首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
After fear conditioning, plastic changes of excitatory synaptic transmission occur in the amygdala. Fear‐related memory also involves the GABAergic system, although no influence on inhibitory synaptic transmission is known. In the present study we assessed the influence of Pavlovian fear conditioning on the plasticity of GABAergic synaptic interactions in the lateral amygdala (LA) in brain slices prepared from fear‐conditioned, pseudo‐trained and naïve adult mice. Theta‐burst tetanization of thalamic afferent inputs to the LA evoked an input‐specific potentiation of inhibitory postsynaptic responses in projection neurons; the cortical input was unaffected. Philanthotoxin (10 µm ), an antagonist of Ca2+‐permeable AMPA receptors, disabled this plastic phenomenon. Surgical isolation of the LA, extracellular application of a GABAB receptor antagonist (CGP 55845A, 10 µm ) or an NMDA receptor antagonist (APV, 50 µm ), or intracellular application of BAPTA (10 mm ), did not influence the plasticity. The plasticity also showed as a potentiation of monosynaptic excitatory responses in putative GABAergic interneurons. Pavlovian fear conditioning, but not pseudo‐conditioning, resulted in a significant reduction in this potentiation that was evident 24 h after training. Two weeks after training, the potentiation returned to control levels. In conclusion, a reduction in potentiation of inhibitory synaptic interactions occurs in the LA and may contribute to a shift in synaptic balance towards excitatory signal flow during the processes of fear‐memory acquisition or consolidation.  相似文献   

2.
The calcium-dependent afterhyperpolarization (AHP) that follows trains of action potentials is responsible for controlling action potential firing patterns in many neuronal cell types. We have previously shown that the slow AHP contributes to spike frequency adaptation in pyramidal neurons in the rat lateral amygdala. In addition, a dendritic voltage-gated potassium current mediated by Kv1.2-containing channels also suppresses action potential firing in these neurons. In this paper we show that this voltage-gated potassium current and the slow AHP act together to control spike frequency adaptation in lateral amygdala pyramidal neurons. The two currents have similar effects on action potential number when firing is evoked either by depolarizing current injections or by synaptic stimulation. However, they differ in their control of firing frequency, with the voltage-gated potassium current but not the slow AHP determining the initial frequency of action potential firing. This dual mechanism of controlling firing patterns is unique to lateral amygdala neurons and is likely to contribute to the very low levels of firing seen in lateral amygdala neurons in vivo.  相似文献   

3.
This study characterizes the inputs from the lateral columns of the spinal cord to reticulospinal neurons in the lampreys, using the in vitro isolated brainstem and spinal cord preparation. Synaptic responses to the electrical stimulation of the lateral columns were recorded in reticulospinal neurons of the posterior and middle rhombencephalic reticular nuclei. The responses consisted of a mixture of excitation and inhibition. They were markedly potentiated when using trains of two to five pulses, suggesting that the larger part of these synaptic responses was mediated via an oligosynaptic pathway. An early component, however, persisted when using twin pulses at 10–20 Hz on the ipsilateral side, suggesting the presence of an early mono- or disynaptic component. When increasing the stimulation strength, an early fast rising excitatory component appeared. It most likely resulted from an antidromic activation of vestibulospinal axons in the lateral tracts, which make en passant synaptic contacts with reticulospinal neurons. Responses were practically abolished by adding CNQX and AP5 to the Ringer's solution. The late component of excitatory responses was decreased by AP5, suggesting that NMDA receptors were activated. The NMDA receptor-mediated component was larger when using trains of stimuli or in Mg2+-free Ringer's. The application of NMDA depolarized reticulospinal neurons. The glycinergic inhibitory component was markedly increased in Mg2+-free Ringer's. Moreover, GABAB-receptor activation with (−)-baclofen abolished both excitatory and inhibitory responses. Taken together, the present results indicate that ascending lateral column axons generate large excitatory and inhibitory synaptic potentials in reticulospinal neurons. The possible role of these inputs in modulating the activity of reticulospinal neurons during locomotion is discussed.  相似文献   

4.
GABAergic interneurons play diverse and important roles in controlling neuronal network dynamics. They are characterized by an extreme heterogeneity morphologically, neurochemically, and physiologically, but a functionally relevant classification is still lacking. Present taxonomy is essentially based on their postsynaptic targets, but a physiological counterpart to this classification has not yet been determined. Using a quantitative analysis based on multidimensional clustering of morphological and physiological variables, we now demonstrate a strong correlation between the kinetics of glutamate and GABA miniature synaptic currents received by CA1 hippocampal interneurons and the laminar distribution of their axons: neurons that project to the same layer(s) receive synaptic inputs with similar kinetics distributions. In contrast, the kinetics distributions of GABAergic and glutamatergic synaptic events received by a given interneuron do not depend upon its somatic location or dendritic arborization. Although the mechanisms responsible for this unexpected observation are still unclear, our results suggest that interneurons may be programmed to receive synaptic currents with specific temporal dynamics depending on their targets and the local networks in which they operate.  相似文献   

5.
In the maintenance phase of fear memory, synaptic transmission is potentiated and the stimulus requirements and signalling mechanisms are altered for long-term potentiation (LTP) in the cortico-lateral amygdala (LA) pathway. These findings link amygdala synaptic plasticity to the coding of fear memories. Behavioural experiments suggest that the amygdala serves to store long-term fear memories. Here we provide electrophysiological evidence showing that synaptic alterations in rats induced by fear conditioning are evident in vitro 10 days after fear conditioning. We show that synaptic transmission was facilitated and that high-frequency stimulation dependent LTP (HFS-LTP) of the cortico-lateral amygdala pathway remained attenuated 10 days following fear conditioning. Additionally, we found that the low-frequency stimulation dependent LTP (LFS-LTP) measured 24 h after fear conditioning was absent 10 days post-training. The persistent facilitation of synaptic transmission and occlusion of HFS-LTP suggests that, unlike hippocampal coding of contextual fear memory, the cortico-lateral amygdala synapse is involved in the storage of long-term fear memories. However, the absence of LFS-LTP 10 days following fear conditioning suggests that amygdala physiology 1 day following fear learning may reflect a dynamic state during memory stabilization that is inactive during the long-term storage of fear memory. Results from these experiments have significant implications regarding the locus of storage for maladaptive fear memories and the synaptic alterations induced by these memories.  相似文献   

6.
Changes in hippocampal synaptic networks during aging may contribute to age‐dependent compromise of cognitive functions such as learning and memory. Previous studies have demonstrated that GABAergic synaptic transmission exhibits age‐dependent changes. To better understand such age‐dependent changes of GABAergic synaptic inhibition, we performed whole‐cell recordings from pyramidal cells in the CA1 area of acute hippocampal slices on aged (24–26 months old) and young (2–4 months old) Brown‐Norway rats. We found that the frequency and amplitude of spontaneous inhibitory postsynaptic current (IPSCs) were significantly increased in aged rats, but the frequency and amplitude of mIPSCs were decreased. Furthermore, the regulation of GABAergic synaptic transmission by GluR5 containing kainate receptors was enhanced in aged rats, which was revealed by using LY382884 (a GluR5 kainate receptor antagonist) and ATPA (a GluR5 kainate receptor agonist). Moreover, we demonstrated that vesicular glutamate transporters are involved in the kainate receptor dependent regulation of sIPSCs. Taken together, these results suggest that GABAergic synaptic transmission is potentiated in aged rats, and GluR5 containing kainate receptors regulate the inhibitory synaptic transmission through endogenous glutamate. These alterations of GABAergic input with aging could contribute to age‐dependent cognitive decline. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Stimulating thalamic fibers exiting from the internal capsule evokes a glutamatergic excitatory postsynaptic current (EPSC) recorded in vitro with patch electrodes in neurons of the rat lateral amygdala (LA). The purpose of this study is to compare paired-pulse facilitation (PPF), a form of short-term synaptic plasticity, of AMPA and NMDA receptor-mediated EPSCs. Analysis of PPF at this synapse is important since, in fear-conditioned animals, PPF reflects an enhanced transmitter release but the amplitude of only AMPA EPSCs is facilitated. PPF magnitude of the composite EPSC is a result of both AMPA and NMDA receptor activation; however, the characteristics of AMPA and NMDA PPF are dissimilar. Specifically, the NMDA EPSC shows greater PPF (NMDA PPF) than does the AMPA EPSC whether measuring the NMDA PPF magnitude in an AMPA antagonist/Mg(2+)-free solution or by subtracting the AMPA EPSC from the composite EPSC in normal Mg(2+). Presynaptic NMDA receptors neither influence AMPA PPF nor account for the difference between the NMDA and AMPA PPF. Another difference was that removal of inhibitory tone enhanced AMPA PPF, while it had mixed effects on NMDA PPF. Furthermore, AMPA PPF was independent of stimulus intensity and postsynaptic voltage, unlike the NMDA PPF. Another dissimilarity was that the amplitudes of pairs of AMPA EPSCs were not correlated, suggesting presynaptic mechanisms. In contrast, NMDA PPF was dependent on stimulus intensity and postsynaptic voltage and the amplitudes of paired NMDA EPSCs had a positive correlation, suggesting a postsynaptic influence. Both AMPA and NMDA PPF were influenced by GABA inhibition and this could be a factor in the magnitude disparity. These data show that AMPA and NMDA PPF have different characteristics and contribute to the composite PPF in the thalamic to lateral amygdala pathway.  相似文献   

8.
Intracellular recordings were performed in the CA1 region of the rat hippocampus following an ipsilateral intraventricular injection of kainic acid. Seven days postlesion, graded bursts of up to four action potentials could be evoked by stimulation of the stratum radiatum. The evoked EPSPs underlying these bursts showed a prolonged 10-90% rise time and half-width compared to control EPSPs, an absence of a significant inhibitory phase, and an increase in magnitude and duration at depolarized resting levels. The evoked EPSPs also exhibited a significant decrease in amplitude and time course in response to D-APV (D-2-amino-5-phosphonovaleric acid; 1-20 microM), though this effect was variable from cell to cell. The prolonged time course, voltage sensitivity, and response to a selective NMDA antagonist confirmed that the major component of the EPSP in neurons from lesioned slices was mediated by NMDA receptors. The partial denervation of the CA1 area induced by the kainic acid led to both an enhanced NMDA-mediated excitatory phase and a decrease in postsynaptic inhibition, resulting in the pronounced hyperexcitability noted in the lesioned slices.  相似文献   

9.
The central nucleus of the amygdala (CeA) plays a critical role in regulating the behavioral, autonomic and endocrine response to stress. Dopamine (DA) participates in mediating the stress response and DA release is enhanced in the CeA during stressful events. However, the electrophysiological effects of DA on CeA neurons have not yet been characterized. Therefore, the purpose of this study was to identify and characterize the effect of DA application on electrophysiological responses of CeA neurons in coronal brain sections of male Sprague-Dawley rats. We used whole-cell patch-clamp electrophysiological techniques to record evoked synaptic responses and to determine basic membrane properties of CeA neurons both before and after DA superfusion. DA (20-250 μM) did not significantly alter membrane conductance over the voltage range tested. However, DA significantly reduced the peak amplitude of evoked inhibitory synaptic currents in CeA neurons. Pretreatment with the D(2) receptor antagonist eticlopride failed to significantly block the inhibitory effects of DA. In contrast, pretreatment with the D(1) receptor antagonist SCH-23390 significantly reduced the effects of DA on evoked inhibitory neurotransmission in these neurons. Moreover, bath superfusion of the specific D(1) receptor agonist SKF-39393, but not the D(2) receptor agonist quinpirole, significantly reduced peak amplitude of evoked inhibitory synaptic events. DA reduced the frequency of miniature IPSCs without altering the amplitude, while having no effect on the amplitude of IPSCs elicited by pressure application of GABA. These results suggest that DA may modulate inhibitory synaptic transmission in CeA through D(1) receptor activation primarily by a presynaptic mechanism.  相似文献   

10.
Long-term synaptic potentiation in the amygdala   总被引:2,自引:0,他引:2  
The manner in which the circuitry of the amygdala computes its suspected mnemonic functions has been a mystery, partly because the cytoarchitectual complexity of this nuclear group has impeded the necessary cellular analysis. Here we report in vitro methods and results that may help elucidate cellular learning mechanisms in amygdala neurons. The amygdala brain slice preparation was combined with the single-electrode clamp (SEC) technique for intracellular analysis of membrane properties and synaptic responses. With respect to the active and passive membrane properties, we found considerable diversity among the population of cells that were sampled in the lateral and basolateral nuclei (n = 85). Synaptic inputs to these neurons were studied by stimulating the external capsule (EC), which was shown to produce a complex response that typically consisted of an excitatory followed by an inhibitory component. Based on several criteria, the excitatory component appeared to reflect a monosynaptic connection from the EC. One immediate goal was to discover whether the excitatory component displays the phenomenon of long-term potentiation (LTP)--a persistent increase in synaptic strength that can be induced by brief periods of the appropriate synaptic stimulation. Indeed, we found that high-frequency (100 Hz) stimulation of the EC induced LTP in 80% of the cells from which suitable recordings were obtained (n = 20). This finding of LTP in the amygdala is significant in regard to current efforts to explore linkages between this use-dependent form of synaptic plasticity and rapid kinds of associative learning.  相似文献   

11.
Converging lines of evidence suggest that synaptic plasticity at auditory inputs to the lateral amygdala (LA) is critical for the formation and storage of auditory fear memories. Auditory information reaches the LA from both thalamic and cortical areas, raising the question of whether they make distinct contributions to fear memory storage. Here we address this by comparing the induction of long‐term potentation (LTP) at the two inputs in vivo in anesthetized rats. We first show, using field potential measurements, that different patterns and frequencies of high‐frequency stimulation (HFS) consistently elicit stronger LTP at cortical inputs than at thalamic inputs. Field potential responses elicited during HFS of thalamic inputs were also smaller than responses during HFS of cortical inputs, suggesting less effective postsynaptic depolarization. Pronounced differences in the short‐term plasticity profiles of the two inputs were also observed: whereas cortical inputs displayed paired‐pulse facilitation, thalamic inputs displayed paired‐pulse depression. These differences in short‐ and long‐term plasticity were not due to stronger inhibition at thalamic inputs: although removal of inhibition enhanced responses to HFS, it did not enhance thalamic LTP and left paired‐pulse depression unaffected. These results highlight the divergent nature of short‐ and long‐term plasticity at thalamic and cortical sensory inputs to the LA, pointing to their different roles in the fear learning system.  相似文献   

12.
We recently showed that oxytocin (OT) neurons in organotypic slice cultures obtained from postnatal rat hypothalamus display complex patterns of electrical activity, similar to those of adult magnocellular OT neurons in vivo. Here we used such cultures to investigate the identity and, in particular, the origin of afferent inputs responsible for this activity. Multiple immunostaining with light and confocal microscopy showed that the somata and dendrites of oxytocinergic neurons were contacted by numerous synapses, visualized by their reaction to the synaptic markers, synaptophysin or synapsin. Many were GABAergic, displaying immunoreactivities for glutamic acid decarboxylase or gamma-aminobutyric acid (GABA); others were enriched in glutamate immunoreactivity. Such afferents presumably arose from GABA- or glutamate-immunoreactive neurons, respectively, with distinct and characteristic morphologies and topographies. A few dopaminergic boutons (tyrosine hydroxylase- or dopamine-immunopositive) impinged on OT neurons; they arose from dopamine-positive neurons located along the third ventricle. No noradrenergic profiles were detected. Despite the presence of choline acetyl-transferase (ChAT)-immunoreactive neurons, there were no cholinergic contacts. Lastly, we found oxytocinergic synapses, identified by immunoreaction for OT-related neurophysin and synapsin, contacting OT somata and dendrites. Our observations thus demonstrate that inhibitory and excitatory inputs to OT neurons derive from local intrahypothalamic GABA and glutamate neurons, in close proximity to the neurons. They also reveal that OT neurons are innervated by hypothalamic dopaminergic neurons. Finally, they confirm the existence of homotypic OT synaptic contacts which derive from local OT neurons.  相似文献   

13.
Gap junctions provide a means for electrotonic coupling between neurons, allowing for the generation of synchronous activity, an important contributor to learning and memory. Connexin36 (Cx36) is largely neuron specific and provides a target for genetic manipulation to determine the physiological relevance of neuronal coupling. Within the striatum, Cx36 is more specifically localized to the interneuronal population, which provides the main inhibitory input to the principal projection medium-sized spiny neurons. In the present study, we examined the impact of genetic ablation of Cx36 on striatal spontaneous synaptic activity. Patch-clamp recordings were performed from medium-sized spiny neurons, the primary target of interneurons. In Cx36 knockout mice, the frequencies of both excitatory and inhibitory spontaneous postsynaptic currents were reduced. We also showed that activation of dopamine receptors differentially modulated the frequency of GABAergic currents in Cx36 knockout mice compared with their wild-type littermates, suggesting that dopamine plays a role in altering the coupling of interneurons. Taken together, the present findings demonstrate that electrical coupling of neuronal populations is important for the maintenance of normal chemical synaptic interactions within the striatum.  相似文献   

14.
Fast inhibitory synaptic inputs, which cause conductance changes that typically last for 10–100 ms, participate in the generation and maintenance of cortical rhythms. We show here that these fast events can have influences that outlast the duration of the synaptic potentials by interacting with subthreshold membrane potential oscillations. Inhibitory postsynaptic potentials (IPSPs) in cortical neurons in vitro shifted the oscillatory phase for several seconds. The phase shift caused by two IPSPs or two current pulses summed non‐linearly. Cholinergic neuromodulation increased the power of the oscillations and decreased the magnitude of the phase shifts. These results show that the intrinsic conductances of cortical pyramidal neurons can carry information about inhibitory inputs and can extend the integration window for synaptic input.  相似文献   

15.
16.
Spinal cord injury (SCI) leads to plastic changes in organization that impact significantly on central nervous control of arterial pressure. SCI causes hypotension and autonomic dysreflexia, an episodic hypertension induced by spinal reflexes. Sympathetic preganglionic neurons (SPNs) respond to SCI by retracting and then regrowing their dendrites within 2 weeks of injury. We examined changes in synaptic input to SPNs during this time by comparing the density and amino acid content of synaptic input to choline acetyltransferase (ChAT)-immunoreactive SPNs in the eighth thoracic spinal cord segment (T8) in unoperated rats and in rats at 3 days or at 14 days after spinal cord transection at T4. Postembedding immunogold labeling demonstrated immunoreactivity for glutamate or gamma-aminobutyric acid (GABA) within presynaptic profiles. We counted the number of presynaptic inputs to measured lengths of SPN somatic and dendritic membrane and identified the amino acid in each input. We also assessed gross changes in the morphology of SPNs using retrograde labeling with cholera toxin B and light microscopy to determine the structural changes that were present at the time of evaluation of synaptic density and amino acid content. At 3 days after SCI, we found that retrogradely labeled SPNs had shrunken somata and greatly shortened dendrites. Synaptic density (inputs per 10-microm membrane) decreased on ChAT-immunoreactive somata by 34% but increased on dendrites by 66%. Almost half of the inputs to SPNs lacked amino acids. By 14 days, the density of synaptic inputs to dendrites and somata decreased by 50% and 70%, respectively, concurrent with dendrite regrowth. The proportion of glutamatergic inputs to SPNs in spinal cord-transected rats ( approximately 40%) was less than that in unoperated rats, whereas the GABAergic proportion (60-68%) increased. In summary, SPNs participate in vasomotor control after SCI despite profound denervation. An altered balance of excitatory and inhibitory inputs may explain injury-induced hypotension.  相似文献   

17.
The induction threshold, and the magnitude and direction of changes in synaptic plasticity may depend on the previous history of neuronal activity. This phenomenon, termed "metaplasticity," could play an important role in integration processes by coordinating the modulation of synapses. Although metaplasticity has been analyzed extensively, its underlying cellular mechanisms remain largely unknown. Using in vitro electrophysiological and computer simulation approaches, we investigated the contribution of the slow Ca2+-dependent afterhyperpolarization (sAHP) in the metaplastic control of the induction of long-term potentiation (LTP) at convergent CA3-CA1 pyramidal neuron synapses. We report that classical conditioning protocols may lead to the simultaneous induction of a sustained homosynaptic LTP and a potentiation of the sAHP that endured approximately 1 h. The sAHP potentiation dramatically altered the spike responses of the CA1 pyramidal neuron. Of particular interest was the reduction of the CA1 neuron excitability and, consequently, of the capacity of a nonpotentiated synaptic input to elicit spikes while the sAHP was potentiated. This reduction in excitability temporarily prevented nonpotentiated synaptic inputs to exhibit an LTP induced by presynaptic tetanization. This metaplasticity was strongly resistant to increases in the magnitude of synaptic tetanization protocols. We propose that this heterosynaptic metaplasticity, mediated by intrinsic cellular mechanisms, triggered by brief periods of activity, and relying on changes of a slow Ca2+-activated K+ current, may contribute to adjusting the efficacy of synaptic connections and shaping network behavior to regulate integration processes.  相似文献   

18.
Anatomical and physiological studies indicate that the amino acid L-glutamate is the excitatory transmitter in sensory afferent pathways to the amygdala and in intraamygdala circuits involving the lateral and basal nuclei. The regional, cellular, and subcellular immunocytochemical localizations of N-methyl-D-aspartate (NMDA) and L-α-amino-3–hydroxy-5–methyl- 4–isoxazole propionate (AMPA), two major classes of glutamate receptors, were examined in these areas of the amygdala. A monoclonal antibody and a polyclonal antiserum directed against the R1 subunit of the NMDA receptor were used. Each immunoreagent produced distinct distributions of perikaryal and neuropilar staining. Dendritic immunoreactivity was localized primarily to asymmetric (excitatory) synaptic junctions, mostly on spines, consistent with the conventional view of the organization and function of NMDA receptors. Whereas the anti-NMDAR1 antiserum produced sparse presynaptic axon terminal labeling and extensive glial labeling, the anti-NMDAR1 antibody labeled considerably fewer glia and many more presynaptic axon terminals. Labeled presynaptic terminals formed asymmetric and symmetric synapses, suggesting presynaptic regulation of both excitatory and inhibitory transmission. Immunoreactivity for different subunits of the AMPA receptor (GluR1, GluR2/3, and GluR4) was uniquely distributed across neuronal populations, and some receptor subunits were specific to certain cell types. Immunoreactivity for GluR1 and Glu2/3 was predominately localized to dendritic shafts and was more extensive than that of GluR4 due to heavy labeling of proximal portions of dendrites. The distribution of GluR4 immunoreactivity was similar to NMDAR1: GluR4 was seen in presynaptic terminals, glia, and dendrites and was primarily localized to spines. The presynaptic localization of GluR4 in the absence of GluR2 suggests glutamate. mediated modulation of presynaptic Ca++ concentrations. These data add to our understanding of the morphological basis of pre- and postsynaptic transmission mechanisms and synaptic plasticity in the amygdala. © Wiley-Liss, Inc.  相似文献   

19.
Although calcium/calmodulin-dependent protein kinase II (CaMK) has been shown to play a critical role in long-term potentiation (LTP) and emotional learning mediated by the basolateral amygdala, little is known about its cellular localization in this region. We have utilized immunohistochemical methods to study the neuronal localization of CaMK, and its relationship to gamma-aminobutyric acid (GABA)-ergic structures, in the rat basolateral amygdala (ABL). Light microscopic observations revealed dense CaMK staining in the ABL. Although the cell bodies and proximal dendrites of virtually every pyramidal cell appeared to be CaMK(+), the cell bodies of small nonpyramidal neurons were always unstained. Dual localization of CaMK and GABA immunoreactivity with confocal immunofluorescence microscopy revealed that CaMK and GABA were found in different neuronal populations in the ABL. CaMK was contained only in pyramidal neurons; GABA was contained only in nonpyramidal cells. At the ultrastructural level, it was found that CaMK was localized to pyramidal cell bodies, thick proximal dendrites, thin distal dendrites, most dendritic spines, axon initial segments, and axon terminals forming asymmetrical synapses. These findings suggest that all portions of labeled pyramidal cells, with the exception of some dendritic spines, can exhibit CaMK immunoreactivity. By using a dual immunoperoxidase/immunogold-silver procedure at the ultrastructural level, GABA(+) axon terminals were seen to innervate all CaMK(+) postsynaptic domains, including cell bodies (22%), thick (>1 microm) dendrites (34%), thin (<1 microm) dendrites (22%), dendritic spines (17%), and axon initial segments (5%). These findings indicate that CaMK is a useful marker for pyramidal neurons in ultrastructural studies of ABL synaptology and that the activity of pyramidal neurons in the ABL is tightly controlled by a high density of GABAergic terminals that target all postsynaptic domains of pyramidal neurons.  相似文献   

20.
One of the main subcortical inputs to the basolateral nucleus of the amygdala (BL) originates from a group of dorsal thalamic nuclei located at or near the midline, mainly from the central medial (CMT), and paraventricular (PVT) nuclei. Although similarities among the responsiveness of BL, CMT, and PVT neurons to emotionally arousing stimuli suggest that these thalamic inputs exert a significant influence over BL activity, little is known about the synaptic relationships that mediate these effects. Thus, the present study used Phaseolus vulgaris-leucoagglutinin (PHAL) anterograde tracing and electron microscopy to shed light on the ultrastructural properties and synaptic targets of CMT and PVT axon terminals in the rat BL. Virtually all PHAL-positive CMT and PVT axon terminals formed asymmetric synapses. Although CMT and PVT axon terminals generally contacted dendritic spines, a substantial number ended on dendritic shafts. To determine whether these dendritic shafts belonged to principal or local-circuit cells, calcium/calmodulin-dependent protein kinase II (CAMKIIα) immunoreactivity was used as a selective marker of principal BL neurons. In most cases, dendritic shafts postsynaptic to PHAL-labeled CMT and PVT terminals were immunopositive for CaMKIIα. Overall, these results suggest that CMT and PVT inputs mostly target principal BL neurons such that when CMT or PVT neurons fire, little feed-forward inhibition counters their excitatory influence over principal cells. These results are consistent with the possibility that CMT and PVT inputs constitute major determinants of BL activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号