首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The posterior parietal cortex has been implicated in spatial functions, including navigation. The hippocampal and parahippocampal region and the retrosplenial cortex are crucially involved in navigational processes and connections between the parahippocampal/retrosplenial domain and the posterior parietal cortex have been described. However, an integrated account of the organization of these connections is lacking. Here, we investigated parahippocampal connections of each posterior parietal subdivision and the neighboring secondary visual cortex using conventional retrograde and anterograde tracers as well as transsynaptic retrograde tracing with a modified rabies virus. The results show that posterior parietal as well as secondary visual cortex entertain overall sparse connections with the parahippocampal region but not with the hippocampal formation. The medial and lateral dorsal subdivisions of posterior parietal cortex receive sparse input from deep layers of all parahippocampal areas. Conversely, all posterior parietal subdivisions project moderately to dorsal presubiculum, whereas rostral perirhinal cortex, postrhinal cortex, caudal entorhinal cortex and parasubiculum all receive sparse posterior parietal input. This indicated that the presubiculum might be a major liaison between parietal and parahippocampal domains. In view of the close association of the presubiculum with the retrosplenial cortex, we included the latter in our analysis. Our data indicate that posterior parietal cortex is moderately connected with the retrosplenial cortex, particularly with rostral area 30. The relative sparseness of the connectivity with the parahippocampal and retrosplenial domains suggests that posterior parietal cortex is only a modest actor in forming spatial representations underlying navigation and spatial memory in parahippocampal and retrosplenial cortex. © 2017 Wiley Periodicals, Inc.  相似文献   

2.
In acute experiments on cats immobilized by tubarine transcallosal responses (TCRs) to the stimulation of the visual or auditory cortex of the opposite hemisphere were investigated in the parietal associative region. It was found that interzonal heterotopical TCRs could be recorded along the entire surface of the parietal cortex and were in two forms: positive-negative or negative-positive. Positive-negative evoked potentials (EPs) had greater latent periods. Negative-positive TCRs disappeared after the corpus callosum section or after the section of intracortical pathways on the side of recording and/or stimulation. EPs with initial positivity changed insignificantly as a result of these operations. Interzonal TCRs were characterized by the presence of interhemispheric asymmetry. The amplitude of early components in visual-parietal EPs of any configuration appeared to be greater in the right hemisphere. These responses also had a greater latent period. According to the magnitude of the late positive wave in visual-parietal TCRs the left hemisphere appeared to be dominant. Interhemispheric asymmetry in audioparietal EPs was individual. The amplitude of the early positive component prevailed as to magnitude in the right hemisphere in males and in the left hemisphere in females. The late negative wave in animals of either sex was greater in the right hemisphere. The peculiarities of generation and interhemispheric asymmetry of different components in visual-parietal and audioparietal TCRs are discussed. A symmetricising function of the parietal associative cortex is suggested.  相似文献   

3.
Compared with our growing understanding of the organization of somatosensory cortex in monkeys, little is known about prosimian primates, a major branch of primate evolution that diverged from anthropoid primates some 60 million years ago. Here we describe extensive results obtained from an African prosimian, Galago garnetti. Microelectrodes were used to record from large numbers of cortical sites in order to reveal regions of responsiveness to cutaneous stimuli and patterns of somatotopic organization. Injections of one to several distinguishable tracers were placed at physiologically identified sites in four different cortical areas to label corticortical connections. Both types of results were related to cortical architecture. Three systematic representations of cutaneous receptors were revealed by the microelectrode recordings, S1 proper or area 3b, S2, and the parietal ventral area (PV), as described in monkeys. Strips of cortex rostral (presumptive area 3a) and caudal (presumptive area 1-2) to area 3b responded poorly to tactile stimuli in anesthetized galagos, but connection patterns with area 3b indicated that parallel somatosensory representations exist in both of these regions. Area 3b also interconnected somatotopically with areas S2 and PV. Areas S2 and PV had connections with areas 3a, 3b, 1-2, each other, other regions of the lateral sulcus, motor cortex (M1), cingulate cortex, frontal cortex, orbital cortex, and inferior parietal cortex. Connection patterns and recordings provided evidence for several additional fields in the lateral sulcus, including a retroinsular area (Ri), a parietal rostral area (PR), and a ventral somatosensory area (VS). Galagos appear to have retained an ancestral preprimate arrangement of five basic areas (S1 proper, 3a, 1-2, S2, and PV). Some of the additional areas suggested for lateral parietal cortex may be primate specializations.  相似文献   

4.
Two sets of experiments were carried out to examine the organization of associational connections within the rat entorhinal cortex. First, a comprehensive analysis of the areal and laminar distribution of intrinsic projections was performed by using the anterograde tracers Phaseolus vulgaris–leuocoagglutinin (PHA-L) and biotinylated dextran amine (BDA). Second, retrograde tracers were injected into the dentate gyrus and PHA-L and BDA were injected into the entorhinal cortex to determine the extent to which entorhinal neurons that project to different septotemporal levels of the dentate gyrus are linked by intrinsic connections. The regional distribution of intrinsic projections within the entorhinal cortex was related to the location of the cells of origin along the mediolateral axis of the entorhinal cortex. Cells located in the lateral regions of the entorhinal cortex gave rise to intrinsic connections that largely remained within the lateral reaches of the entorhinal cortex, i.e., within the rostrocaudally situated entorhinal band of cells that projected to septal levels of the dentate gyrus. Cells located in the medial regions of the entorhinal cortex gave rise to intrinsic projections confined to the medial portion of the entorhinal cortex. Injections made into mid-mediolateral regions of the entorhinal cortex mainly gave rise to projections to mid-mediolateral levels, although some fibers did enter either lateral or medial portions of the entorhinal cortex. These patterns were the same regardless of whether the projections originated from the superficial (II–III) or deep (V–VI) layers of the entorhinal cortex. This organizational scheme indicates, and our combined retrograde/anterograde labeling studies confirmed, that laterally situated entorhinal neurons that project to septal levels of the dentate gyrus are not in direct communication with neurons projecting to the temporal portions of the dentate gyrus. These results suggest that entorhinal intrinsic connections allow for both integration (within a band) and segregation (across bands) of entorhinal cortical information processing. J. Comp. Neurol. 398:49–82, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
Medial agranular cortex (AGm) is a narrow, longitudinally oriented region known to have extensive corticortical connections. The rostral and caudal portions of AGm exhibit functional differences that may involve these connections. Therefore we have examined the rostrocaudal organization of the afferent cortical connections of AGm by using fluorescent tracers, to determine whether there are significant differences between rostral and caudal AGm. Mediolateral patterns have also been examined in order to compare the pattern of corticocortical connections of AGm to those of the laterally adjacent lateral agranular cortex (AGl) and medially adjacent anterior cingulate area (AC). In the rostrocaudal domain, there are notable patterns in the connections of AGm with somatic sensorimotor, visual, and retrosplenial cortex. Rostral AGm receives extensive afferents from the caudal part of somatic sensorimotor area Par I, whereas caudal AGm receives input largely from the hindlimb cortex (area HL). Middle portions of AGm show an intermediate condition, indicating a continuously changing pattern rather than the presence of sharp border zones. The whole of the second somatic sensorimotor area Par II projects to rostral AGm, whereas caudal AGm receives input only from the caudal portion of Par II. Visual cortex projections to AGm originate in areas Oc1, Oc2L and Oc2M. Connections of rostral AGm with visual cortex are noticeably less dense than those of mid and caudal AGm, and are focused in area Oc2L. The granular visual area Oc1 projects almost exclusively to mid and caudal AGm. Retrosplenial cortex has more extensive connections with caudal AGm than with rostral AGm, and the agranular and granular retrosplenial subregions are both involved. Other cortical connections of AGm show little or no apparent rostrocaudal topography. These include afferents from orbital, perirhinal, and entorhinal cortex, all of which are bilateral in origin. In the mediolateral dimension, AGm has more extensive corticocortical connections than either AGl or AC. Of these three neighboring areas, only AGm has connections with the somatic sensorimotor, visual, retrosplenial and orbital cortices. In keeping with its role as primary motor cortex, AGl is predominantly connected with area Par I of somatic sensorimotor cortex, specifically rostral Par I. AGl receives no input from visual or retrosplenial cortex. Anterior cingulate cortex has connections with visual area Oc2 and with retrosplenial cortex, but none with somatic sensorimotor cortex. Orbital cortex projections are sparse to AGl and do not appear to involve AC.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Injections of HRP-WGA in four cytoarchitectonic subdivisions of the posterior parietal cortex in rhesus monkeys allowed us to examine the major limbic and sensory afferent and efferent connections of each area. Area 7a (the caudal part of the posterior parietal lobe) is reciprocally interconnected with multiple visual-related areas: the superior temporal polysensory area (STP) in the upper bank of the superior temporal sulcus (STS), visual motion areas in the upper bank of STS, the dorsal prelunate gyrus, and portions of V2 and the parieto-occipital (PO) area. Area 7a is also heavily interconnected with limbic areas: the ventral posterior cingulate cortex, agranular retrosplenial cortex, caudomedial lobule, the parahippocampal gyrus, and the presubiculum. By contrast, the adjacent subdivision, area 7ip (within the posterior bank of the intraparietal sulcus), has few limbic connections but projects to and receives projections from widespread visual areas different than those that are connected with area 7a: the ventral bank and fundus of the STS including part of the STP cortex and the inferotemporal cortex (IT), areas MT (middle temporal) and possibly MTp (MT peripheral) and FST (fundal superior temporal) and portions of V2, V3v, V3d, V3A, V4, PO, and the inferior temporal (IT) convexity cortex. The connections between posterior parietal areas and visual areas located on the medial surface of the occipital and parieto-occipital cortex, containing peripheral representations of the visual field (V2, V3, PO), represent a major previously unrecognized source of visual inputs to the parietal association cortex. Area 7b (the rostral part of the posterior parietal lobe) was distinctive among parietal areas in its selective association with somatosensory-related areas: S1, S2, 5, the vestibular cortex, the insular cortex, and the supplementary somatosensory area (SSA). Like 7ip, area 7b had few limbic associations. Area 7m (on the medial posterior parietal cortex) has its own topographically distinct connections with the limbic (the posterior ventral bank of the cingulate sulcus, granular retrosplenial cortex, and presubiculum), visual (V2, PO, and the visual motion cortex in the upper bank of the STS), and somatosensory (SSA, and area 5) cortical areas. Each parietal subdivision is extensively interconnected with areas of the contralateral hemisphere, including both the homotopic cortex and widespread heterotopic areas. Indeed, each area is interconnected with as many areas of the contralateral hemisphere as it is within the ipsilateral one, though less intensively. This pattern of distribution allows for a remarkable degree of interhemispheric integration.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The thalamic connectivity and basal forebrain cholinergic input to the posterior parietal cortex (PPC) of Long-Evans rats was examined using combined retrograde tracing and immunocytochemical methods. As in previous studies, the PPC could be distinguished by its input from the lateral posterior, lateral dorsal, and posterior nuclei of the thalamus, but not the lateral geniculate nucleus or ventrobasal complex. These nuclei were also observed to receive reciprocal projections from the ipsilateral PPC. Cholinergic neurons innervating the PPC were primarily localized to the substantia innominata/nucleus basalis region. The implications of these data for possible functions of the cholinergic input to PPC are discussed.  相似文献   

8.
A prominent and stereotypical feature of cortical circuitry in the striate cortex is a plexus of long-range horizontal connections, running for 6-8 mm parallel to the cortical surface, which has a clustered distribution. This is seen for both intrinsic cortical connections within a particular cortical area and the convergent and divergent connections running between area 17 and other cortical areas. To determine if these connections are related to the columnar functional architecture of cortex, we combined labeling of the horizontal connections by retrograde transport of rhodamine-filled latex microspheres (beads) and labeling of the orientation columns by 2-deoxyglucose autoradiography. We first mapped the distribution of orientation columns in a small region of area 17 or 18, then made a small injection of beads into the center of an orientation column of defined specificity, and after allowing for retrograde transport, labeled vertical orientation columns with the 2-deoxyglucose technique. The retrogradely labeled cells were confined to regions of orientation specificity similar to that of the injection site, indicating that the horizontal connections run between columns of similar orientation specificity. This relationship was demonstrated for both the intrinsic horizontal and corticocortical connections. The extent of the horizontal connections, which allows single cells to integrate information over larger parts of the visual field than that covered by their receptive fields, and the functional specificity of the connections, suggests possible roles for these connections in visual processing.  相似文献   

9.
Patterns of connections of the visual cortex of the South American opossum, Didelphis aurita, were revealed by using neuronal tracers to identify and characterize visual specializations of the peristriate cortex (PS). The visuotopy of corticotectal connections of the anterolateral portion of PS (PSal) is symmetrical to that of the striate cortex (ST or primary visual area [V1]). Three consecutive bands of commissural connections coincide, respectively, with the ST-PS border, the limit between the caudal and rostral PSal halves (PSc and PSr), and the border of PS with the parietal and temporal cortices. PSc and PSr contain regular commissural rings similar to those present in the peristriate cortex of eutherian mammals. ST projections define in PSc two strings of periodical foci consecutively concentric to V1 and a single focus in PSr. Although they were organized topographically, ascending, descending, and commissural connections between ST and PSal showed a high degree of convergence and divergence. These results conform to the model of a single area homologous to the second visual area (V2) bordering V1. Moreover, they suggest the possibility that PSal includes either one or two additional belt-like areas successively anterior to V2. Along with the finding of alternating bands of high and low cytochrome oxidase activity in PSal, the data further suggest that this region contains modular specializations similar to those of the peristriate cortex of primates and other eutherian mammals. The posterolateral peristriate cortex (PSpl) constitutes another visual area, since it consists of a distinct focus of reciprocal corticocortical and interhemispheric connections and a separate source of corticotectal projections. Finally, a visuomotor function for the orbital cortex is proposed based on its direct projections to optical tectal layers. The close cladistic relationship of opossums to mammalian ancestral forms suggests that the PSal parcelation into belt-like areas that contain modules reflects the primitive organization of the visual cortex. Moreover, a highly diffuse pattern of corticocortical connections may represent a requirement for a brain with few visual areas to perform global processing.  相似文献   

10.
Corticothalamic connections of posterior parietal regions were studied in the rhesus monkey by using the autoradiographic technique. Our observations indicate that the rostral superior parietal lobule (SPL) is connected with the ventroposterolateral (VPL) thalamic nucleus. In addition, whereas the rostral SPL is connected with the ventrolateral (VL) and lateral posterior (LP) thalamic nuclei, the rostral IPL has connections with the ventroposteroinferior (VPI), ventroposteromedial parvicellular (VPMpc), and suprageniculate (SG) nuclei as well as the VL nucleus. The caudal SPL and the midportion of IPL show projections mainly to the lateral posterior (LP) and oral pulvinar (PO) nuclei, respectively. These areas also have minor projections to the medial pulvinar (PM) nucleus. Finally, the medial SPL and the caudal IPL project heavily to the PM nucleus, dorsally and ventrally, respectively. In addition, the medial SPL has some connections with the LP nucleus, whereas the caudal IPL has projections to the lateral dorsal (LD) nucleus. Furthermore, the caudal and medial SPL and the caudal IPL regions have additional projections to the reticular and intralaminar nuclei-the caudal SPL predominantly to the reticular, and the caudal IPL mainly to the intralaminar nuclei. These results indicate that the rostral-to-caudal flow of cortical connectivity within the superior and inferior parietal lobules is paralleled by a rostral-to-caudal progression of thalamic connectivity. That is, rostral parietal association cortices project primarily to modality-specific thalamic nuclei, whereas more caudal regions project most strongly to associative thalamic nuclei.  相似文献   

11.
The corticocortical connections and receptive field properties of primary or striate visual cortex of the brushtailed possum, Trichosurus vulpecula, have been examined. In this Australian marsupial species primary visual cortex has connections with four other visual areas in the occipital lobe. In these adjacent visual areas fibers from striate cortex terminate mainly in layers 3 and 4 and in some cases also in layers 1 and 2. In all four areas return connections to striate cortex originate predominantly in layers 2 and 3, and to a much lesser extent in layers 5 and 6. Interhemispheric connections of striate cortex are limited to the boundary of striate and peristriate cortex. In addition to its cortical connections, striate cortex makes reciprocal connections with the claustrum. Most neurons in striate cortex are highly binocular. Of our sample of 113 visually responsive neurons, only 30% were orientation selective. On the basis of these observations we have compared striate cortex of the marsupial brushtailed possum with striate cortices of the American marsupial opossum and those of placental mammals.  相似文献   

12.
Pattern in the laminar origin of corticocortical connections   总被引:8,自引:0,他引:8  
The laminar origin of cortical projections to the frontal cortex was studied in 17 adult rhesus monkeys with the use of the retrograde transport of horseradish peroxidase (HRP). The frontal regions injected with HRP extended from the posterior periarcuate region to the frontal pole. The architectonic boundaries of areas containing HRP-labeled neurons were determined from matched sections stained for the visualization of cell bodies, myelin, or acetylcholinesterase. The results showed that the laminar origin of both nearby and distant corticocortical projections was correlated with the architectonic differentiation of the regions giving rise to the projecting afferent fibers. Frontally directed projections from limbic cortices, which show a rudimentary laminar organization, emanated mainly from deep layers. On the other hand, projections from increasingly more differentiated cortices arose progressively from the upper (or supragranular) layers. This pattern was observed for projections originating along the axis of architectonic differentiation of the visual, somatosensory, auditory, motor, and prefrontal cortical systems. Thus, as the cortical architecture within each system changes from limbic areas toward the primary cortices, the origin of frontally directed projections shifts from predominantly infragranular to predominantly supragranular layers.  相似文献   

13.
Stellate cells of the rat parietal cortex   总被引:3,自引:0,他引:3  
Stellate cells have rounded or oval cell bodies which contain nuclei bounded by a ruffled, and frequently indented, nuclear envelope. Te cytoplasm of these neurons is usually darker than that of pyramidal neurons because it contains a greater concetration of ribosomes. Where the perikaryal cytoplasm is thick, the granular endoplasmic reticulum is often arranged in parallel arrays. On the surface of the perikarya are three types of synapses: (1) ones with a wide cleft and a prominent postsynaptic density, (2) ones with a wide and straight synaptic cleft that lack a prominent postsynaptic density, and (3) ones with a narrow synaptic cleft and short synaptic complexes. The dendrites of stellate cells lack spines and frequently bear many synapses. On the thinner dendritic branches the type of synapse with a side cleft and a prominent postsynaptic density is most common. The cytoplasm of the dendrites is characterized by closely arranged microtubules.  相似文献   

14.
By means of autoradiographic and ablation-degeneration techniques, the intrinsic cortical connections of the posterior parietal cortex in the rhesus monkey were traced and correlated with a reappraisal of cerebral architectonics. Two major rostral-to-caudal connectional sequences exist. One begins in the dorsal postcentral gyrus (area 2) and proceeds, through architectonic divisions of the superior parietal lobule (areas PE and PEc), to a cortical region on the medial surface of the parietal lobe (area PGm). This area has architectonic features similar to those of the caudal inferior parietal lobule (area PG). The second sequence begins in the ventral post/central gyrus (area 2) and passes through the rostral inferior parietal lobule (areas PG and PFG) to reach the caudal inferior parietal lobule (area PG). Both the superior parietal lobule and the rostral inferior parietal lobule also send projections to various other zones located in the parietal opercular region, the intraparietal sulcus, and the caudalmost portion of the cingulate sulcus. Areas PGm and PG, on the other hand, project to each other, to the cingulate region, to the caudalmost portion of the superior temporal gyrus, and to the upper bank of the superior temporal sulcus. Finally, a reciprocal sequence of connections, directed from caudal to rostral, links together many of the above-mentioned parietal zones. With regard to the laminar pattern of termination, the rostral-to-caudal connections are primarily distributed in the form of cortical "columns" while the caudal-to-rostral connections are found mainly over the first cortical cell layer.  相似文献   

15.
Corticothalamic projections from areas 5a, 5b, and 7 of cat parietal cortex were studied with autoradiographic techniques. Each cortical area was identified by its cytoarchitectural characteristics and the patterns of termination were related to the thalamic nuclear groups. Injections of 3H-leucine in cortical area 5a were associated with terminal labeling primarily in the spinal recipient zone of the ventral lateral nucleus (VLsp) and the medial division of the posterior group (POm). The corticothalamic projections of area 5a are loosely topographically organized; medial parts of 5a project heavily to rostral and lateral parts of VLsp and sparsely to POm, while lateral parts of 5a project to more medial and caudal parts of VLsp and heavily to POm. Cortical area 5b projects primarily to the rostral portions of the lateral posterior nucleus (LP). These projections also appear to be topographically organized. The part of area 5b on the marginal gyrus projects to more ventral parts of rostral LP, while area 5b on the middle suprasylvian gyrus projects to more dorsal and lateral parts of rostral LP. Cortical area 7 projects to LP and the pulvinar (Pul). Rostral parts of area 7 project heavily to dorsal and lateral parts of LP and lightly to Pul; more caudal portions of area 7 projects relatively more heavily to Pul. The reticular, central lateral, and paracentral nuclei also receive projections, especially from the suprasylvian gyrus. The results are discussed with regard to putative sensory response characteristics of these cortical areas and to general thalamocortical organization.  相似文献   

16.
The present study examines patterns of connectivity between the primary somatosensory cortex of the rat (SI) and surrounding cortical areas also implicated in the processing of somatosensory information. The impetus for the study was the recent reports of major differences in the organization of cortex lateral and caudal to the SI in two other rodent species; the mouse (Carvell and Simons, '86: Somatosens. Res. 3:213-237; '87: J. Comp. Neurol. 265:409-427) and the grey squirrel (Krubitzer et al., '86: J. Comp. Neurol 250: 403-430). Corticocortical connections between the somatosensory areas of the rat parietal cortex were examined by using the combined retrograde and anterograde transport of horseradish peroxidase as well as the retrograde transport of fluorescent tracers. Tracer injections were made into different locations within SI and dysgranular cortex as well as into more lateral regions of parietal cortex. The tangential patterns of distribution both of callosal connections and of cytochrome oxidase activity together provided points of reference in determining the relation between injection sites and the resultant patterns of label. The results indicate that two distinct somatosensory areas, SI and the dysgranular cortex, are interconnected with a further lateral somatosensory area referred to as the second somatosensory area (SII). These projections are organized in a topographic fashion, which we interpret as evidence for a single representation of the body surface in SII. The three somatosensory areas each exhibit unique laminar patterns of ipsilateral corticocortical projection neurons and terminations. In SI, projection neurons are found mainly in layers II, III, and Va, and terminations are largely restricted to the infragranular layers. In the dysgranular cortex, projection neurons and terminations are found in all layers except layer I in which only terminal label is detectable and layer Vb in which notably fewer neurons are labelled. In SII, projection neurons and terminations are found in all layers except layer I and are particularly dense in lower layer III and layer IV. Further, whereas the laminar and areal distributions of ipsilateral and contralateral corticocortical projections largely overlap in both SI and the dysgranular cortex, in SII they tend to be areally segregated. Neurons projecting bilaterally to both ipsilateral and contralateral somatosensory cortex were equally rare in all three somatosensory areas. These results are discussed in relation to the organization of SII in other rodent species, and it is concluded that in the rat, like the mouse, cortex lateral and caudal to SI contains a single representation of the body surface.  相似文献   

17.
Much of the information used for visual perception and visually guided actions is processed in complex networks of connections within the cortex. To understand how this works in the normal brain and to determine the impact of disease, mice are promising models. In primate visual cortex, information is processed in a dorsal stream specialized for visuospatial processing and guided action and a ventral stream for object recognition. Here, we traced the outputs of 10 visual areas and used quantitative graph analytic tools of modern network science to determine, from the projection strengths in 39 cortical targets, the community structure of the network. We found a high density of the cortical graph that exceeded that shown previously in monkey. Each source area showed a unique distribution of projection weights across its targets (i.e., connectivity profile) that was well fit by a lognormal function. Importantly, the community structure was strongly dependent on the location of the source area: outputs from medial/anterior extrastriate areas were more strongly linked to parietal, motor, and limbic cortices, whereas lateral extrastriate areas were preferentially connected to temporal and parahippocampal cortices. These two subnetworks resemble dorsal and ventral cortical streams in primates, demonstrating that the basic layout of cortical networks is conserved across species.  相似文献   

18.
Organization of lateral geniculate-hypothalamic connections in the rat   总被引:3,自引:0,他引:3  
The location and chemical identity of neurons interconnecting the lateral geniculate complex and the hypothalamus were analyzed in order to provide further information on the anatomical substrates for the entrainment of circadian rhythms. A particular objective of the study was to characterize the neurons projecting between the intergeniculate leaflet (IGL) of the lateral geniculate complex and the suprachiasmatic nucleus (SCN) and related anterior hypothalamic areas. The connectivity experiments employed five combinations of fluorescent tracer injection and were combined with immunohistochemical localization of either neuropeptide Y (NPY), met-enkephalin (mENK) or the vasoactive intestinal polypeptide (VIP)/peptide histidine isoleucine (PHI) group. IGL efferents. Injection of tracer into the SCN results in retrograde labeling of NPY-immunoreactive neurons in the IGL as would be expected from prior work. These neurons and their terminals also contain the C-flanking peptide of the NPY precursor molecule (CPON). In addition, there are two additional groups of neurons in the IGL that project either to the SCN or the contralateral IGL but do not exhibit NPY immunoreactivity. These include a substantial population of cells that project to the SCN and an even larger group of neurons which project to the contralateral IGL and contain mENK immunoreactivity. Hypothalamic efferents. Injection of tracer into the IGL results in retrograde labeling of scattered neurons throughout the SCN and immediately adjacent anterior hypothalamus ipsilaterally and also in labeling of a small number of neurons in the same areas on the contralateral side of the brain. In rare instances, individual SCN neurons appear to project to both IGLs. However, the retrochiasmatic area (RCA) contains the largest number of retrogradely labeled neurons following tracer injections into the IGL. These neurons are concentrated along the midsagittal plane and in the lateral RCA ipsilateral to the injected IGL. None of the labeled neurons in the SCN or adjacent anterior hypothalamus exhibit VIP or PHI immunoreactivity. These observations indicate that the anatomical relations between the geniculate complex and the anterior hypothalamus are more complex than previously shown. First, the geniculohypothalamic tract arises from two distinct groups of IGL neurons: one contains NPY/CPON immunoreactivity; the chemical content of the other is not characterized at the present time. Second, the commissural projection between the two IGLs is formed by a third group of neurons, and these cells contain mENK immunoreactivity. Finally, reciprocal projections from the hypothalamus to the IGL arise from neurons in the retrochiasmatic area, SCN, and adjacent anterior hypothalamus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Laminar origins of visual corticocortical connections in the cat   总被引:8,自引:0,他引:8  
The interconnections among visual areas in cat cortex were studied with respect to the specific laminae in which the cortically projecting neurons are located. Single injections of HRP were made through recording micropipettes into nine different visual areas. In 15 cortical areas the laminar distribution of neurons which were retrogradely filled with HRP was plotted. In this way we determined the laminar origins of the cortical projections to the nine separate cortical visual areas which were injected. There are three major observations. First, areas 17 and 18 are the only two visual areas in which layers II and III are the primary site of cortically projecting cells; in the other 13 areas the deeper layers of cortex provide a large percentage of such neurons. Second, within any one cortical area, cortically projecting neurons may be distributed among different layers; the specific layer depends upon the cortical target of those neurons. Third, any one cortical area receives projections from several different cortical layers, the specific layers being dependent upon the area from which the projection originates. An individual cortical area, therefore, contributes to several different cortical visual circuits, with each of these circuits defined by the laminar connections of its neurons.  相似文献   

20.
Sexual dimorphisms and/or hormone modifiability have been documented for numerous structural endpoints in the cerebral cortex, including cortical thickness and dendrite morphology. The present study asked whether gonadal steroids might also sculpt cortical circuit organization. Accordingly, neonatal gonadectomy, with and without testosterone propionate replacement, was followed by fine-grained microcircuit tract tracing analyses of the organization of corticocortical circuits of identified layers of primary motor and primary visual cortices in the same animals in adulthood. Comparative analyses revealed neither qualitative nor quantitative differences in visual cortical circuit organization between gonadectomized and control animals. In primary motor cortex, circuit organization was also qualitatively similar in the two animal groups. However, quantitative analyses uncovered small, but highly consistent, decreases in the horizontal breadth of motor cortical connections in the hormonally deprived group. These decreases were attenuated in gonadectomized rats that were supplemented with testosterone propionate. Furthermore, quantitative analysis of cytoarchitecture revealed that visual and motor circuits in both gonadectomized groups resided in cortical areas with dimensions that were statistically invariant from corresponding measures obtained in control animals. These findings suggest that cortical circuits should be among anatomical substrates considered in relation to observed sex differences in and/or hormone modifiability of the maturation of identified cortical functions. These findings may also have relevance for cortical dysmaturation and dysfunction in disorders such as schizophrenia and dyslexia, diseases in which sex differences in incidence suggest some role for gonadal steroids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号