首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV) continues to cause substantial economic losses to the global swine industry. PRRSV appears to inhibit synthesis of type I interferons (IFNs), such as IFN-α and -β, which are critical for the innate immunity and play an important role in the modulation of adaptive immunity. An atypical PRRSV strain, A2MC2, is able to induce type I IFNs in vitro. In this study, A2MC2 induction of neutralizing antibodies in vivo was compared with the Ingelvac PRRS modified live virus (MLV) vaccine strain and VR-2385 (a moderate virulent strain). Three-week-old pigs were exposed to these PRRSV strains via intranasal or intramuscular routes to also account for a possible effect of inoculation routes. The interferon-inducing A2MC2 resulted in earlier onset and significantly higher levels of PRRSV neutralizing antibodies than the MLV. In addition, the A2MC2-induced neutralizing antibodies were capable of neutralizing VR-2385, a heterologous strain. The pigs exposed via intranasal route had higher titers of neutralizing antibodies than those injected via intramuscular route. Macroscopic and microscopic lung lesions 14 days post-exposure indicated that A2MC2 had similar virulence in vivo as VR-2385. Pulmonary alveolar macrophages (PAMs) collected during the necropsy 14 days post-exposure in the A2MC2 group had higher level expression of IFN-γ than the MLV group. These results indicate that A2MC2 can be further explored for development of an improved vaccine against PRRS.  相似文献   

2.
《Vaccine》2021,39(39):5615-5625
Porcine Circovirus type 2 (PCV2) associated disease is one of the most economically important swine diseases worldwide. Vaccines reduce PCV2 disease by inducing humoral immunity (neutralizing antibodies) and cell-mediated immunity (CMI) but may be improved by optimizing the immune response they induce. This study evaluated immune responses to a trivalent inactivated Porcine Circovirus (PCV) Type 1-Type 2a chimera (cPCV2a), cPCV2b and Mycoplasma hyopneumoniae (MH) (an experimental serial of Fostera® Gold PCV MH, also marketed as Circomax® Myco) vaccine or a bivalent recombinant PCV2a baculovirus expressed ORF2 capsid plus MH vaccine (Circumvent® PCV-M G2). Treatment Groups (T) received two doses of placebo (T01), one full or two split doses of the trivalent vaccine (T02, T03) or two split doses of the bivalent vaccine (T04) where two doses were given, there was a three-week period between administrations. All pigs were challenged with a virulent field isolate of PCV2d. CMI was measured as PCV2-specific IFN-γ secreting cells in blood and lymph node. Humoral immunity was measured as PCV2 antibodies. Vaccine efficacy was determined as viremia and fecal shedding of virus. There was a robust antibody response in T02 and T04 post the second vaccination and all vaccinated groups post challenge. There was a robust PCV2-specific IFN-γ response following the 1st dose in T02 and T03 and after the second dose in T02. T04 induced a low but detectable PCV2-specific IFN-γ response only after the 2nd dose. Among lymph node cells (study day 52), there was a significantly higher PCV2-specific, IFN-γ response to replicase and PCV2d capsid peptides in T01, consistent with active viral replication in non-vaccinated pigs. The trivalent chimeric vaccine induced robust CMI and protective efficacy, following a one dose regimen or splitting the dose into two vaccine administrations.  相似文献   

3.
The porcine reproductive and respiratory syndrome virus (PRRSV) is a rapidly evolving and diversifying pathogen necessitating the development of improved vaccines. Immunity to PRRSV is not well understood although there are data suggesting that virus-specific T cell IFN-γ responses play an important role. We therefore aimed to better characterise the T cell response to genotype 1 (European) PRRSV by utilising a synthetic peptide library spanning the entire proteome and a small cohort of pigs rendered immune to PRRSV-1 Olot/91 by repeated experimental infection. Using an IFN-γ ELISpot assay as a read-out, we were able to identify 9 antigenic regions on 5 of the viral proteins and determine the corresponding responder T cell phenotype. The diversity of the IFN-γ response to PRRSV proteins suggests that antigenic regions are scattered throughout the proteome and no one single antigen dominates the T cell response. To address the identification of well-conserved T cell antigens, we subsequently screened groups of pigs infected with a closely related avirulent PRRSV-1 strain (Lelystad) and a divergent virulent subtype 3 strain (SU1-Bel). Whilst T cell responses from both groups were observed against many of the antigens identified in the first study, animals infected with the SU1-Bel strain showed the greatest response against peptides representing the non-structural protein 5. The proteome-wide peptide library screening method used here, as well as the antigens identified, warrant further evaluation in the context of next generation vaccine development.  相似文献   

4.
《Vaccine》2016,34(3):341-349
BackgroundOne of the reasons for pertussis resurgence is waning immunity. Both humoral and cell mediated immunity (CMI) are essential for protection. The aim of this study was to evaluate CMI responses after acellular pertussis vaccination in young adults.MethodsFifty-seven young adults were followed for ten years after a diphtheria-tetanus acellular pertussis (dTpa) booster vaccination. A second booster was administrated at year 10. CMI was determined from peripheral blood mononuclear cells (PBMC) stimulated with vaccine antigens pertussis toxin (PT), filamentous hemagglutinin (FHA) and pertactin (PRN) before and one month after the second vaccination, using proliferation and IFN-γ and IL-17 ELISpot. In addition, the response to ten selected cytokines was measured from 14 subjects.ResultsBefore the booster dose, positive proliferation was recognized in 51%, 53% and 89% of the subjects against PT, PRN and FHA, respectively. One month after, the positivity rate increased to 81%, 81% and 96%. Although the number of IFN-γ and IL-17 secreting cells was increased, the expression of most of the tested cytokines was found to be downregulated. After PT stimulation, only one (7.1%) subject had increased production in all cytokines, whereas six (42.9%) had decreased production of all cytokines. Ten subjects (71.4%) had decreased concentration of IFN-γ, the cytokine important for pertussis protection.ConclusionsCMI persists even when antibodies have decayed, and acellular pertussis vaccine enhances the CMI response. Further studies are needed to illustrate what factors cause the low production of some important cytokines.  相似文献   

5.
Liu L  Hao Y  Luo Z  Huang Y  Hu X  Liu Y  Shao Y 《Vaccine》2012,30(28):4135-4143

Objective

To develop an effective HIV vaccine strategy that can induce cross-reactive neutralizing antibody.

Methods

Codon-optimized gp140 and gp145 env genes derived from HIV-1cn54, a CRF07 B′/C recombinant strain, were constructed as DNA and recombinant Tiantan vaccinia (rTV) vaccines. The effect of heterologous immunization with gp140 and gp145 was tested in mice and guinea pigs. T cell responses were detected using the IFN-γ ELISPOT assay. A panel of primary isolates of clade B′ and B′/C HIV-1 and TZM-bl cells was used to determine the neutralizing activity of immunized sera.

Results

The neutralizing antibodies (NAbs) induced by the heterologous immunogen immunization neutralized all HIV-1 B′ and B′/C primary isolates in the guinea pig model. Gp145 and gp140 heterologous prime-boost induced the best neutralizing antibody response with a broad neutralizing spectrum and the highest titer of 1:270 at 6 weeks after the last inoculation. However, the T cell response to HIV-1 peptides was significantly weaker than the gp145 + gp145 homologous prime-boost.

Conclusions

This heterologous prime-boost immunization strategy could be used to design immunogen-generating broad neutralizing antibodies against genetic variance pathogens.  相似文献   

6.
Porcine reproductive and respiratory syndrome virus (PRRSV) is prevalent in swine farms worldwide and is a major source of economic loss and animal suffering. Rapid genetic variation of PRRSV makes it difficult for current vaccines to confer protection against newly emerging strains. We recently demonstrated that a novel peptide nanofiber hydrogel (H9e) could act as a potent adjuvant for killed H1N1 vaccines. Therefore, the objective of this study was to evaluate H9e as an adjuvant for PRRSV modified live virus (MLV) vaccines. Pigs were vaccinated with Ingelvac PRRSV MLV with or without H9e adjuvant before being challenged with the VR-2332 (parental vaccine strain) or MN184A (genetically diverse strain) PRRSV. Pigs vaccinated with MLV + H9e had higher levels of circulating vaccine virus. More importantly, pigs vaccinated with MLV + H9e had improved protection against challenge by both PRRSV strains, as demonstrated by reduced challenge-induced viremia compared with pigs vaccinated with MLV alone. Pigs vaccinated with MLV + H9e had lower frequency of T-regulatory cells and IL-10 production but higher frequency of Th/memory cells and IFN-γ secretion than that in pigs vaccinated with MLV alone. Taken together, our studies suggest that the peptide nanofiber hydrogel H9e, when combined with the PRRSV MLV vaccine, can enhance vaccine efficacy against two different PRRSV strains by modulating both host humoral and cellular immune responses.  相似文献   

7.
The purpose of this study was to assess clinical protection in pigs vaccinated with a commercially available attenuated porcine reproductive and respiratory syndrome virus (PRRSV) vaccine (Porcilis® PRRS) and then naturally exposed under field conditions to a heterologous (Italian cluster) strain of virulent PRRSV. A total of 30, 4-week-old pigs seronegative for PRRSV were allocated to 1 of 3 groups (IM, ID, and C groups). At 5 weeks of age, pigs of groups IM (n = 10 pigs) and ID (n = 10 pigs) were vaccinated intramuscularly and intradermally, respectively, with modified live PRRSV-1 vaccine (Porcilis® PRRS). Pigs of group C (n = 10 pigs) were kept as non-vaccinated controls. At post-vaccination (PV) days 0, 7, 14, 28, and 45, blood samples were collected for detection of vaccine virus (PCR) and antibody response (ELISA), identification of changes in lymphocyte subpopulations by cytometry, and IFN-γ PRRSV-specific secreting cells (SC) by ELISpot. At PV day 45, pigs of A, B, and C groups were moved to a site 3 conventional finishing herd with a history of respiratory disease caused by PRRSV and the most common bacteria to be exposed to a natural challenge. The PRRSV field strain, belonging to the Italian cluster of the PRRSV-1, demonstrated a 84% identity with the vaccine virus (DV strain) at ORF5 sequencing. At 0 (exposure day = 45 days PV), 4, 7, 11, 14, 19, 21, 28, and 34 days post-exposure (PE) blood samples were collected for detection and titration of PRRSV and antibody, as well as for lymphocyte and IFN-γ measurement as described above. Throughout the post-exposure period, all pigs were observed daily for clinical signs. The overall clinical signs were reduced by 68 and 72%, respectively in the intramuscularly and intradermally vaccinated pigs compared to controls. Respiratory signs were reduced by 72 and 80%, respectively in the IM and ID groups. Clinical protection was associated with marked activation of cell-mediated immune response. The highest levels of specific IFN-γ production at 21–34 days PE were concomitant and associated to changes in natural killer (NK) cells, γ/δ T, and cytotoxic T lymphocytes in the blood. In our field study, evidences of EU attenuated vaccine-induced clinical protection against natural exposure to a genetically diverse (84% homology) PRRSV-1 isolate (Italian cluster) was demonstrated by the statistically significant reduction in clinical signs in terms of incidence, duration and severity and by a more efficient cell-mediated immune response in the vaccinated pigs as compared to the unvaccinated controls.  相似文献   

8.
《Vaccine》2016,34(4):547-554
PurposeThe study aims were to determine whether inactivated influenza A/H5N1 vaccine administration elicited cell mediated immune (CMI) responses and the impact of adjuvant, vaccine dose and subject age on these responses.MethodsAdults who were previously primed with either adjuvanted or unadjuvanted, inactivated, A/H5N1/Vietnam/1203/2004 (Clade 1) vaccine or unprimed (received placebo) in previous vaccine studies were randomized to receive one (primed) or two (unprimed) 15- or 90-mcg doses of inactivated, A/H5N1/Indonesia/05/05 (Clade 2) vaccine. Peripheral blood mononuclear cells (PBMCs) were collected and analyzed from a subset of vaccinees to assess CMI responses using IFN-γ and granzyme B ELISPOT assays. Cytokine measurements were performed on PBMC supernatants after stimulation with H5N1 virus.ResultsPBMCs were available from 177 participants; 88 and 89 received 15-mcg and 90-mcg of unadjuvanted clade 2 vaccine, respectively. Following H5N1 clade 1 stimulation, IFN-γ but not granzyme B normalized spot-forming cell numbers had statistically significant increased numbers at each of the post-vaccination timepoints compared to baseline in pooled analyses of all vaccine doses and age groups. Clade 2 stimulation resulted in statistically significant increased numbers of IFN-γ cells only 180 days following the last vaccination. Responses were similar among younger and older study participants, as were responses among those primed with alum-adjuvanted or non-adjuvanted clade 1 H5N1 vaccines. The dosage of clade 2 vaccine did not impact CMI responses among primed subjects, but responses were statistically significantly greater in unprimed recipients of the 90-mcg dosage compared to unprimed recipients of the 15-mcg dosage. IFN-γ levels in the supernatants of stimulated PBMC were strongly correlated with IFN-γ ELISPOT results.ConclusionCMI responses occur in adults administered influenza A/H5N1 inactivated influenza vaccine.  相似文献   

9.
Since May 2006, a highly pathogenic porcine reproductive and respiratory syndrome virus (PRRSV), which causes continuous high fever and a high proportion of deaths in vaccinated pigs of all ages, has emerged and prevailed in Mainland China. Huge efforts should be made towards the development of an efficient vaccine against the highly pathogenic PRRSV. Although the ORF5-encoded GP5 is the most important immunogenic protein, accumulating evidences have demonstrated that incomplete protection conferred by GP5-based vaccines. The inability to induce robust protective immunity has been postulated to be associated with the presence of a non-neutralizing decoy epitope and heavy glycosylation in close to its neutralizing epitope. In this study, a synthetic ORF5 gene (SynORF5) was engineered with the codon usage optimized for mammalian cell expression based on the native ORF5 gene of highly pathogenic PRRSV strain WUH3. Additional modifications, i.e., inserting a Pan DR T-helper cell epitope (PADRE) between the neutralizing epitope and the non-neutralizing decoy epitope, and mutating four potential N-glycosylation sites (N30, N34, N35 and N51) were also included in the synthetic ORF5 gene. The immunogenicity of the SynORF5-encoded GP5 was evaluated by DNA vaccination in mice and piglets. Results showed that significantly enhanced GP5-specific ELISA antibody, PRRSV-specific neutralizing antibody, IFN-γ level, as well as lymphocyte proliferation response, could be induced in mice and piglets immunized with DNA construct encoding the modified GP5 than those received DNA vaccine expressing the native GP5. The enhanced immunogenicity of the modified GP5 will be useful to facilitate the development of efficient vaccines against the highly pathogenic PRRSV in the future.  相似文献   

10.
Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) is highly heterogenic. This heterogeneity has an effect on antigenic composition of PRRSV and might create differences in sensitivity to neutralization between isolates. The sensitivity to neutralization could be an important feature of PRRSV isolates because it is likely that isolates resistant to neutralization pose a significant challenge for the development of vaccines that elicit broad protective immunity. Nonetheless, little information is available for understanding or categorizing the viral neutralization phenotype of PRRSV isolates. Consequently, the main purpose of this study was to determine whether PRRSV isolates differ in their susceptibility to neutralization and if they can be classified in different categories based on their neutralization phenotype. For this purpose, a panel of 39 PRRSV isolates and a set of 30 hyperimmune monospecific sera were used in cross-neutralization assays. The results of this study indicate that PRRSV isolates differ in their sensitivity to neutralization and k-means clustering system allowed classifying the isolates in four different categories according to their neutralization phenotype: highly sensitive, sensitive, moderately sensitive and resistant to neutralization. Further analyses using two additional clustering systems that considered individual data for the classification of the isolates confirmed that classification obtained by k-means is accurate in most cases and that only in a few instances classification is less stringent. Sequences of GP3, GP4 and GP5 were analyzed but no correlation could be found between the sequence of previously identified neutralizing epitopes or the number of N-linked glycosylation sites in different proteins and the neutralization phenotype of the isolates. These data provide the first systematic assessment of overall neutralization sensitivities of a panel of diverse PRRSV isolates. The classification of the isolates provides a useful tool to facilitate the systematic characterization of neutralizing antibody production elicited by new vaccine candidates.  相似文献   

11.
《Vaccine》2015,33(30):3518-3525
Modified live virus (MLV) vaccines developed to protect against PRRSV circulating in North America (NA) offer limited protection to highly pathogenic (HP) PRRSV strains that are emerging in Asia. MLV vaccines specific to HP-PRRSV strains commercially available in China provide protection to HP-PRRSV; however, the efficacy of these HP-PRRSV vaccines to current circulating NA PRRS viruses has not been reported. The aim of this study is to investigate whether pigs vaccinated with attenuated Chinese HP-PRRSV vaccine (JXA1-R) are protected from infection by NA PRRSV strain NADC-20. We found that pigs vaccinated with JXA1-R were protected from challenges with HV-PRRSV or NADC-20 as shown by fewer days of clinical fever, reduced lung pathology scores, and lower PRRS virus load in the blood. PRRSV-specific antibodies, as measured by IDEXX ELISA, appeared one week after vaccination and virus neutralizing antibodies were detected four weeks post vaccination. Pigs vaccinated with JXA1-R developed broadly neutralizing antibodies with high titers to NADC-20, JXA1-R, and HV-PRRSV. In addition, we also found that IFN-α and IFN-β occurred at higher levels in the lungs of pigs vaccinated with JXA1-R. Taken together, our studies provide the first evidence that JXA1-R can confer protection in pigs against the heterologous NA PRRSV strain NADC-20.  相似文献   

12.
Porcine reproductive and respiratory syndrome virus (PRRSV) has recently caused heavy economic losses in swine industry worldwide. Current vaccination strategies only provide a limited protective efficacy, thus immune modulators are being considered to enhance the effectiveness of PRRSV vaccines. In this study, the recombinant adenoviruses expressing porcine CD40 ligand (CD40L) and GP3/GP5 of PRRSV were constructed and the immune responses were examined in pigs. The results showed that rAd-CD40L-GP35 (co-expressing CD40L and GP3-GP5) or rAd-GP35 (expressing GP3-GP5) plus rAd-CD40L (expressing CD40L) could provide significant higher specific anti-PRRSV ELISA antibody and neutralizing antibody. And the levels of proliferative responses of peripheral blood mononuclear cells (PBMC), IFN-γ and IL-4 were markedly increased in rAd-CD40L-GP35 and rAd-CD40L plus rAd-GP35 groups than those in rAd-GP35 group. Following homologous challenge with Chinese isolate of the North-American genotype of PRRSV, pigs inoculated with recombinant rAd-CD40L-GP35 and rAd-CD40L plus rAd-GP35 showed lighter clinical signs and lower viremia, as compared to those in rAd-GP35 group. It indicated that porcine CD40L could effectively increase humoral and cell-mediated immune responses of GP3 and GP5 of PRRSV. Porcine CD40L might be used as an attractive adjuvant or immunotargeting strategies to enhance the PRRSV subunit vaccine responses in swine.  相似文献   

13.
A Luminex (Luminex Corp., Austin, TX) multiplex swine cytokine assay was developed to measure 8 cytokines simultaneously in pig serum for use in assessment of vaccine candidates. The fluorescent microsphere immunoassay (FMIA) was tested on archived sera in a porcine reproductive and respiratory syndrome virus (PRRSV) vaccine/challenge study. This FMIA simultaneously detects innate (IL-1β, IL-8, IFN-α, TNF-α, IL-12), regulatory (IL-10), Th1 (IFN-γ) and Th2 (IL-4) cytokines. These proteins were measured to evaluate serum cytokine levels associated with vaccination strategies that provided for different levels of protective immunity against PRRSV. Pigs were vaccinated with a modified-live virus (MLV) vaccine and subsequently challenged with a non-identical PRRSV isolate (93% identity in the glycoprotein (GP5) gene). Protection (as defined by no serum viremia) was observed in the MLV vaccinated pigs after PRRSV challenge but not those vaccinated with killed virus vaccine with adjuvant (KV/ADJ) (99% identity in the GP5 gene to the challenge strain) or non-vaccinates. Significantly elevated levels of IL-12 were observed in the KV/ADJ group compared to MLV vaccinated and control groups. However, this significant increase in serum IL-12 did not correlate with protection against PRRSV viremia. Additional studies using this assay to measure the local cytokine tissue responses may help in defining a protective cytokine response and would be useful for the targeted design of efficacious vaccines, not only for PRRSV, but also for other swine pathogens.  相似文献   

14.
Porcine reproductive and respiratory syndrome virus (PRRSV) is known to be genetically highly variable, but knowledge of sequence diversity from Eastern Canada and its degree of genetic plasticity in or near the principal neutralizing epitope (PNE) in association with evolutionary selective pressure is limited. The purposes of our study were to investigate the extent of strain diversity, the existing glycotypes and the amino acid sites under selective evolutionary pressure in its encoded protein, GP5, for a dataset of 1301 sequences (1998-2009). This was addressed by partitioning and clustering into subgenotypes a large number of open reading frame 5 sequences from the province of Quebec and analyzing the content of these subgenotypes. The overall pairwise diversity was 12% and was comparable to what has been reported around the world. The mean diversity for sequences within subgenotypes was around 7%. No marked variations in subgenotype emergence could be observed through time. Thirty-eight GP5 glycotype patterns were observed which included a newly identified site at position N57 which was already present in 1998. These patterns possessed one to six N-glycosylation sites in total and could be located in eight different positions. No obvious grouping of glycotypes could be established in relation to subgenotypes. Positions N44 and N51 were confirmed to be fixed N-glycosylation positions, whereas other positions where found to be shifting and located in or near hypervariable regions (HVRs) 1 and 2. Both HVRs were under selective evolutionary pressure in half of all subgenotypes including vaccine-like groups. Conversely, the PNE flanked by both HVRs was well conserved among most subgenotypes demonstrating potential molecular constraint in a probable viral binding region. The analysis of this dataset increased knowledge of evolutionary change inferred from genetic data, more specifically regarding the implications of both HVRs in PRRSV diversity.  相似文献   

15.
Porcine reproductive and respiratory syndrome (PRRS) is an immunosuppressive chronic respiratory viral disease of pigs that is responsible for major economic losses to the swine industry worldwide. The efficacy of parenteral administration of widely used modified live virus PRRS vaccine (PRRS-MLV) against genetically divergent PRRSV strains remains questionable. Therefore, we evaluated an alternate and proven mucosal immunization approach by intranasal delivery of PRRS-MLV (strain VR2332) with a potent adjuvant to elicit cross-protective immunity against a heterologous PRRSV (strain MN184). Mycobacterium tuberculosis whole cell lysate (Mtb WCL) was chosen as a potent mucosal adjuvant due to its Th1 biased immune response to PRRS-MLV. Unvaccinated pigs challenged with MN184 had clinical PRRS with severe lung pathology; however, vaccinated (PRRS-MLV+ Mtb WCL) pigs challenged with MN184 were apparently healthy. There was a significant increase in the body weight gain in vaccinated compared to unvaccinated PRRSV challenged pigs. Vaccinated compared to unvaccinated, virus-challenged pigs had reduced lung pathology associated with enhanced PRRSV neutralizing antibody titers and reduced viremia. Immunologically, an increased frequency of Th cells, Th/memory cells, γδ T cells, dendritic cells, and activated Th cells and a reduced frequency of T-regulatory cells were detected at both mucosal and systemic sites. Further, reduced secretion of immunosuppressive cytokines (IL-10 and TGF-β) and upregulation of the Th1 cytokine IFN-γ in blood and lungs were detected in mucosally vaccinated, PRRSV-challenged pigs. In conclusion, intranasal immunization of pigs with PRRS-MLV administered with Mtb WCL generated effective cross-protective immunity against PRRSV.  相似文献   

16.
γ-干扰素治疗毛细支气管炎的意义探讨   总被引:1,自引:0,他引:1  
目的:探讨γ-干扰素对毛细支气管炎患儿细胞免疫的作用及预防哮喘的可能性。方法:将60例毛细支气管炎患儿随机分成治疗组和对照组,并且选择15例健康婴儿为正常对照组。治疗前测定血清IgE水平及血清中的细胞因子IFN-γ、IL-4水平,然后治疗组用γ-干扰素,出院时复查血清IgE、IFN-γ、IL-4水平。结果:正常对照组和毛细支气管炎组血清IgE水平及细胞因子IFN-γ、IL-4、IFN-γ/IL-4水平差异有非常显著的意义,P<0.001。治疗组和对照组,治疗前IgE、IFN-γ、IL-4均无显著的意义,P>0.05,治疗后以上各指标均有非常显著意义,P<0.001,尤其是IFN-γ/IL-4治疗组和对照组差异有非常显著意义。出院后随访12个月,统计喘息反复发生的例数,治疗组3例,对照组10例。经卡方检验差异有显著意义,P<0.05。结论:毛细支气管炎患儿血清IgE水平高,机体体液免疫增强,细胞免疫低下,故IFN-γ/IL-4失衡。用γ-干扰素治疗能干扰体内病毒的复制,更重要的是能提高机体的IFN-γ水平,提高细胞免疫功能,使机体恢复IFN-γ/IL-4平衡状态,它对于预防婴幼儿哮喘具有重要意义。  相似文献   

17.
《Vaccine》2017,35(25):3347-3353
This study explored several prime-boost strategies in rhesus macaques using various novel hepatitis B virus (HBV) vaccines that showed promise as prophylactic and therapeutic approaches in our previous study using in a mouse model. The tested vaccines included an HBV particle subunit (HBSS1) vaccine and the recombinant vaccinia (RVJSS1) or adenoviral (rAdSS1) vector-based vaccines containing S (1–223 aa) and PreS1 (21–47 aa). The strength and maintenance of humoral activity (IgG and neutralizing antibodies) and cellular immunity (interferon-γ production assessed by IFN-γ enzyme-linked immunosorbent spot (ELISpot) assay) were investigated in a longitudinal study following various vaccination protocols until 79 weeks post-vaccination. We found that HBSS1/RVJSS1 heterologous prime-boost elicits similar strong humoral immunity but more robust and lasting cellular immunity (CMI) than HBSS1/HBSS1 homologous vaccination in rhesus macaques. Furthermore, HBSS1/RVJSS1/RVJSS1 induced more robust and lasting CMI in macaques than did HBSS1/HBSS1/rAdSS1 vaccination. Therefore, HBSS1/RVJSS1/RVJSS1 is most promising candidates for protecting humans against HBV infection, especially for therapeutic application.  相似文献   

18.
Current vaccines for influenza are primarily killed whole virus vaccines that elicit antibody responses to the homologous virus but lack protection against heterologous viruses. Using chickens as a model we have explored the possibility of using a live low pathogenic avian influenza (LPAI) A/goose/AB/223/2005 H1N1 virus as a vaccine to generate protective immunity against heterologous highly pathogenic avian influenza (HPAI) A/chicken/Pensylvania/1370/1983 H5N2 virus challenge. Virus replicated in chickens infected with LPAI H1N1 but did not cause clinical disease. In addition, these chickens developed neutralizing antibodies to LPAI H1N1 virus, but not HPAI H5N2, 21 days post infection (DPI). Furthermore, peripheral blood mononuclear cells from H1N1-infected chickens at 20 DPI had antigen specific proliferation and IFN-γ secretion following antigen stimulation to H5N2 indicating a heterologous HPAI H5N2 specific cell mediated immunity (CMI) following LPAI H1N1 infection. Following challenge with HPAI H5N2 virus, all control chickens developed clinical disease, while chickens previously infected with H1N1 did not develop clinical disease and shed significantly less virus by oral and cloacal routes. These results indicated that previous infection with LPAI virus can generate heterologous CMI capable of protecting against HPAI H5N2.  相似文献   

19.
In recent year, Enterovirus 71 (EV71)-associated hand, foot and mouth disease (HFMD) has become an important public health issue in China. EV71 has been classified into genotypes A, B1–B5 and C1–C5. With such genetic diversity, whether the convalescent or recovery antibody responses can cross-protect infections from other genotypes remains a question. Understanding of the antigenicity of such diverse genetic EV71 isolates is crucial for the EV71 vaccine development. Here, a total of 186 clones anti-EV71 MAbs was generated and characterized with Western blot and cell-based neutralization assay. Forty neutralizing anti-EV71 MAbs were further used to analyze the antigenic properties of 18 recent EV71 isolates representing seven genotypes in neutralization assay. We found that most neutralizing anti-EV71 MAbs are specific to conformational epitopes. We also classified the 40 neutralizing anti-EV71 MAbs into two classes according to their reactivity patterns with 18 EV71 isolates. Class I MAb can neutralize all isolates, suggesting conserved epitopes are present among EV71. Class II MAb includes four subclasses (IIa–IId) and neutralizes only subgroups of EV71 strains. Conversely, 18 EV71 strains were grouped into antigenic types 1 and four antigenic subtypes (2.1–2.4). These results suggest that the current genotyping of EV71 does not reflect their antigenicity which may be important in the selection of EV71 vaccine strains. This panel of neutralizing anti-EV71 MAbs may be useful for the recognition of emerging antigenic variants of EV71 and vaccine development.  相似文献   

20.
Porcine reproductive and respiratory syndrome virus (PRRSV) has been mainly responsible for the heavy economic losses in pig industry all over the world. Current vaccination strategies provide only a limited protection. In this study recombinant adenoviruses expressing GP3/GP5 of highly pathogenic PRRSV and heat shock protein 70 (HSP70) gene of Heamophilus parasuis were constructed, and the immune responses and protective efficacy against homologous challenge were examined in pigs. The results showed that all animals vaccinated with rAd-GP35 (co-expressing GP3-GP5), rAd-HS35 and rAd-HSA35 (co-expressing GP3-GP5 fused with HSP70 using different linkers), developed specific anti-PRRSV ELISA antibody and neutralizing antibody. The humoral immune responses of rAd-HS35, especially rAd-HSA35 containing 2A of FMDV between HSP70 and GP3 gene, were significantly higher than that of rAd-GP35. Moreover, the fusion of HSP70 markedly induced both IFN-γ and IL-4 in pigs’ sera. Following challenge with PRRSV, pigs inoculated with recombinant rAd-HS35 and rAd-HSA35 showed lighter clinical signs, lower viremia and less pathological lesion of lungs, as compared to those in rAd-GP35 group. Moreover, the protective efficiency induced by rAd-HSA35 was higher than that of rAd-HS35. It indicated that HSP70 fused with GP3 and GP5 of PRRSV could induce enhanced immune responses and provide protection against virulent PRRSV challenge in pigs. The recombinant adenovirus rAd-HSA35 might be an attractive candidate vaccine for the prevention and control of highly pathogenic PRRSV infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号