首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enterovirus 71 (EV71) and coxsackievirus A16 (CA16) are the two major causative agents of hand, foot and mouth disease (HFMD), which is an infectious disease frequently occurring in children. A bivalent vaccine against both EV71 and CA16 is highly desirable. In the present study, we compare monovalent inactivated EV71, monovalent inactivated CA16, and a combination vaccine candidate comprising of both inactivated EV71 and CA16, for their immunogenicity and in vivo protective efficacy. The two monovalent vaccines were found to elicit serum antibodies that potently neutralized the homologous virus but had no or weak neutralization activity against the heterologous one; in contrast, the bivalent vaccine immunized sera efficiently neutralized both EV71 and CA16. More importantly, passive immunization with the bivalent vaccine protected mice against either EV71 or CA16 lethal infections, whereas the monovalent vaccines only prevented the homologous but not the heterologous challenges. Together, our results demonstrate that the experimental bivalent vaccine comprising of inactivated EV71 and CA16 induces a balanced protective immunity against both EV71 and CA16, and thus provide proof-of-concept for further development of multivalent vaccines for broad protection against HFMD.  相似文献   

2.
Human hand, foot, and mouth disease (HFMD), an important infectious disease in children, is caused mainly by enterovirus 71 (EV71) and coxsackievirus A16 (CA16). In this study, a bivalent inactivated EV71/CA16 vaccine is developed and evaluated in immunized BALB/c mice injected through the intradermal route. Q-RT-PCR detection of the mRNA of immune signal molecules in local epithelial tissues inoculated with the vaccine indicates activation of innate immunity, which includes upregulation of immune-related chemokines, interferons and CD molecules. Further, the finding that neutralizing antibodies and specific T cellular responses were elicited in adult mice after two immunizations with the vaccine at a 28-day interval, which endowed offspring mice to defend a viral challenge, suggests the successful induction of specific protective antiviral immunity. All these data suggest that immunization with this bivalent EV71/CA16 vaccine via the intradermal route elicits effective immunity against EV71 and CA16 infection.  相似文献   

3.
《Vaccine》2016,34(48):5938-5945
Hand, foot, and mouth disease (HFMD) is a highly contagious disease that mainly affects infants and children. Enterovirus 71 (EV71) and coxsackievirus A16 (CA16) are the major pathogens of HFMD. Two EV71 vaccines were recently licensed in China and the administration of the EV71 vaccines is believed to significantly reduce the number of HFMD-related severe or fatal cases. However, a monovalent EV71 vaccine cannot cross-protect against CA16 infection, this may result in that it cannot effectively control the overall HFMD epidemic. In this study, a chimeric EV71, whose VP1/210–225 epitope was replaced by that of CA16, was constructed using a reverse genetics technique to produce a candidate EV71/CA16 bivalent vaccine strain. The chimeric EV71 was infectious and showed similar growth characteristics as its parental strain. The replacement of the VP1/210–225 epitope did not significantly affect the antigenicity and immunogenicity of EV71. More importantly, the chimeric EV71 could induce protective immunity against both EV71 and CA16, and protect neonatal mice against either EV71 or CA16 lethal infections, the chimeric EV71 constructed in this study was shown to be a feasible and promising candidate bivalent vaccine against both EV71 and CA16. The construction of a chimeric enterovirus also provides an alternative platform for broad-spectrum HFMD vaccines development.  相似文献   

4.
《Vaccine》2015,33(39):5087-5094
Hand, foot and mouth disease (HFMD) is a major public health concern in Asia; more efficient vaccines against HFMD are urgently required. Adenoviral (Ad) capsids have been used widely for the presentation of foreign antigens to induce specific immune responses in the host. Here, we describe a novel bivalent vaccine for HFMD based on the hexon-modified, E1-deleted chimpanzee adenovirus serotype 68 (AdC68). The novel vaccine candidate was generated by incorporating the neutralising epitope of Coxsackievirus A16 (CA16), PEP71, into hypervariable region 1 (HVR1), and a shortened neutralising epitope of Enterovirus 71 (EV71), sSP70, into HVR2 of the AdC68 hexon. In order to enhance the immunogenicity of EV71, VP1 of EV71 was cloned into the E1-region of the AdC68 vectors. The results demonstrated that these two epitopes were well presented on the virion surface and had high affinity towards specific antibodies, and VP1 of EV71 was also significantly expressed. In pre-clinical mouse models, the hexon-modified AdC68 elicited neutralising antibodies against both CA16 and EV71, which conferred protection to suckling mice against a lethal challenge of CA16 and EV71. In summary, this study demonstrates that the hexon-modified AdC68 may represent a promising bivalent vaccine carrier against EV71 and CA16 and an epitope-display platform for other pathogens.  相似文献   

5.
《Vaccine》2020,38(8):2034-2044
Enterovirus type 71 (EV71) and coxsackievirus A 16 (CA16) are recognized as the major pathogens responsible for human hand-foot-mouth disease. To develop a bivalent EV71-CA16 vaccine, rhesus macaques immunized with two doses of this vaccine via the intradermal route were challenged with EV71 or CA16, and their clinical symptoms, viral shedding, neutralizing antibodies, IFN-γ-specific ELISpots, and tissue viral load were examined longitudinally. Specific immunity against EV71 and CA16 was observed in the macaques, which exhibited controlled proliferation of the EV71 and CA16 viruses and upregulated expression of immune-related genes compared with the controls. Furthermore, broad protection against EV71 and CA16 challenge without immunopathological effects was observed in all the immunized macaques. These studies suggest that the bivalent EV71-CA16 inactivated vaccine was effective against wild-type EV71 or CA16 viral challenge in rhesus macaques.  相似文献   

6.
《Vaccine》2021,39(31):4296-4305
Enterovirus 71 (EV71) is one of the major causative agents for hand, foot and mouth disease (HFMD) in children. Currently, three inactivated EV71 vaccines have been approved by Chinese government. We previously demonstrated that recombinant EV71 virus-like particles (VLP) produced in Pichia pastoris can be produced at a high yield with a simple manufacturing process, and the candidate vaccine elicited protective humoral immune responses in mice. In present study, the nonclinical immunogenicity, efficacy and toxicity of the EV71 vaccine was comprehensively evaluated in rodents and non-human primates. The immunogenicity assessment showed that EV71 VLPs vaccine elicited high and persistent neutralizing antibody responses, which could be comparable with a licensed inactivated vaccine in animals. The immune sera of vaccinated mice also exhibited cross-neutralization activities to the heterologous subtypes of EV71. Both passive and maternal antigen specific antibodies protected the neonatal mice against the lethal EV71 challenge. Furthermore, nonclinical safety assessment of EV71 VLP vaccine showed no signs of systemic toxicity in animals. Therefore, the excellent immunogenicity, efficacy and toxicology data supported further evaluation of the VLP-based EV71 vaccine in humans.  相似文献   

7.
《Vaccine》2018,36(46):7095-7104
Coxsackievirus A6 (CVA6) and CVA10 are two of the major pathogens associated with hand, foot and mouth disease (HFMD) in children. The majority of CVA6 and CVA10 infections result in mild, self-limiting episodes (fever and herpangina) in pediatric populations; however, in some cases, can proceed to severe neurological disease and death. Efforts to mitigate viral transmission to decrease the morbidity and mortality associated with infection would be greatly strengthened by the availability of an efficacious CVA6 and CVA10 bivalent vaccine. Here we report the immunogenicity and protective efficacy of a bivalent combination vaccine comprised of formaldehyde-inactivated, whole-virus CVA6 and CVA10. We demonstrate that subcutaneous delivery of the bivalent vaccine can induce antigen-specific systemic immune responses, particularly the induction of polyfunctional T cells, which elicit active immunization to achieve a protection rate of >80% in the infected neonatal mice. Furthermore, passive transfer of the antisera from vaccinated mice potently protected recipient mice against CVA6 and CVA10 challenge. Importantly, the bivalent vaccine could induce high levels of IgG and neutralizing antibodies in adult female mice and the maternal antibody transmitted to the recipient mice played an important role in controlling homotypic and heterotypic CVA6 and CVA10 infections and viral replication in vivo. Collectively, these findings indicate that there is no immunological interference between the two antigens with respect to their ability to induce virus-specific immune responses, and thus provides proof-of-concept for further development of multivalent vaccines for broad protection against HFMD.  相似文献   

8.
《Vaccine》2019,37(31):4344-4353
BackgroundHand, foot and mouth disease (HFMD), especially that caused by enterovirus 71 (EV71) infection, is a public health concern in the Asia-Pacific region. We report a phase I clinical trial of an EV71 candidate vaccine (INV21) based on a binary ethylenimine inactivated B2 sub-genotype formulated with aluminum hydroxide.MethodsIn this double-blind, placebo-controlled, randomized, dose escalation study adult volunteers received two vaccinations 28 days apart of low or high dose formulations of the candidate vaccine and were then monitored for safety and reactogenicity for four weeks after each dose, and for their immune responses up to 28 weeks.ResultsOf 36 adults enrolled, 35 completed the study as planned. Either no or mild adverse events were observed, mainly injection site pain and tiredness. Seroconversion was 100% after two vaccinations. High geometric mean neutralizing antibody titers (GMT) were observed 14 days post first dose, peaking 14 days post second dose (at Day 42) in both high and low dose groups; GMTs on days 14, 28, 42, and 56 were 128, 81, 323, 203 and 144, 100, 451, 351 in low- and high-dose groups, respectively. Titers for both doses declined gradually to Day 196 but remained higher than baseline and the placebo groups, which had low GMTs throughout the duration of the study. Cross-neutralizing antibody activity against heterologous sub-genotypes was demonstrated.ConclusionThese data show that the EV71 candidate vaccine is safe and immunogenic in adults and supports further clinical development as a potential pediatric vaccine by initiating a dose-escalation study for determining the dose-dependent safety and immunogenicity of the vaccine in young naïve children.  相似文献   

9.
《Vaccine》2015,33(48):6596-6603
Enterovirus 71 (EV71) and Coxsackievirus A16 (CVA16), as the main agents causing hand, foot and mouth disease (HFMD), have become a serious public health concern in the Asia-Pacific region. Recently, various neutralizing B cell epitopes of EV71 were identified as targets for promising vaccine candidates. Structural studies of Picornaviridae indicated that potent immunodominant epitopes typically lie in the hypervariable loop of capsid surfaces. However, cross-neutralizing antibodies and cross-protection between EV71 and CVA16 have not been observed. Therefore, we speculated that divergent sequences of the two viruses are key epitopes for inducing protective neutralizing responses. In this study, we selected 10 divergent epitope candidates based on alignment of the EV71 and CVA16 P1 amino acid sequences using the Multalin interface page, and these epitopes are conserved among all subgenotypes of EV71. Simultaneously, by utilizing the norovirus P particle as a novel vaccine delivery carrier, we identified the 71-6 epitope (amino acid 176–190 of VP3) as a conformational neutralizing epitope against EV71 in an in vitro micro-neutralization assay as well as an in vivo protection assay in mice. Altogether, these results indicated that the incorporation of the 71-6 epitope into the norovirus P domain can provide a promising candidate for an effective synthetic peptide-based vaccine against EV71.  相似文献   

10.
Enterovirus 71 (EV71), an emerging neurotropic virus and coxsackieviruses (CV) are the major causative agents of hand, foot and mouth diseases (HFMD). These viruses have become a serious public health threat in the Asia Pacific region. Formalin-inactivated EV71 (FI-EV71) vaccines have been developed, evaluated in human clinical trials and were found to elicit full protection against EV71. Their failure to prevent CVA16 infections could compromise the acceptability of monovalent EV71 vaccines. Bivalent FI-EV71/FI-CVA16 vaccines have been found to elicit strong neutralizing antibody responses against both viruses in animal models but did not protect against CVA6 and CVA10 viral infections in cell culture neutralization assay. In this review, we discuss the critical bottlenecks in the development of multivalent HFMD vaccines, including the selection of vaccine strains, animal models to assess vaccine potency, the definition of end-points for efficacy trials, and the need for improved manufacturing processes to produce affordable vaccines.  相似文献   

11.
Enterovirus 71(EV71) and coxsackievirus A16 (CA16) are responsible for hand, foot and mouth disease which has been prevalent in Asia-Pacific regions, causing significant morbidity and mortality in young children. Co-circulation of and co-infection by both viruses underscores the importance and urgency of developing vaccines against both viruses simultaneously. Here we report the immunogenicity and protective efficacy of a bivalent combination vaccine comprised of EV71 and CA16 virus-like particles (VLPs). We show that monovalent EV71- or CA16-VLPs-elicited serum antibodies exhibited potent neutralization effect on the homotypic virus but little or no effect on the heterotypic one, whereas the antisera against the bivalent vaccine formulation were able to efficiently neutralize both EV71 and CA16, indicating there is no immunological interference between the two antigens with respect to their ability to induce virus-specific neutralizing antibodies. Passive immunization with monovalent VLP vaccines protected mice against a homotypic virus challenge but not heterotypic infection. Surprisingly, antibody-dependent enhancement (ADE) of disease was observed in mice passively transferred with mono-specific anti-CA16 VLP sera and subsequently challenged with EV71. In contrast, the bivalent VLP vaccine conferred full protection against lethal challenge by either EV71 or CA16, thus eliminating the potential of ADE. Taken together, our results demonstrate for the first time that the bivalent VLP approach represents a safe and efficacious vaccine strategy for both EV71 and CA16.  相似文献   

12.
In a 3-year, randomized, controlled, open-label phase III trial enrolling 3707 adults aged ≥60 years we evaluated whether the immunogenicity of an intradermal trivalent inactivated seasonal influenza vaccine, containing 15 μg of haemagglutinin per strain per 0.1 ml dose, is superior to that of a conventional intramuscular vaccine. Intradermal vaccine was given using an intradermal microinjection system. After the first vaccination, both vaccines satisfied the immunogenicity criteria for influenza vaccines for older adults set out in European regulatory guidelines, and geometric mean haemagglutination inhibition antibody titers and seroprotection rates were higher (statistically superior) with intradermal vaccination. Higher immune responses with intradermal vaccine were also observed after the 2nd and 3rd annual vaccinations. Both vaccines were well tolerated with similar systemic reactogenicity profiles. This intradermal influenza vaccine for older adults is a beneficial option for influenza protection, consistently enhancing antibody responses without compromising safety.  相似文献   

13.
Dong C  Liu L  Zhao H  Wang J  Liao Y  Zhang X  Na R  Liang Y  Wang L  Li Q 《Vaccine》2011,29(37):6269-6275
A number of commonly recognized public health issues are associated with EV71 infection, including the induction of severe cases of hand-foot-and-mouth disease (HFMD). Because of such issues, research and development of EV71 vaccine candidates is of growing importance. In the present study, an experimental EV71 inactivated vaccine was prepared, and its corresponding immunogenicity was analyzed. The immune responses and immunoprotective effect induced by the vaccine in mice and rhesus monkeys are described, and the two animal models are compared to evaluate the potential of assessing the inactivated vaccine's immunogenicity in these two species. In addition to assessing the vaccine's efficacy in mice, our data further elucidate the significance and value of assessing the immunogenicity and immunoprotection of vaccine candidates in rhesus monkeys by relying on a range of analyses, including pathological, etiological and lethal challenge analyses.  相似文献   

14.
Hand, Foot and Mouth disease (HFMD) is a common childhood disease and caused due to Enterovirus-A (EV-A), EV-B and EV-C species worldwide. Cases of HFMD were reported from, Ahmedabad (Gujarat, 2012) and Pune (Maharashtra, 2013–2014) in India. The present study highlights the identification of EV strains (CVA16, CVA6, CVA4 and Echo12), characterization of subgenotypes of CVA16, CVA6 strains during 2012–14 and CVA16, CVA6, EV71 strains reported from the earlier study (2009–10) in HFMD cases from India. A total 158 clinical specimens collected from 64 HFMD cases (2012–2014) were included in the study. EV detection was carried out by 5′NCR based RT-PCR, molecular typing and subgenotyping was by VP1/2A junction or VP1, full VP1 gene amplification respectively followed by phylogenetic analysis. The present study reports 63.92% (101/158) EV positivity by RT-PCR. Ninety four of the 101 (93.06%) EV positive strains were amplified by VP1/2A junction or VP1 regions. Sequence analysis revealed the presence of CVA16 (61.7%), CVA6 (34.04%), CVA4 and Echo12 (4.3%). A total of 114 EV positive strains were genotyped using full and partial VP1 region. All CVA16 Indian strains (n = 70) clustered with rarely reported B1c subgenotype, CVA6 (n = 43) and EV71 (n = 1) strains clustered with sub-lineage E2 and C1 subgenotypes respectively. In summary, the study reports genetic characterization of CVA16, CVA6, CVA4 and Echo12 strains in HFMD cases from India. Circulation of B1c subgenotype of CVA16, E2 sub-lineage of CVA6 and C1 subgenotype of EV 71 strains in HFMD cases were reported for the first time from India. This study helps to understand the genotype distribution, genetic diversity of EV strains associated with HFMD from Eastern, Western and Southern regions in India.  相似文献   

15.
Chen CW  Lee YP  Wang YF  Yu CK 《Vaccine》2011,29(15):2772-2776
In this study we tested the effectiveness of a formaldehyde-inactivated EV71 vaccine and its compatibility for co-immunization with a pentavalent vaccine that contained inactivated poliovirus (PV) vaccine. The inactivated EV71 vaccine (C2 genogroup) elicited an antibody response which broadly neutralized homologous and heterologous genogroups, including B4, C4, and B5. Pups from vaccinated dams were resistant to the EV71 challenge and had a high survival rate and a low tissue viral burden when compared to those from non-vaccinated counterparts. Co-immunization with pentavalent and inactivated EV71 vaccines elicited antibodies against the major components of the pentavalent vaccine including the PV, Bordetella pertussis, Haemophilus influenzae type b, diphtheria toxoid, and tetanus toxoid at the same levels as in mice immunized with pentavalent vaccine alone. Likewise, EV71 neutralizing antibody titers were comparable between EV71-vaccinated mice and mice co-immunized with the two vaccines. These results indicate that formaldehyde-inactivated whole virus EV71 vaccine is feasible for designing multivalent vaccines.  相似文献   

16.
《Vaccine》2022,40(33):4709-4715
BackgroundTo evaluate the immunogenicity and safety of simultaneous administration of the enterovirus 71 (EV71) vaccine with the measles and rubella (MR) combined vaccine.MethodsIn this phase 4, randomized, open-label and noninferiority study, a total of 680 infants aged 8 months were enrolled and assigned to the simultaneous administration group (infants received the first dose of EV71 vaccine and MR vaccine on Day 0, and the second dose of EV71 vaccine on Day 28), or the separate administration groups (EV71 group: infants received two doses of EV71 vaccine on Day 0 and Day 28, respectively; MR group: infants received MR vaccine on Day 0). Blood sample was obtained on Day 0 and Day 56 to measure antibody responses to each of the antigens in terms of antibody titer or concentration, respectively. Local and systemic adverse reactions (ARs) and other adverse events (AEs) following each dose were monitored and compared among groups.ResultsAfter vaccination, simultaneous administration group showed similar seroconversion rates of antibody against EV71(97.9%), measles (97.4%), and rubella (94.3%) compared to EV71 group (99.6% for anti-EV71) or MR group (98.4% for anti-measles and 98.9% for anti-rubella, respectively). Noninferiority was demonstrated for all antibodies as the lower limits of two-sided 97.5% confidence intervals (CIs) of the difference in seroconversion rates between simultaneous administration group and separate administration groups were above the predefined margin of ?10%. Additionally, the adverse reaction rates were comparable among groups (54.4% in the simultaneous group versus 43.9% in the MR group versus 52.6% in the EV71 group).ConclusionAntibody responses induced by simultaneous administration of EV71 vaccine with MR vaccine were robust and noninferior to those by single administration alone. Like the previous findings by single administration alone, simultaneous administration demonstrated comparable reactogenicity and safety profiles.  相似文献   

17.
目的了解2017-2021年中国肠道病毒71型(EV71)灭活疫苗接种现状, 为制定手足口病防控和免疫策略提供参考。方法利用中国免疫规划信息管理系统收集的EV71灭活疫苗报告接种剂次数和出生人口数据估算2012年以来各出生队列截至2021年底的全国、分省和分地市EV71灭活疫苗累计接种率, 并分析与接种率水平相关的潜在影响因素。结果截至2021年, 全国2012年以来出生队列EV71灭活疫苗估算累计接种率为24.96%, 各省份估算接种率为3.09%~56.59%, 各地市估算接种率为0~88.17%。不同地区疫苗接种率与该地区既往手足口病报告发病水平和人均可支配收入的相关性均有统计学意义。结论 2017年以来EV71灭活疫苗在全国范围内应用广泛, 但地区间疫苗接种覆盖情况差异较大, 经济相对发达地区接种率较高, 既往疾病流行强度可能对疫苗的接受度和接种服务模式产生一定影响。EV71灭活疫苗接种对手足口病流行的影响还需进一步研究。  相似文献   

18.

Background

Large-scale outbreaks of enterovirus 71 (EV71) infections have occurred in Asia-Pacific regions. Severe complications include encephalitis and poliomyelitis-like paralysis, cardiopulmonary collapse, and death, necessitating an effective vaccine against EV71.

Methods

In this randomized Phase I study, we evaluated the safety and immunogenicity of an inactivated alum-adjuvanted EV71 whole-virus vaccine produced on Vero cell cultures. Sixty healthy volunteers aged 20–60 years received two doses of vaccine, administered 21 days apart. Each dose contained either 5 μg of EV71 antigen with 150 μg of adjuvant (Group A05) or 10 μg of EV71 antigen with 300 μg of adjuvant (Group B10). Serologic analysis was performed at baseline, day 21, and day 42.

Results

There were no serious adverse events. Mild injection site pain and myalgia were the most common adverse events with either vaccine formulation. The immunogenicity data showed that 90% of vaccine recipients have a 4-fold or greater increase in neutralization antibody titers (NT) after the first dose, without a further increase in NT after the second dose. The seroconversion rates on day 21 and day 42 were 86.7% and 93.1% respectively, in Group A05, and 92.9% and 96.3%, respectively, in Group B10. Thus, 5 μg and 10 μg of the EV71 vaccine can induce a remarkable immune response in healthy adults after only the first vaccination.

Conclusion

The 5 μg and 10 μg adjuvanted EV71 vaccines are generally safe and immunogenic in healthy adults. (ClinicalTrials.gov number, NCT01268787).  相似文献   

19.
For global eradication of poliomyelitis, inactivated poliovirus vaccine (IPV) needs to become available in all countries. Using fractional-doses (reduced-doses) may impact affordability and optimize the utilization of the production capacity. Intradermal administration has the potential to lower the dose without reducing immunogenicity. A needle-free jet injector may be a reliable way to administer vaccines intradermally. The primary objective of this randomized controlled trial was to compare the immunogenicity and tolerability of fractional-dose intradermal IPV (Netherlands Vaccine Institute, NVI) booster vaccination administered with a jet injector (PharmaJet) to full-dose and fractional-dose intramuscular vaccination with a needle and syringe. Immunogenicity was assessed by comparing the differences in the post-vaccination log2 geometric mean concentrations of neutralizing antibodies (GMC) between the study groups. A total of 125 Dutch adult volunteers with a well-documented vaccination history were randomized to one of four groups: full-dose intramuscular needle (IM-NS-0.5), full-dose intramuscular jet injector (IM-JI-0.5), 1/5th dose intramuscular needle (IM-NS-0.1), 1/5th dose intradermal jet injector (ID-JI-0.1). Vaccination with the JI was less painful (87% no pain) than vaccination with a NS (60% no pain), but caused more transient erythema (JI 85%, NS 24%) and swelling (JI 50%, NS 5%). Intradermal vaccination caused less vaccination site soreness (ID 16%, IM 52%). At baseline all subjects had seroprotective antibody concentrations. After 28 days, GMC were slightly lower in the ID-JI-0.1 group than in the reference group (IM-NS-0.5). The differences were not statistically significant, but the stringent non-inferiority criterion (i.e. a difference of 1 serum dilution in the microneutralization assay) was not met. After one year, differences in GMC were no longer apparent. In contrast, intramuscular vaccination with a fractional dose administered with a needle (IM-NS-0.1) was statistically inferior to full-dose intramuscular vaccination. This shows that intradermal but not intramuscular delivery of fractional-dose IPV may be sufficient for routine polio vaccination.  相似文献   

20.

Background

Intradermally administered influenza vaccine is as immunogenic as intramuscular vaccine at a lower unit dose. New microinjection systems could allow self-administration of vaccine, potentially reducing the cost and inconvenience.

Objective

To compare the immunogenicity, reactogenicity, success rate, and acceptability of self- versus nurse-administered intradermal trivalent seasonal influenza vaccine.

Methods

Adults (18–59 years old) were randomized to either self- or nurse-administered intradermal vaccine. Prior to vaccination, participants completed a questionnaire and had blood drawn for hemagglutination inhibition titres. Participants in the nurse-administered group were vaccinated by study personnel. The self-administered group were given an instruction sheet and administered their own vaccine. All participants completed a questionnaire and adverse event diaries for 21 days post vaccination, at which time blood was again collected.

Results

Of the 228 participants, 115 were randomized to self-administration and 113 to nurse administration. Groups did not differ by sex, age, or levels of seroprotection at baseline. Of the 114 who completed self-administration, 106 (93%) were successful on the first attempt. There were no group differences in measures of immunogenicity for any of the strains. Self-administering participants reported a lower mean pain rating at vaccination but had larger areas of redness post-vaccination. Seventy percent of all participants said they would prefer intradermal over intramuscular vaccinations in the future, if given the choice.

Conclusion

Compared to nurse-administered intradermal influenza vaccine, self-administered vaccine was immunologically non-inferior and reached all EMA immunogenicity criteria for the A strains, was highly successful and well-accepted by study participants. Together, these data provide preliminary evidence of feasibility for this method of influenza vaccine administration, which may improve vaccine uptake in adults and increase efficiency of vaccine delivery during outbreaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号