中化合物。结果:Hela细胞破碎液中检测到10个活性化合物,MK-1细胞破碎液中检测到5个活性化合物。结论:活性化合物可特异性地与靶细胞膜结合或进入靶细胞内,采用肿瘤细胞提取结合色谱联用分析技术,发现管花蒲公英中10个化合物(没食子酸,咖啡酰基酒石酸,绿原酸,4-O-咖啡酰基奎宁酸,槲皮素-3-O-α-D-吡喃阿拉伯糖苷,槲皮素-3-O-β-D-吡喃葡萄糖苷,槲皮素-3-O-α-D-呋喃阿拉伯糖苷,槲皮素-3-O-α-L-鼠李糖苷,槲皮素,木犀草素)可与Hela细胞结合,5个化合物(没食子酸,没食子酸甲酯,咖啡酸,槲皮素,木犀草素)可与MK-1细胞结合,该研究方法可预测中药提取中潜在的抗肿瘤活性成分。  相似文献   

12.
目的:研究枸骨叶中3类不同母核结构的三萜皂苷的ESI-MS裂解规律及其快速识别方法。方法:采用HPLC-ESI-MS技术研究3类三萜皂苷单体的ESI-MS(+)裂解规律,并采用该方法对药材中所含的3类成分进行快速识别。结果:3类三萜皂苷具有不同的ESI-MS(+)裂解特征;利用这些特征从枸骨叶提取物中快速筛选了29个三萜皂苷,其中10个可通过与对照品比对被准确鉴定。结论:利用HPLC-ESI-MS技术可以从复杂体系中快速筛选三萜皂苷类成分,为有目标的天然产物分离提供有效的方法。  相似文献   

13.
目的研究紫杉醇的二级质谱裂解规律,对东北红豆杉及其伤愈组织粗提物中的紫杉醇进行HPLC-ESI-MS/MS分离定性,为天然产物中该化合物的分离分析提供一种快速可靠的方法。方法对HPLC-ESI-MS/MS条件进行优化,研究紫杉醇电喷雾质谱的一级电离规律和二级质谱裂解规律,并结合液相色谱的保留时间判断东北红豆杉及其伤愈组织粗提物中紫杉醇色谱峰的归属。结果详细阐明了紫杉醇的二级质谱裂解规律,并利用HPLC-ESI-MS/MS法准确快速地分离定性了两种粗提物中紫杉醇。结论本方法灵敏度高,快速,选择性高,专属性好,能够作为天然产物及其产品中紫杉醇分离定性的一种快速可靠的技术手段。  相似文献   

14.
传统中药川乌炮制前后的离子阱质谱研究   总被引:1,自引:0,他引:1  
目的:通过应用电喷雾-离子阱质谱,研究了炮制前后的川乌药材成分,以揭示川乌炮制减毒的原理。方法:对3种乌头对照品进行了离子阱多级质谱分析,归纳其裂解规律。对炮制前后的川乌药材进行液-质联用分析,并对各色谱峰进行归属。结果:通过对比炮制前后的质谱总离子流图及紫外色谱图,提出了川乌炮制减毒的两方面原因。结论:同时指出了将液-质联用技术引入中药炮制品的质量控制是十分必要的。  相似文献   

15.
The tobacco-specific nitrosamines N'-nitrosonornicotine (NNN, 1) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK, 2) are potent carcinogens in rodents. Bioactivation of NNN and NNK by cytochrome P450 enzymes generates a pyridyloxobutylating agent 6, which alkylates DNA to produce pyridyloxobutyl (POB)-DNA adducts. POB-DNA adduct formation plays a critical role in NNN and NNK carcinogenicity in rodents. To further investigate the significance of this pathway, we developed a high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) method for quantitative analysis of four POB-DNA adducts with known structures. The corresponding deuterated analogues were synthesized and used as internal standards. DNA samples, spiked with internal standards, were subjected to neutral thermal hydrolysis followed by enzymatic hydrolysis. The hydrolysates were partially purified by solid phase extraction prior to HPLC-ESI-MS/MS analysis. The method was accurate and precise. Excellent sensitivity was achieved, especially for O2-[4-(3-pyridyl)-4-oxobut-1-yl]thymidine (O2-POB-dThd, 11) with a detection limit of 100 amol per mg DNA. DNA samples treated with different concentrations of 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone (NNKOAc, 3) were subjected to HPLC-ESI-MS/MS analysis. 7-[4-(3-Pyridyl)-4-oxobut-1-yl]guanine (7-POB-Gua, 12) was the most abundant adduct, followed by O6-[4-(3-pyridyl)-4-oxobut-1-yl]-2'-deoxyguanosine (O6-POB-dGuo, 8), O2-POB-dThd, and O2-[4-(3-pyridyl)-4-oxobut-1-yl]cytosine (O2-POB-Cyt, 13). Lung and liver DNA isolated from NNK-treated rats were analyzed. Consistent with the in vitro data, 7-POB-Gua was the major POB-DNA adduct formed in vivo. However, levels of O6-POB-dGuo were the lowest of the four adducts analyzed, suggesting efficient repair of this adduct in vivo. In contrast to the other three adducts, O6-POB-dGuo was more abundant in lung than in liver. O2-POB-dThd appeared to be poorly repaired in vivo, and its levels were comparable to those of 7-POB-Gua. The results of this study provide a sensitive HPLC-ESI-MS/MS method for comprehensive quantitation of four POB-DNA adducts, support an important role of O6-POB-dGuo in NNK lung tumorigenicity in rats, and suggest that O2-POB-dThd may be a useful tobacco-specific DNA biomarker for future tobacco carcinogenesis studies.  相似文献   

16.
A novel strategy for predicting bioactive components in traditional Chinese material herb was proposed, using isolated perfused rat lung (IPL) extraction and high performance liquid chromatography\tandem mass spectrometry (HPLC-MS(n)) analysis. The hypothesis is that when the IPL is perfused with the extract of Saposhnikoviae Radix (ESR), the potential bioactive components in the ESR should selectively combine with the receptor or channel of lung, by changing the pH of perfused liquid, the combining components would be eluated and then detected by HPLC-ESI-MS(n). Five compounds were detected in the desorption eluate of IPL; among these compounds, two potential bioactive compounds, prim-O-glucosylcimifugin (2) and 4'-O-β-D-glucosyl-5-O-methylvisamminol (4) were identified by comparing with the chromatography of the standard sample, and three other compounds, i.e. cimifugin (1), 5-O-methylvisamminol (3) and sec-O-glucosylhamaudol (5) were determined by analysis of the structure clearage characterization of mass spectrometry. The application of IPL extraction coupled with HPLC-ESI-MS(n) for predicting potential bioactive components of TCMs is rapid, convenient, operational, economic and reliable.  相似文献   

17.
A high performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) method for the determination of palonosetron (PALO) in human plasma using naloxone as the internal standard (IS) was established. After adjustment to a weakly basic pH with saturated sodium bicarbonate, plasma samples were extracted with ethyl acetate and separated on a Hanbon Lichrospher 5-C18 column with a mobile phase of 40 mM ammonium acetate buffer solution containing 0.04% formic acid-methanol (46:54, v/v). PALO was determined with electrospray ionization-mass spectrometry (ESI-MS). HPLC-ESI-MS was performed in the selected-ion monitoring (SIM) mode using target ions at [M+H]+ m/z 297.2 for PALO and [M+H]+ m/z 328.2 for the IS. Calibration curve was linear over the range of 0.02124-10.62 ng/ml. The lower limit of quantification (LLOQ) was 0.02124 ng/ml. The intra- and inter-run variability values were all less than 10.4%. The method has been successfully applied to determine the plasma concentration of PALO in healthy Chinese volunteers.  相似文献   

18.
A new flavonoid, 7-hydroxyl-4'-O-beta--(6'-O-alpha-hydroxylpropionyl)-glucopyranosyl dihydroflavone (1), together with 12 known flavonoids, has been isolated from the EtOAc fraction of the aqueous extract of Sini Tang. The structures of the compounds have been elucidated by spectral methods. The new compound comes from Glycyrriza uralensis Fisch., as determined by HPLC-ESI-MS.  相似文献   

19.
目的:建立黄皮酰胺及其代谢产物的HPLC-ESI-MS在线检测分析方法,并对未分离得到的微量代谢产物进行分析确证,探索LC-MS在代谢转化研究中的应用。方法:利用柱后补偿技术,采用正离子检测对大鼠肝微体中(+),(-)-黄皮酰胺及其代谢产物进行HPLC-ESI-MS分析,根据MS的碎片信息检测主要的代谢产物,特别是对未分离得到的代谢产物的结构碎片进行分析,确定其结构。结果:除检测出主要已知代谢产物  相似文献   

20.
Amiodarone (AMI) is a potent antiarrhythmic drug, but its metabolism has not yet been fully documented. Mono-N-desethylamiodarone (MDEA) is its only known metabolite. Our preliminary investigations using rabbit liver microsomes had shown that in vitro AMI was biotransformed to MDEA, and the latter was rapidly further biodegraded to other unknown products. The aim of the present study was to investigate the chemical structure of the biotransformed compound of MDEA. Upon incubation of MDEA with rabbit liver microsomes and NADPH as cofactor, MDEA was biotransformed into three unknown products: X1, X2, and X3. The products were purified using chromatography. The chemical structure of the major product, X1, was investigated in detail. HPLC-ESI-MS revealed that MDEA had been oxygenated. Hydrogen-deuterium exchange experiments showed that the X1 molecule contained one exchangeable hydrogen atom more than its precursor MDEA, indicating that MDEA had been hydroxylated. Further results from ESI-MS/MS analysis indicated that the site of hydroxylation was the n-butyl side chain. NMR analysis (1H NMR, one-dimensional-total correlation spectroscopy, and heteronuclear multiple-bond correlation spectroscopy) established the 3-position (omega-1) of the butyl moiety as the specific carbon atom that is hydroxylated. Rat liver microsomes were also able to catalyze MDEA hydroxylation. Compound X1, as analyzed by HPLC-ESI-MS and ESI-MS/MS, was detected in the liver, heart, lung, and kidney tissue of four rats receiving AMI, suggesting that the hydroxylated MDEA was a secondary metabolite of AMI. Conclusion: in mammals, MDEA is hydroxylated to the secondary metabolite of AMI [2-(3-hydroxybutyl)-3-[4-(3-ethylamino-1-oxapropyl)-3,5-diiodobenzoyl]-benzofuran].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号