首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used site-directed mutagenesis of amino acids located within the S1 and S2 ligand binding domains of the NR2A N-methyl-D-aspartate (NMDA) receptor subunit to explore the nature of ligand binding. Wild-type or mutated NR1/NR2A NMDA receptors were expressed in Xenopus laevis oocytes and studied using two electrode voltage clamp. We investigated the effects of mutations in the S1 and S2 regions on the potencies of the agonists L-glutamate, L-aspartate, (R,S)-tetrazol-5yl-glycine, and NMDA. Mutation of each of the corresponding residues found in the NR2A receptor subunit, suggested to be contact residues in the GluR2 alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit, caused a rightward shift in the concentration-response curve for each agonist examined. None of the mutations examined altered the efficacy of glutamate as assessed by methanethiosulfonate ethylammonium potentiation of agonist-evoked currents. In addition, none of the mutations altered the potency of glycine. Homology modeling and molecular dynamics were used to evaluate molecular details of ligand binding of both wild-type and mutant receptors, as well as to explore potential explanations for agonist selectivity between glutamate receptor subtypes. The modeling studies support our interpretation of the mutagenesis data and indicate a similar binding strategy for L-glutamate and NMDA when they occupy the binding site in NMDA receptors, as has been proposed for glutamate binding to the GluR2 AMPA receptor subunit. Furthermore, we offer an explanation as to why "charge conserving" mutations of two residues in the binding pocket result in nonfunctional receptor channels and suggest a contributing molecular determinant for why NMDA is not an agonist at AMPA receptors.  相似文献   

2.
NR2 subunits of N-methyl-d-aspartic acid (NMDA) receptors are known to bind the neurotransmitter glutamate, competitive agonists, and antagonists. Since crystallographic data of these proteins are not available, we built a homology model of the ligand binding domain of the NR2A subunit. A consensus binding mode of selected AP5-like NMDA antagonists has been ascertained using molecular docking. The present 3D model gives insights for the design of new NMDA subtype selective compounds.  相似文献   

3.
Activation of N-methyl-d-aspartate (NMDA) receptors requires the binding of both glutamate and glycine to independent sites on the receptor. These ligands bind to NR2 and NR1 subunits respectively. Ligand binding residues are located in two non-contiguous domains, S1 and S2, which have been implicated in glutamate binding in other ionotropic glutamate receptor subunits. To further define the amino acids through which glutamate activates the receptor, we generated single-site mutations to the NR2A subunit, and expressed them with wild type NR1 in HEK 293 cells. Using calcium imaging and whole cell patch clamp we determined glutamate and glycine potencies. Of the eight residues mutated we identified five (E413, K484, A508, G685 and G688), whose mutation leads to a large reduction (from 4- to 1000-fold) in glutamate potency, consistent with a role for these residues in receptor activation by glutamate. The potency of glycine was largely unchanged by these mutations. Thus our results extend the knowledge base of residues involved in NMDA receptor function and identifies a new site in S1, in the region of A508, that has a role in receptor activation by glutamate.  相似文献   

4.
The structural basis for partial agonism at N-methyl-D-aspartate (NMDA) receptors is currently unresolved. We have characterized several partial agonists at the NR1/NR2B receptor and investigated the mechanisms underlying their reduced efficacy by introducing mutations in the glutamate binding site. Key residues were selected for mutation based on ligand-protein docking studies using a homology model of NR2B-S1S2 built from the X-ray structure of NR1-S1S2 in complex with glycine. Wild-type and mutant forms of NR2B were coexpressed with NR1 in Xenopus laevis oocytes and characterized by two-electrode voltage-clamp electrophysiology. By combining mutagenesis of residues His486 or Val686 with activation by differently substituted partial agonists, we introduce varying degrees of steric clash between the ligand and the two binding domains S1 and S2. In cases where ligand-protein docking predicts increased steric clashes between agonists and the residues forming the S1-S2 interface, the agonists clearly show decreased relative efficacy. Furthermore, we demonstrate that the mutation S690A affects both potency and efficacy in an agonist-specific manner. The results indicate that essential residues in the ligand binding pocket of NR2B may adopt different conformations depending on the agonist bound. Together, these data indicate that agonist efficacy at the NR2B subunit can be controlled by the extent of steric clashes between the agonist and the ligand binding domains and by ligand-dependent arrangements of residues within the binding pocket.  相似文献   

5.
Conantokin-G (Con-G), a gamma-carboxylglutamate (Gla) containing peptide derived from the venom of the marine cone snail Conus geographus, acts as a selective and potent inhibitor of N-methyl-D-aspartate (NMDA) receptors. Here, the effect of Con-G on recombinant NMDA receptors carrying point mutations within the glycine and glutamate binding pockets of the NR1 and NR2B subunits was studied using whole-cell voltage-clamp recording from cRNA injected Xenopus oocytes. At wild-type receptors, glutamate-induced currents were inhibited by Con-G in a dose-dependent manner at concentrations of 0.1-100 microM. Substitution of selected residues within the NR2B subunit reduced the inhibitory potency of Con-G, whereas similar mutations in the NR1 subunit had little effect. These results indicate a selective interaction of Con-G with the glutamate binding pocket of the NMDA receptor. Homology-based molecular modeling of the glutamate binding region based on the known structure of the glutamate binding site of the AMPA receptor protein GluR2 suggests how selected amino acid side chains of NR2B might interact with specific residues of Con-G.  相似文献   

6.
We have quantified the effects of the N-methyl-d-aspartate (NMDA) receptor antagonist (R)-[(S)-1-(4-bromo-phenyl)-ethylamino]-(2,3-dioxo-1,2,3,4-tetrahydroquinoxalin-5-yl)-methyl]-phosphonic acid (NVP-AAM077) at rat recombinant N-methyl-D-aspartate receptor (NR)1/NR2A and NR1/NR2B NMDA receptors expressed in Xenopus laevis oocytes. We observed no difference in the steady-state levels of inhibition produced by NVP-AAM077 when it was either preapplied or coapplied with glutamate. The IC50 values for NVP-AAM077 acting at NR1/NR2A NMDA receptors were, as expected, dependent on the glutamate concentration used to evoke responses, being 31 +/- 2 nM (with glutamate at its EC50 concentration) and 214 +/- 10 nM (at 10 times the EC50 concentration). Schild analysis confirmed that the antagonism produced by NVP-AAM077 at NR1/NR2A NMDA receptors was competitive and gave an estimate of its equilibrium constant (K(B)) of 15 +/- 2 nM. Furthermore, Schild analysis of an NMDA receptor carrying a threonine-to-alanine point mutation in the NR2A ligand binding site indicated that NVP-AAM077 still acted in a competitive manner but with its K(B) increased by around 15-fold. At NR1/NR2B NMDA receptors, NVP-AAM077 displayed reduced potency. An IC50 value of 215 +/- 13 nM was obtained in the presence of the EC50 concentration of glutamate (1.5 microM), whereas a value of 2.2 +/- 0.14 microM was obtained with higher (15 microM) glutamate concentrations. Schild analysis gave a K(B) for NVP-AAM077 at NR2B-containing receptors of 78 +/- 3 nM. Finally, using a kinetic scheme to model "synaptic-like" activation of NMDA receptors, we show that the difference in the equilibrium constants for NVP-AAM077 is not sufficient to discriminate between NR2A-containing or NR2B-containing NMDA receptors.  相似文献   

7.
In this study, we characterise the binding site of the human N-methyl-d-aspartate (NMDA) receptor subunit NR3A. Saturation radioligand binding of the NMDA receptor agonists [(3)H]-glycine and [(3)H]-glutamate showed that only glycine binds to human NR3A (hNR3A) with high affinity (K(d)=535nM (277-793nM)). Eight amino acids, which correspond to amino acids that are critical for ligand binding to other NMDA receptor subunits, situated within the S1S2 predicted ligand binding domain of hNR3A were mutated, which resulted in complete or near complete loss of [(3)H]-glycine binding to hNR3A. The NMDA NR1 glycine site agonist d-serine and partial agonist HA-966 (3-amino-1-hydroxypyrrolid-2-one), similarly to glycine displaced [(3)H]-glycine monophasically, suggesting a single common binding site. However, neither the partial agonist d-cycloserine nor the antagonist 7-chlorokynurenic acid displaced [(3)H]-glycine. Using homology modelling, a model of the NR3A binding pocket was generated which we suggest can be used to identify candidate agonists and antagonists. Our data show that glycine is a ligand, and most probably the endogenous ligand, for native NR3A at a binding site with unique pharmacological characteristics.  相似文献   

8.
BACKGROUND AND PURPOSE: NMDA receptors are important molecular targets of ethanol action in the CNS. Previous studies have identified a site in membrane-associated domain 3 (M3) of the NR1 subunit and two sites in M4 of the NR2A subunit that influence alcohol action; the sites in NR2A M4 also regulate ion channel gating. The purpose of this study was to determine whether mutations at the site in the NR2A subunit corresponding to the NR1 M3 site influence alcohol action and ion channel gating. EXPERIMENTAL APPROACH: We investigated the effects of mutations at phenylalanine (F) 637 of the NR2A subunit using whole-cell and single-channel patch-clamp electrophysiological recording in transiently-transfected HEK 293 cells. KEY RESULTS: Mutations at F637 in the NR2A subunit altered peak and steady-state glutamate EC(50) values, maximal steady-state to peak current ratios (I(ss):I(p)), mean open time, and ethanol IC(50) values. Differences in glutamate potency among the mutants were not due to changes in desensitization. Ethanol IC(50) values were significantly correlated with glutamate EC(50) values, but not with maximal I(ss):I(p) or mean open time. Ethanol IC(50) values were linearly and inversely related to molecular volume of the substituent. CONCLUSIONS AND IMPLICATIONS: These results demonstrate that NR2A(F637) influences NMDA receptor affinity, ion channel gating, and ethanol sensitivity. The changes in NMDA receptor affinity are likely to be the result of altered ion channel gating. In contrast to the cognate site in the NR1 subunit, the action of ethanol does not appear to involve occupation of a critical volume at NR2A(F637).  相似文献   

9.
The subtype-selectivity of racemic [(3)H]CP-101,606, a novel high-affinity NMDA receptor radioligand was determined using defined recombinant NMDA receptor subunits expressed in HEK 293 cells. [(3)H]CP-101,606 binds to adult rodent forebrain and NR1/NR2B receptors expressed in HEK 293 cells with K(D)=4.2 nM and 6.0 nM, respectively. In contrast, no high affinity specific binding was detected to NR1, NR2A, NR2B subunits expressed alone or NR1/NR2A receptors. HEK 293 cells were transfected with NR1, NR2A and NR2B receptor subunits and complexes comprising all three subunits were isolated by anti-NR2A immunoaffinity chromatography. Based on immunoblotting with subunit-selective antibodies, the immunopurified material contained all three NMDA receptor subunit polypeptides. However, in contrast to parallel studies in which high affinity [(3)H]Ro-25,6981 binding activity was observed, no high affinity [(3)H]CP-101,606 binding sites were detected to the immunopurified material. This study provides further evidence for two distinct classes of NR2B-directed NMDA receptor antagonists, one which binds with high affinity irrespective whether another NR2 subunit type is present (Ro-25,6981) and a second class which is affected significantly by the presence of another NR2 subunit type within the receptor complex, exemplified by CP-101,606.  相似文献   

10.
Hormonal specificity of modulation of N-methyl- D-aspartate (NMDA) receptors was investigated by comparing the effects of estradiol with tamoxifen or raloxifene, which display different responses in breast, bone, and uterus. Two weeks ovariectomy in rats decreased uterine weight, which was prevented by a two-week estradiol treatment; tamoxifen and raloxifene had weaker uterine stimulation than estradiol. Ovariectomy in rats decreased L-[3H]glutamate specific binding to NMDA receptors in CA1 and dentate gyrus but not CA2/3 regions of hippocampus and was without effect in cortex, striatum, nucleus accumbens, and olfactory tubercle. [3H]Ro 25-6981 (an NMDA antagonist selective for NR1/NR2B assembly) specific binding and mRNA levels of NMDA receptor subunits 1 and 2B decreased in CA1 after ovariectomy. Estradiol, tamoxifen, and raloxifene decreased L-[3H]glutamate specific binding to NMDA receptors and [3H]Ro 25-6981 specific binding in cortical area of ovariectomized rats and prevented the decrease of [3H]glutamate specific binding to NMDA receptors in CA1 and dentate gyrus, as well as [3H]Ro 25-6981 specific binding in CA1. Estradiol prevented the decrease of NMDA receptor subunits 1 and 2B mRNA levels in CA1 only; tamoxifen and raloxifene prevented the decrease of NMDA receptor subunit 1 mRNA levels in CA1. No effect of ovariectomy or treatments on L-[3H]CGP 39653 (an NMDA antagonist selective for NR1/NR2A assembly) specific binding and NMDA receptor subunit 2A mRNA levels was observed in all brain regions assayed. Our results showed brain regional and subunits specific agonist estrogenic activity of tamoxifen and raloxifene on NMDA receptors.  相似文献   

11.
Toluene has been reported to antagonize the function of N-methyl-D-aspartate (NMDA) receptors. In this study, the effects of neonatal toluene exposure on NMDA receptors in primarily cultured cerebellar granule neurons were examined. Sprague-Dawley rats were treated with toluene (0, 200, 500, and 1000 mg/kg, i.p.) from postnatal day (PN) 4 to PN 7. Under toluene-free conditions, Ca2+ signals of cultured neurons in response to glutamate and NMDA were measured for up to 14 days. The expression of NMDA receptor subunits (NR1, NR2A, and NR2B) at 5-14 days in vitro (DIV) were also determined. Neonatal toluene exposure dose-dependently reduced intracellular Ca2+ signals in response to glutamate/glycine and NMDA/glycine in cultured cerebellar granule neurons, and these effects were gradually decreased with time. Such toluene exposure did not influence the inhibition of Mg2+ or MK801 on NMDA-evoked responses, but it decreased the potency of ifenprodil (an NR2B preferring antagonist). The protein levels of NMDA receptor subunit NR2B were consistently reduced by toluene exposure at 5 DIV, but not at 14 DIV. These results demonstrate that neonatal toluene exposure induces long-term but reversible changes in the function and composition of NMDA receptors. Such changes during developmental stages may contribute to the cerebellar dysfunction observed in fetal solvent syndrome.  相似文献   

12.
1. The neurosteroid pregnenolone sulphate (PS) potentiates N-methyl-D-aspartate (NMDA) receptor mediated responses in various neuronal preparations. The NR1 subunit can combine with NR2A, NR2B, NR2C, or NR2D subunits to form functional receptors. Differential NR2 subunit expression in brain and during development raises the question of how the NR2 subunit influences NMDA receptor modulation by neuroactive steroids. 2. We examined the effects of PS on the four diheteromeric NMDA receptor subtypes generated by co-expressing the NR1(100) subunit with each of the four NR2 subunits in Xenopus oocytes. Whereas PS potentiated NMDA-, glutamate-, and glycine-induced currents of NR1/NR2A and NR1/NR2B receptors, it was inhibitory at NR1/NR2C and NR1/NR2D receptors. 3. In contrast, pregnanolone sulphate (3alpha5betaS), a negative modulator of the NMDA receptor that acts at a distinct site from PS, inhibited all four subtypes, but was approximately 4 fold more potent at NR1/NR2C and NR1/NR2D than at NR1/NR2A and NR1/NR2B receptors. 4. These findings demonstrate that residues on the NR2 subunit are key determinants of modulation by PS and 3alpha5betaS. The modulatory effects of PS, but not 3alpha5betaS, on dose-response curves for NMDA, glutamate, and glycine are consistent with a two-state model in which PS either stabilizes or destabilizes the active state of the receptor, depending upon which NR2 subunit is present. 5. The selectivity of sulphated steroid modulators for NMDA receptors of specific subunit composition is consistent with a neuromodulatory role for endogenous sulphated steroids. The results indicate that it may be possible to develop therapeutic agents that target steroid modulatory sites of specific NMDA receptor subtypes.  相似文献   

13.
(2S*,3R*)-1-(biphenyl-4-carbonyl)piperazine-2,3-dicarboxylic acid (PBPD) is a moderate affinity, competitive N-methyl-d-aspartate (NMDA) receptor antagonist with an atypical pattern of selectivity among NMDA receptor 2 subunit (NR2) subunits. We now describe the activity of several derivatives of PBPD tested at both rat brain NMDA receptors using l-[3H]-glutamate binding assays and at recombinant receptors expressed in Xenopus oocytes. Substituting various branched ring structures for the biphenyl group of PBPD reduced NMDA receptor activity. However, substituting linearly arranged ring structures - fluorenone or phenanthrene groups - retained or enhanced activity. Relative to PBPD, the phenanthrene derivative (2S*, 3R*)-1-(phenanthrene-2-carbonyl)piperazine-2,3-dicarboxylic acid (PPDA) displayed a 30- to 78-fold increase in affinity for native NMDA receptors. At recombinant receptors, PPDA displayed a 16-fold (NR2B) to 94-fold (NR2C) increase in affinity over PBPD. Replacement of the biphenyl group of PBPD with a 9-oxofluorene ring system resulted in small changes in receptor affinity and subtype selectivity. 2'-Bromo substitution on the biphenyl group of PBPD reduced antagonist affinity 3- to 5-fold at NR2A-, NR2B- and NR2D-containing receptors, but had little effect on NR2C-containing receptors. In contrast, 4'-fluoro substitution of the biphenyl ring of PBPD selectively increased NR2A affinity. The aromatic rings of PBPD and PPDA increase antagonist affinity and appear to interact with a region of the NMDA receptor displaying subunit heterogeneity. PPDA is the most potent and selective NR2C/NR2D-preferring antagonist yet reported and thus may be useful in defining NR2C/NR2D function and developing related antagonists with improved NMDA receptor subtype selectivity.British Journal of Pharmacology (2004) 141, 508-516. doi:10.1038/sj.bjp.0705644  相似文献   

14.
This study was conducted to determine the phosphorylation state of N-methyl-d-aspartate (NMDA) NR1 subunit on serine residues 896 (Ser896) and 897 (Ser897), the extracellular signal-regulated kinase 1/2 (ERK1/2), and the cyclic AMP response element-binding protein (CREB) after repeated exposure to cocaine (20 mg/kg, once daily for 9 days) in the dorsal striatum of rats. The real-time changes of glutamate concentration evoked by repeated cocaine injections were examined using a glutamate biosensor in order to evaluate the correlation between glutamate concentration and the change in these phosphoproteins. The results of this study showed that the immunoreactivity of phosphorylated (p)NMDA NR1 subunit at Ser896 and Ser897 as well as pERK1/2, but not pCREB, in the dorsal striatum was increased at 30 min and then returned to basal levels 4 h after repeated cocaine injections. Similarly, glutamate responses evoked by repeated cocaine injections were also increased 30 min after repeated cocaine injections for 3 days and were prolonged by the 9th day of treatment. However, the glutamate responses were not detected at 4 h after repeated cocaine injections for 5 days. In addition, the elevated immunoreactivity of the phosphoproteins 2 h after repeated cocaine injections was attenuated by the blockade of dopamine D1 receptors and NMDA receptors with the SCH23390 or MK801 antagonists, respectively. These findings suggest that glutamate release and dopamine D1 and NMDA receptor stimulation after repeated exposure to cocaine are associated with NMDA NR1 subunit, ERK1/2 and CREB phosphorylation in the dorsal striatum.  相似文献   

15.
There are complex interactions between spermine, protons, and ifenprodil at N-methyl-D-aspartate receptors. Spermine stimulation may involve relief of proton inhibition, whereas ifenprodil inhibition may involve an increase in proton inhibition. We studied mutations at acidic residues in the NR1 subunit using voltage-clamp recording of NR1/NR2B receptors expressed in Xenopus oocytes. Mutations at residues near the site of the exon-5 insert, including E181 and E185, reduced spermine stimulation and proton inhibition. Mutation NR1(D130N) reduced sensitivity to ifenprodil by more than 500-fold, but had little effect on sensitivity to spermine and pH. Mutations at six other residues in this region of the NR1 subunit reduced the potency and, in some cases, the maximum effect of ifenprodil. These mutants did not affect sensitivity to pH, glutamate, glycine, or other hallmark properties of N-methyl-D-aspartate channels such as Mg2+ block and Ba2+ permeability. Residues in this region presumably form part of the ifenprodil-binding site. To model this region of NR1 we compared the predicted secondary structure of NR1 (residues 19-400) with the known structures of 1,400 proteins. This region of NR1 is most similar to bacterial leucine/isoleucine/valine binding protein, a globular amino acid binding protein containing two lobes, similar to the downstream S1-S2 region of glutamate receptors. We propose that the tertiary structure of NR1(22-375) is similar to leucine/isoleucine/valine binding protein, containing two "regulatory" domains, which we term R1 and R2. This region, which contains the binding sites for spermine and ifenprodil, may influence the downstream S1 and S2 domains that constitute the glycine binding pocket.  相似文献   

16.
N-Methyl-D-aspartate receptors (NMDARs) composed of NR1 and NR3 subunits differ from other NMDAR subtypes in that they require glycine alone for activation. However, little else is known about the activation mechanism of these receptors. Using NMDAR glycine-site agonists/antagonists in conjunction with functional mutagenesis of the NR1 and NR3 ligand-binding cores, we demonstrate quite surprisingly that agonist binding to NR3 alone is sufficient to activate a significant component of NR1/NR3 receptor currents. Thus, the apo conformation of NR1 in NR1/NR3 receptors is permissive for receptor activation. Agonist-bound NR1 may also contribute to peak NR1/NR3 receptor currents but specifically enables significant NR1/NR3 receptor current decay under the conditions studied here, pre-sumably via a slow component of desensitization. Ligand studies of NR1/NR3 receptors also suggest differential agonist selectivity between NR3 and NR1, as some high-affinity NR1 agonists only minimally activate NR1/NR3 receptors, whereas other NR1 agonists are as potent as glycine. Furthermore, liganded NR3 subunits seem necessary for effective engagement of NR1 in NR1/NR3 receptor activation, suggesting significant interactivity between the two subunits. NR3 subunits thus induce plasticity in NR1 with respect to subunit assembly and ligand binding/channel coupling that is unique among ligand-gated ion channel subunits.  相似文献   

17.
Changes in the levels of mRNA for the NR1 subunit of the glutamate NMDA receptor and in NMDA-sensitive glutamate binding were investigated in consecutive sections of the prefrontal cortex and striatum of control and Parkinson's disease (PD) post-mortem brain using in-situ hybridisation and receptor autoradiography. Both markers of NMDA receptors were found to be relatively unaffected when measured by microdensitometry in the prefrontal cortex of control and PD brains. At a cellular level, a subpopulation of small and medium neurons in the superficial layers of the prefrontal cortex of the PD group showed a decreased expression of NMDA NR1 mRNA, with the maximal decrease in cortical layer IV. In the striatum, levels of glutamate binding to the NMDA receptor detected by receptor autoradiodgraphy were significantly reduced in the PD group, while no change could be detected at a macroscopical level in NMDA NR1 mRNA expression. Consequently, we suggest that the important decrease in agonist binding to the NMDA receptor observed in this study in the caudate and putamen of PD brains, in the absence of any major change in NMDA NR1 mRNA levels might reflect the degeneration of pre-synaptic NMDA receptors located on nigro-striatal projections particularly affected by the disease. Small changes observed at a cellular level in subsets of neurons of both prefrontal cortex and striatum will be discussed at the light of neurochemical changes characteristics of PD.  相似文献   

18.
Aim: To elucidate the role of scaffold protein postsynaptic density (PSD)-95 in the dopamine D1 receptor (D~R)-modulated NRla/NR2B receptor response. Methods: The human embryonic kidney 293 ceils expressing D1R (tagged with the enhanced yellow fluorescent protein) and NRla/NR2B with or without co-expres- sion of PSD-95 were used in the experiments. The Ca^2+ influx measured by imaging technique was employed to monitor N-methyl-D-aspartic acid receptors (NMDAR) function. Results: The application of dopamine (DA, 100 μmol/L) did not alter glutamate/glycine (Glu/Gly)-induced NMDAR-mediated Ca^2+ influx in cells only expressing the D1R/NRla/NR2B receptor. However, DA increased Glu/Glyinduced Ca^2+ influx in a concentration-dependent manner while the cells were co-expressed with PSD-95. D1R-stimulated Ca^2+ influx was inhibited by a selective D1R antagonist SCH23390. Moreover, pre-incubation with either the protein kinase A (PKA) inhibitor H89, or the protein kinase C (PKC) inhibitor chelerythrine attenuated D1R-enhanced Ca^2+ influx induced by the N-methyl-D-aspartic acid (NMDA) agonist. The results clearly indicate that D1R-modulated NRla/NR2B receptor function depends on PSD-95 and is subjected to the regulation of PKA and PKC. Conclusion: The present study provides the first evidence that PSD-95 is essential in D1R-regulated NRla/NR2B receptor function.  相似文献   

19.
Antagonists selective for NMDA receptors containing the NR2B subunit   总被引:4,自引:0,他引:4  
In the late 1980s, a new class of N-methyl-D-aspartate (NMDA) receptor antagonists, exemplified by the phenylethanolamine ifenprodil (1), was identified. Initially, the mechanism of action of ifenprodil was a mystery as it was not a competitive antagonist at the glutamate or glycine (co-agonist) binding sites, nor was it a blocker of the calcium ion channel associated with the NMDA receptor. Early studies with a novel polyamine binding site associated with the NMDA receptor and functional studies in various brain regions suggested a unique and selective activity profile for 1. However, it was not until the NMDA receptor subunits were identified and expressed that ifenprodil was shown to be a selective antagonist for a subset of NMDA receptors containing the NR2B subunit. The wide range of potential therapeutic targets for NMDA antagonists coupled with the hope that NR2B selective agents might possess an improved clinical safety profile compared to non-selective compounds has supported an aggressive effort to develop the structure-activity relationships (SAR) of NR2B selective antagonists. This SAR and the basic physiology of the NMDA receptor form the basis of this review.  相似文献   

20.
  1. Subunit-selective blockade of N-methyl-D-aspartate (NMDA) receptors provides a potentially attractive strategy for neuroprotection in the absence of undesirable side effects. Here, we describe a novel NR2B-selective NMDA antagonist, 4-{3-[4-(4-fluoro-phenyl)-3,6-dihydro-2H-pyridin-1-yl]-2-hydroxy-propoxy}-benzamide (Ro 8-4304), which exhibits >100 fold higher affinity for recombinant NR1001/NR2B than NR1001/NR2A receptors.
  2. Ro 8-4304 is a voltage-independent, non-competitive antagonist of NMDA receptors in rat cultured cortical neurones and exhibits a state-dependent mode of action similar to that described for ifenprodil.
  3. The apparent affinity of Ro 8-4304 for the NMDA receptor increased in an NMDA concentration-dependent manner so that Ro 8-4304 inhibited 10 and 100 μM NMDA responses with IC50s of 2.3 and 0.36 μM, respectively. Currents elicited by 1 μM NMDA were slightly potentiated in the presence of 10 μM Ro 8-4304, and Ro 8-4304 binding slowed the rate of glutamate dissociation from NMDA receptors.
  4. These results were predicted by a reaction scheme in which Ro 8-4304 exhibits a 14 and 23 fold higher affinity for the activated and desensitized states of the NMDA receptor, respectively, relative to the agonist-unbound resting state. Additionally, Ro 8-4304 binding resulted in a 3–4 fold increase in receptor affinity for glutamate site agonists.
  5. Surprisingly, whilst exhibiting a similar affinity for NR2B-containing NMDA receptors as ifenprodil, Ro 8-4304 exhibited markedly faster kinetics of binding and unbinding to the NMDA receptor. This spectrum of kinetic behaviour reveals a further important feature of this emerging class of NR2B-selective compounds.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号