首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A hyperpolarization-activated current, Ih, is often implied in pacemaker-like depolarizations during rhythmic oscillatory activity. We describe Ih in the isolated respiratory centre of immature mice (P6-P11). Ih was recorded in 15% (22/146) of all inspiratory neurons examined. The mean half-maximal Ih activation occurred at -78 mV and the reversal potential was -40 mV. Ih was inhibited by Cs+ (1-5 mM) and by organic blockers N-ethyl-1,6-dihydro-1, 2-dimethyl-6-(methylimino)-N-phenyl-4-pyrimidinamine (ZD 7288; 0.3-3 microM) and N,N'-bis-(3,4-dimethylphenylethyl)-N-methylamine (YS 035, 3-30 microM), but not by Ba2+ (0.5 mM). The organic Ih blockers did not change the inspiratory bursts recorded from the XIIth nerve and synaptic drives in inspiratory neurons. Hypoxia reversibly inhibited Ih but, in the presence of organic blockers, the hypoxic reaction remained unchanged. We conclude that although Ih channels are functional in a minority of inspiratory neurons, Ih does not contribute to respiratory rhythm generation or its modulation by hypoxia.  相似文献   

2.
In cultured Schwann cells, single-channel and whole-cell K+ currents can be activated by depolarizing the membrane to values more negative than -50 mV. In elevated extracellular K+ concentration ([K+]o), however, single-channel activity and whole-cell currents could be recorded at more negative potentials. Thus, the threshold of current activation was shifted to more negative potentials. This shift in the activation threshold was only observed with normal (50-60 mM) intracellular [K+] levels; it was not apparent when [K+]i was elevated to 145 mM. The control of [K+]o on the gating properties of K+ channels may serve to enhance the capability of the Schwann cell to take up [K+]o and thus may serve for [K+] homeostasis in the peripheral nerve.  相似文献   

3.
The presence of a hyperpolarization-activated inward current (Ih) was investigated in mouse vestibular primary neurons using the whole-cell patch-clamp technique. In current-clamp configuration, injection of hyperpolarizing currents induced variations of membrane voltage with prominent time-dependent rectification increasing with current amplitudes. This effect was abolished by 2 mM Cs+ or 100 microM ZD7288. In voltage-clamp configuration, hyperpolarization pulses from -60 mV to -140 mV triggered a slow activating and non inactivating inward current that was sensitive to the two blockers, but insensitive to 5 mM Ba2+. Changing Na+ and K+ concentrations demonstrated that Ih current is carried by both these monovalent cations. This is the first demonstration of a Ih current in vestibular primary neurons.  相似文献   

4.
Synaptic transmission between reciprocally inhibitory heart interneurons (HN cells) of the medicinal leech was examined in the absence of Na-mediated action potentials. Under voltage clamp, depolarizing steps from a holding potential of -60 mV elicited 2 kinetically distinct components of inward current in the presynaptic HN cell: an early transient current that inactivates within 200 msec and a persistent current that only partially decays over several seconds. Both currents begin to activate near -60 mV. Steady-state inactivation occurs over the voltage range between -70 and -45 mV and is completely removed by 1-2-sec hyperpolarizing voltage steps to -80 mV. The inward currents are carried by Ca2+, Ba2+, or Sr2+ ions, but not by Co2+, Mn2+, or Ni2+. These same inward currents underlie the burst-generating plateau potentials previously described in HN cells (Arbas and Calabrese, 1987a,b). With a presynaptic holding potential of -60 mV, the threshold for transmitter release is near -45 mV. Postsynaptic currents in the contralateral HN cell have a reversal potential near -60 mV. The largest postsynaptic currents (300-400 pA) exhibit an initial peak response that is followed by a more slowly decaying component. The persistent component of Ca2+ current in the presynaptic neuron is strongly correlated with the prolonged component of the postsynaptic current, while the transient presynaptic Ca2+ current appears to correspond to the early peak of postsynaptic current. These data are consistent with the hypothesis that voltage-dependent calcium currents contribute to the oscillatory capability of reciprocally inhibitory HN cells by (1) generating the plateau potential that drives the burst of action potentials and (2) underlying the release of inhibitory transmitter onto the contralateral cell.  相似文献   

5.
Cultured Schwann cells are characterized by a strong outward rectification of the membrane; the threshold of the outward currents is close to the resting membrane potential of about -50 mV (Gray et al.: In Ritchie, Keynes (eds): Ion Channels in Neural Membranes. New York: Alan R. Liss, Inc., pp 145-157, 1986). These outward currents show up a heterogeneity among the cultured Schwann cells: some cells displayed inactivating, others non-inactivating outward currents (Hoppe et al.: Pflügers Arch 415:22-28, 1989). In this study we characterized the single channel currents using the patch-clamp technique in the intact patch recording configuration. The conductance of all recorded channels was 10-12 pS (5.6 mM [K+]o). These channels were K+ selective since changes in extracellular [K+] resulted in changes of the reversal potential as predicted for an exclusively K+ selective pore. The reversal potentials also predicted an intracellular [K+] of 60 mM indicating that the K+ equilibrium potential is slightly negative to the membrane potential. Analysis of the kinetic behavior of the channels resolved two different types of behaviour: 40% inactivated during a depolarizing voltage step, the others showing no sign of inactivation. The analysis of open probability and gating properties in the steady state showed up more differences between these two channel types: mean open probability peaked at about 10 mV for inactivating channels, while it continuously increased for non-inactivating channels. The inactivation time constants of averaged single channel and whole cell currents were similar and showed both a similar voltage dependency. We conclude that cultured Schwann cells express either two types of K+ channels with similar conductance or a channel which can acquire two functional states and that these channels can account for the different types of K+ currents observed in these cells.  相似文献   

6.
Cholinergic activation of entorhinal cortex (EC) layer V neurons plays a crucial role in the medial temporal lobe memory system and in the pathophysiology of temporal lobe epilepsy. Here, we demonstrate that muscarinic activation by focal application of carbachol depolarizes EC layer V neurons and induces epileptiform activity in rat brain slices. These seizure-like bursts are associated with a somatic [Ca2+]i increase of 293 +/- 82 nm and are blocked by the glutamate receptor antagonists CNQX and APV. Muscarinic activation did not directly evoke a [Ca2+]i increase, but subthreshold and suprathreshold depolarization did. Functional axon mapping revealed local axon branching as well as axon collaterals ascending to layers II and III. During blockade of ionotropic glutamatergic AMPA and NMDA receptors, carbachol depolarized layer V neurons by +7.5 +/- 3.4 mV. This direct muscarinic depolarization was associated with a conductance increase of 35 +/- 10.3% (+4.3 +/- 1.25 nS). Intracellular buffering of [Ca2+]i changes did not block this depolarization, but prolonged action potential duration and reduced adaptation of action potential firing. The muscarinic depolarization was neither blocked by combining intracellular Ca2+-buffering (EGTA or BAPTA) with non-specific Ca2+-channel inhibition by Ni+ (1 mm), nor by Ba2+ (1 mm) nor during inhibition of the h-current by 2 mm Cs+. In whole-cell patch-clamp recording, reversal of the muscarinic current occurred at about -45 mV and -5 mV with complete substitution of intrapipette K+ with Cs+. Thus, muscarinic depolarization of EC layer V neurons appears to be primarily mediated by Ca2+-independent activation of non-specific cation channels that conduct K+ about three times as well as Na+.  相似文献   

7.
An electrogenic Na+/HCO3- cotransport system was studied in freshly dissociated Müller cells of the salamander retina. Cotransporter currents were recorded from isolated cells using the whole-cell, voltage-clamp technique following the block of K+ conductance with external Ba2+ and internal Cs+. At constant pHo, an outward current was evoked when extracellular HCO3- concentration was raised by pressure ejecting a HCO3(-)-buffered solution onto the surface of cells bathed in nominally HCO3(-)-free solution. The HCO3(-)-evoked outward current was reduced to 4.4% of control by 0.5 mM DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonate), to 28.8% of control by 2 mM DNDS (4,4'-dinitrostilbene-2,2'-disulfonate), and to 28.4% of control by 2 mM harmaline. Substitution of choline for Na+ in bath and ejection solutions reduced the response to 1.3% of control. Bicarbonate-evoked currents of normal magnitude were recorded when methane sulfonate was substituted for Cl- in bath, ejection, and intracellular solutions. Similarly, an outward current was evoked when extracellular Na+ concentration was raised in the presence of HCO3-. The Na(+)-evoked response was reduced to 16.2% of control by 2 mM DNDS and was abolished by removal of HCO3- from bath and ejection solutions. Taken together, these results (block by stilbenes and harmaline, HCO3- and Na+ dependence, Cl- independence) indicate that salamander Müller cells possess an electrogenic Na+/HCO3- cotransport system. Na+/HCO3- cotransporter sites were localized primarily at the endfoot region of Müller cells. Ejection of HCO3- onto the endfoot evoked outward currents 10 times larger than currents evoked by ejections onto the opposite (distal) end of the cell. The reversal potential of the cotransporter was determined by DNDS block of cotransport current. In the absence of a transmembrane HCO3- gradient, the reversal potential varied systematically as a function of the transmembrane Na+ gradient. The reversal potential was -0.1 mV for a [Na+]o:[Na+]i ratio of 1:1 and -25.2 mV for a Na+ gradient ratio of 7.4:1. Based on these values, the estimated stoichiometry of the cotransporter was 2.80 +/- 0.13:1 (HCO3-:Na+). Possible functions of the glial cell Na+/HCO3- cotransporter, including the regulation of CO2 in the retina and the regulation of cerebral blood flow, are discussed.  相似文献   

8.
Liu X  Stan Leung L 《Brain research》2004,1023(2):185-192
The depolarizing afterpotential (DAP) following an action potential increases the excitability of a neuron. Mechanisms related to the DAP following an antidromic or current-induced spike were studied in CA1 pyramidal cells by whole-cell recordings in hippocampal slices in vitro. In DAP-holding voltage curves, the DAP at 10 ms after the spike peak (DAP10) was extrapolated to reverse at about -50 mV. Increase of extracellular K(+) concentration increased DAP and neuronal bursting. DAP10 reversal potential shifted positively with an increase in [K(+)](o) and with the blockade of K(+) conductance using pipettes filled with Cs(+). Similarly, extracellular tetraethylammonium (TEA; 10 mM), 4-aminopyridine (3-10 mM) increased DAP and shifted the DAP10 reversal potential to a depolarizing direction. Decrease of [Ca(2+)](o) did not alter DAP significantly, suggesting a nonessential role of Ca(2+) in the DAP. Perfusion of tetrodotoxin (TTX; 0.1-1 microM) and replacement of extracellular Na(+) by choline(+) suppressed both spike height and DAP simultaneously. Replacement of extracellular Na(+) by Li(+) increased DAP and spike bursts, and caused a positive shift of the DAP10 reversal potential. It is suggested that Li(+) increased DAP by blocking an Na(+)-activated K(+) current. In summary, multiple K(+) conductances are normally active during the DAP following a single action potential.  相似文献   

9.
S Levy  D Tillotson 《Brain research》1988,474(2):333-342
Selected neurons of the abdominal ganglion of Aplysia californica were voltage-clamped and intracellular free Ca [( Ca2+]i) and Na [( Na+]i) concentrations were monitored with ion selective microelectrodes. Reducing [Na+]o from 500 mM (normal seawater, NSW) to 5 mM resulted in a decrease of the potential measured by the Ca electrode (VCa). Increasing [Ca2+]o from 10 to 50 mM increased [Ca2+]i two-fold, keeping [Ca2+]o at 50 mM and decreasing [Na+]o to 5 mM still led to a decrease in VCa. With 100 mM [Ca2+]o, which also increased [Ca2+]i, decreasing [Na+]o increased VCa in two of the eight cells tested. This indicates that in normal or moderately high resting [Ca2+]i, Ca2+ extrusion by Na/Ca exchange (forward mode) is not essential for [Ca2+]i buffering. [Na+]i was 12.9 +/- 3.6 mM (S.E.M., n = 7) in NSW; reducing [Na+]o to 5 mM decreased [Na+]i to 2.0 +/- 1.1 mM (S.E.M.). Keeping [Na+]o at 5 mM and increasing [Ca2+]o from 10 to 20 mM further decreased [Na+]i to about 1.0 mM, evidence of Na/Ca exchange operating in the reverse mode. Attempts to increase [Ca2+]i by bath application of the Ca ionophores A23187, X537A, ionomycin or ETH 1001 resulted in no measurable change of the resting [Ca2+]i. Application of Ouabain caused an apparent increase in [Ca2+]i in two of the six cells tested. In cells injected with the metallochromic indicator arsenazo III (AIII), the rate of the falling phase of the AIII absorbance increase, following a voltage-clamp pulse, was significantly slower in 5 mM [Na+]o. This indicates that in its forward mode Na-Ca exchange is active in clearing large submembrane increases in [Ca2+]i.  相似文献   

10.
During and after intense neuronal activity the concentration of extracellular potassium ([K+]o) increases while the concentration of calcium ([Ca2+]o) decreases. The present study examined the effect of increased [K+]o alone, and with a parallel decrease in [Ca2+]o, on overall excitability, long-term potentiation (LTP), and the appearance of epileptiform discharges. [K+]o and [Ca2+]o were varied over the range in which they fluctuate in vivo. Hippocampal slices were first equilibrated in a control artificial CSF containing 3.1 mM K+ and 1.5 mM Ca2+ and then reequilibrated in an identical solution except that the K+ was increased to 3.55, 4, 5, 6, or 8 mM with and without a decrease in Ca2+ to 1.0 mM. Raising [K+]o caused a leftward shift of input-output curves. Lowering [Ca2+]o to 1.0 mM had no effect on the ability of [K+]o to shift the input-output curve to the left. LTP was not changed by increasing [K+]o. Lowering [Ca2+]o to 1.0 mM blocked LTP and increasing the [K+]o did not overcome this blockade. When [K+]o alone was altered, the [K+]oS at which epileptiform bursts occurred 50% of the time were 5.6 and 7.6 mM for stimulus-locked and spontaneous bursting, respectively. The combination of decreased [Ca2+]o and increased [K+]o made slices considerably more prone to epileptiform activity. In 1.0 mM [Ca2+]o, the [K+]o at which 50% of the slices showed stimulus-locked bursting was decreased to 3.6 mM while that for spontaneous discharges was 5.4 mM. The sensitivity of hippocampal slices to [K+]o and [Ca2+]o, and the synergistic actions of alterations of these ions, indicates that even small changes in the aggregate extracellular ionic milieu may be important in epileptogenesis.  相似文献   

11.
K S Canady  F Ali-Osman  E W Rubel 《Glia》1990,3(5):368-374
Previous reports of increases in glial cell number and expression of glial fibrillary acidic protein (GFAP) in stimulated brain regions or epileptic tissue have implicated a role for increases in extracellular potassium concentration ([K+]o) in glial reactions. We examined the effects of altered [K+]o on DNA and protein syntheses and GFAP expression of cultured glial cells isolated from the posthatch chick brain stem. [K+]o was varied by adding both KCl and NaCl to K+, NaCl-free medium to achieve final [K+] of 1-50 mM. DNA and protein syntheses were measured by incorporation of 3H-thymidine and 3H-leucine, respectively, into acid-insoluble material. GFAP expression was measured by a dot-immunoblotting assay. DNA syntheses in glial cells cultured in high (5-50 mM) K+o was 45-60% less than that of cells cultured in low (1-3 mM) K+o. Protein synthesis per cell was increased 34-44% in cells cultured in high K+ as compared to those cultured in low K+. GFAP expression was inversely related to [K+]o over the 1-10 mM range. Compared to the baseline of 3 mM K+o, GFAP per cell was increased 65% at 1 mM and decreased 45% at 10 mM. These data suggest that increases in glial cell number and GFAP immunoreactivity found in sites of increased neuronal activity and in pathological tissues may not be caused solely by persistent increases in [K+]o. Instead, these results suggest that neuronal activity, through the release of K+, may have an inhibitory influence on glial proliferation and GFAP expression.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The post-tetanic sequelae of trains of synaptic stimuli (50 pulses at 5 or 10 Hz) were studied with intracellular recordings from rat hippocampal neurons in vitro. In a large proportion of CA1 neurons, stimulation of afferent fibers was followed by a prolonged membrane hyperpolarization (peak amplitude approximately 6 mV) that was associated with a decrease in neuronal input resistance (approximately 33%) that lasted from tens of seconds to over 1 min. Antidromic stimulation or activation of cells with intracellular current injection did not elicit this post-tetanic hyperpolarization (PTH). The PTH could be elicited in chloride (Cl-)-loaded cells, its null potential shifted in response to changes in extracellular potassium ([K+]o), and it was significantly reduced by 5-10 mM extracellular cesium (Cs+). The K(+)-dependent PTH may also be calcium (Ca2+) dependent as its amplitude and associated conductance increase were sensitive to changes in [Ca2+]o. The PTH was enhanced by treatments that increase Ca2+ entry into cells including perfusion with elevated [Ca2+]o, with picrotoxin or with tetraethylammonium ion (TEA). The K+ conductance blocker 4-AP had no consistent effect on the PTH. The PTH was potently blocked by the membrane-permeant forms of cAMP, dibutyryl- and 8-bromo-cAMP. However, phorbol esters that activate protein kinase C and carbachol, which usually block the same potential that is blocked by cAMP, did not depress the PTH. The cardiac glycosides dihydro-ouabain and strophanthidin had only small and variable effects on the PTH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We studied the effects of serotonin (5-HT) on hippocampal CA1 pyramidal neurons. In current-clamp mode, 5-HT induced a hyperpolarization and reduction of excitability due to the opening of inward rectifier K+ channels, followed by a late depolarization and partial restoration of excitability. These two components could be dissociated, as in the presence of BaCl2 to block K+ channels, 5-HT induced a depolarization accompanied by a reduction of membrane resistance, whereas in the presence of ZD 7288 [4-(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino) pyrimidinium chloride], a selective blocker of the hyperpolarization-activated cation current (Ih), 5-HT only hyperpolarized neurons. We then studied the action of 5-HT on Ih in voltage-clamp conditions. 5-HT increased Ih at -90 mV by 29.1 +/- 2.9% and decreased the time constant of activation by 20.1 +/- 1.7% (n = 16), suggesting a shift in the voltage dependence of the current towards more positive potentials; however, the fully activated current measured at -140 mV also increased (by 14.1 +/- 1.7%, n = 14); this increase was blocked by ZD 7288, implying an effect of 5-HT on the maximal conductance of Ih. Both the shift of activation curve and the increase in maximal conductance were confirmed by data obtained with ramp protocols. Perfusion with the membrane-permeable analogue of cAMP, 8-bromoadenosine 3'5'-cyclic monophosphate (8-Br-cAMP), increased Ih both at -90 and -140 mV, although the changes induced were smaller than those due to 5-HT. Our data indicate that 5-HT modulates Ih by shifting its activation curve to more positive voltages and by increasing its maximal conductance, and that this action is likely to contribute to the 5-HT modulation of excitability of CA1 cells.  相似文献   

14.
J A Lamas 《Neuroreport》1999,10(11):2395-2400
I have investigated the role of Ca2+ on M-current (IK(M)) inhibition by the muscarinic agonist oxo-M using the perforated patch voltage clamp technique. Oxo-M inhibited IK(M) in cultured SCG cells with an IC50 of 1.2 microM in 2 mM [Ca2+]o, and 13.1 microM in nominally Ca(2+)-free external solution. BAPTA-AM, ryanodine and thapsigargin (substances which modulate [Ca2+]i) did not affect IK(M) or the inhibitory action of oxo-M in either 2 or 0 mM extracellular Ca2+. Caffeine (10 mM) inhibited M current by approximately 30% in both 2 and 0 mM [Ca2+]o; this inhibition was not affected by [Ca2+]i modulators. Unexpectedly, the effect of oxo-M (10 microM) was enhanced after application of caffeine (10 mM) in either 2 or 0 mM [Ca2+]o. Thus, the effect of muscarinic agonists on IK(M) was blunted in Ca(2+)-free extracellular solutions, but neither oxo-M nor caffeine appeared to inhibit IK(M) through an elevation of [Ca2+]i. I suggest that resting levels of [Ca2+]i are necessary for a normal inhibition, with lower levels inducing an impairment of the inhibition of IK(M) by muscarinic agonists.  相似文献   

15.
The patch-clamp technique was utilized to characterize a cation channel in peptidergic nerve terminals isolated from a crustacean neurosecretory system. The cation channel exhibits the unique property of being activated by [Na+]. Distributions of open times demonstrate the presence of two open states with a shift of the distribution from predominantly short open times at [Na+] less than or equal to 10 mM to a predominantly long open state at [Na+] greater than or equal to 40 mM. Desensitization of channel activation occurs on prolonged exposure to [Na+] greater than 40 mM. Open probability increased steeply with [Na+] but was largely independent of membrane potential. Comparison of current-voltage relationships from single dissociated terminals and from those in the intact system show no differences in conductance or selectivity with nearly equal permeability to Na+ and K+, and impermeability to Cs+, divalent cations and anions. Flickering block occurred with [Ca2+]i greater than 1 microM. We propose that Na-activated cation (NAC) channels are activated by Na+ entering during action potentials and provide a sustained depolarizing current that can help sustain repetitive or bursting activity and subsequent facilitation of secretion from these nerve terminals.  相似文献   

16.
Measurements of extracellular Ca2+ and K+ activities [( Ca2+]o, [K+]o) in the superfused cat carotid body in vitro with triple-barrelled ion-selective electrodes have shown that hypoxia induced a decrease in [Ca2+]o of 0.035 +/- 0.17 mM (mean +/- S.D.; n = 17) and a biphasic change in [K+]o which consisted of an increase of 2.3 +/- 1.8 mM followed by an undershoot of -0.52 +/- 0.34 mM (mean +/- S.D.; n = 17). Hypercapnia induced a monophasic upward deflection increase of both [Ca2+]o and [K+]o of about 0.037 +/- 0.013 mM and 0.33 +/- 0.15 mM, respectively (n = 17). During hypoxia, lowering [Ca2+] in the medium to 0.1 mM resulted in a reversed [Ca2+]o response, attenuated [K+]o increase and absence of chemosensory nerve discharges. TTX generally did not affect the hypoxic and hypercapnic induced ionic changes, although the [K+]o undershoot was reduced by 30%. Co2+ competitively blocked the changes in [Ca2+]o and the increase in the sensory nerve discharge elicited by hypoxia and, not competitively, the changes of [K+]o. The ionic changes to hypercapnia were less affected by Co2+. Ouabain inhibited the [K+]o undershoot induced by hypoxia, as did the removal of Na+ from medium. It is concluded that changes in extracellular free Ca2+ and K+ ions concentration induced by hypoxia and hypercapnia represent ionic fluxes related to the transduction process of carotid body cells (glomus and/or sustentacular).  相似文献   

17.
The electrophysiological properties of mossy cells were examined in developing mouse hippocampal slices using whole-cell patch-clamp techniques, with particular reference to the dorsoventral difference. Dorsal mossy cells exhibited a higher spontaneous excitatory postsynaptic potential (EPSP) frequency and larger maximal EPSP amplitude than ventral mossy cells. On the other hand, the blockade of synaptic inputs with glutamatergic and GABAergic antagonists disclosed a remarkable dorsoventral difference in the intrinsic activity: none (0/27) of the dorsal mossy cells showed intrinsic bursting, whereas the majority (35/47) of the ventral mossy cells exhibited intrinsic rhythmic bursting. To characterize the ionic currents underlying the rhythmic bursting of mossy cells, we used somatic voltage-clamp recordings in the subthreshold voltage range. Ventral bursting cells possessed both hyperpolarization-activated current (Ih) and persistent sodium current (INaP), whereas dorsal and ventral nonbursting cells possessed Ih but no INaP. Blockade of Ih with cesium did not affect the intrinsic bursting of ventral mossy cells. In contrast, the blockade of INaP with tetrodotoxin or phenytoin established a stable subthreshold membrane potential in ventral bursting cells. The current-voltage curve of ventral bursting cells showed a region of tetrodotoxin-sensitive negative slope conductance between -55 mV and a spike threshold ( approximately -45 mV). On the other hand, no subthreshold calcium conductances played a significant role in the intrinsic bursting of ventral mossy cells. These observations demonstrate the heterogeneous electrophysiological properties of hilar mossy cells, and suggest that the subthreshold INaP plays a major role in the intrinsic rhythmic bursting of ventral mossy cells.  相似文献   

18.
Electrical properties of interneurons that control heartbeat in the leech (HN cells) were studied using intracellular recording and stimulation in isolated ganglia bathed by salines of various ionic compositions. Substitution of Na+ ions in the bath by Tris stopped the spontaneous firing of HN cells and led to their gradual hyperpolarization by 15-20 mV. In the absence of Na+, HN neurons produced long-lasting regenerative plateau potentials with thresholds near -55 mV and peaks near -30 mV that were accompanied by an increase in membrane conductance. Elevation of Ca2+ concentration enhanced plateaus, as did replacement of Ca2+ by Ba2+. Plateaus were formed when Sr2+ replaced Ca2+, but were blocked by addition of Mg2+ or Co2+ to the bath, Co2+ being effective at lower concentrations than Mg2+. Hyperpolarization of HN neurons with injected currents revealed a time-dependent change in membrane potential, whereby initial maximum hyperpolarization was followed by a "sag" in potential towards more depolarized values. The sag showed dual voltage dependence, being diminished when HN neurons were hyperpolarized or depolarized outside the normal range of oscillation. The sag was found to depend on the presence of Na+ ions and to be blocked by Cs+ but not by Ba2+. This time-dependent change in membrane potential counters hyperpolarizations of HN neuron membrane potential and may contribute to the escape of these neurons from synaptic inhibition.  相似文献   

19.
In rat hippocampal tissue slices we recorded extracellular potential (Vo) and whole-cell patch clamp current of CA1 pyramid cells. During hypoxic spreading depression (SD)-like depolarization, the holding current (Ih) increased sharply. Membrane 'slope' resistance (Rm) decreased to 10-67% (mean 39%) of the resting value. The SD-related membrane current (ISD) reversed near zero mV. With voltage dependent K+ and Na+ currents blocked by Cs+ and QX-314, shifts of Ih and decrease of Rm during SD were not suppressed. We conclude that hypoxic SD of CA1 pyramidal cells is associated with a large non-selective inward current through yet to be identified membrane mechanisms, which cannot fully explain the SD-related Vo shift.  相似文献   

20.
G A Barr  T Lithgow 《Brain research》1986,389(1-2):193-202
Studies of energy parameters and intracellular ion concentrations were carried out on two glial cell lines, one derived from an astrocytoma (C6) and the other from an oligodendroglioma (TR33B), to elucidate the mechanism of transport of amino acid neurotransmitters by glial cells. Respiratory rate was 2.7-2.9 nmol/min/mg dry wt.; cytochrome c at 0.035-0.041 nmol/mg dry wt., was 23-29% reduced with a calculated turnover number 4.7-5.1 e-/s at 23 degrees C. ATP levels were high, 5.0-6.5 mM and [CrP]/[Cr] was almost 2. Membrane potentials at [K+]e = 5 mM were approximately -90 mV for C6 cells and -72 mV for TR33B. [K+]i was measured as approximately 100 mM for TR33B and 150 mM for C6 which indicated that the K+ diffusion potential was the major source of the membrane potential. [Na+]i was 5.8 mM for C6 and 20 mM for TR33B cells while free calcium was about 100 nM in both. Near Nernstian relationships were found in both types of cell between [K+]e and membrane potential over a range of 3.5-75 mM for TR33B and 5-110 mM for C6 cells. It is concluded that C6 and TR33B cell lines may be useful models for in vitro studies of some aspects of glial behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号