首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Schuldt NJ  Amalfitano A 《Vaccine》2012,30(35):5191-5198
Protection against malaria through vaccination is known to be achievable, as first demonstrated over 30 years ago. Vaccination via repeated bites with Plasmodium falciparum infected and irradiated mosquitoes provided short lived protection from malaria infection to these vaccinees. Though this method still remains the most protective malaria vaccine to date, it is likely impractical for widespread use. However, recent developments in sub-unit malaria vaccine platforms are bridging the gap between high levels of protection and feasibility. The current leading sub-unit vaccine, RTS,S (which consists of a fusion of a portion of the P. falciparum derived circumsporozoite protein to the Hepatitis B surface antigen), has demonstrated the ability to induce protection from malaria infection in up 56% of RTS,S vaccinees. Though encouraging, these results may fall short of protection levels generally considered to be required to achieve eradication of malaria. Therefore, the use of viral vectored vaccine platforms has recently been pursued to further improve the efficacy of malaria targeted vaccines. Adenovirus based vaccine platforms have demonstrated potent anti-malaria immune responses when used alone, as well when utilized in heterologous prime boost regimens. This review will provide an update as to the current advancements in malaria vaccine development, with a focus on the use of adenovirus vectored malaria vaccines.  相似文献   

2.
Plasmodium falciparum circumsporozoite protein (CSP) is a major sporozoite surface protein and a key target of pre-erythrocytic malaria subunit vaccines. A full-length recombinant CSP (rCSP) based strategy could be advantageous, as this antigen includes a region critical to sporozoite cell attachment and hepatocyte invasion. The adjuvant Glucopyranosyl Lipid A-liposome Quillaja saponaria 21 (GLA-LSQ) functions as a TLR4 agonist, promotes antigen-specific TH1 responses and stimulates cytotoxic T cell production. To date, one study has reported the clinical acceptability of GLA-LSQ. We present interim results of a phase 1 first-in-human dose-escalation clinical trial of full-length rCSP vaccine given with or without GLA-LSQ adjuvant. Participants experienced only mild to moderate related solicited adverse events. The lowest adjuvanted vaccine dose achieved >90-fold rise in geometric mean anti-CSP IgG antibody titer. These favorable safety and immunogenicity results confirm the immunostimulatory capacity of this relatively new adjuvant and support next steps in clinical product development.Trial registration: ClinicalTrials.gov Identifier NCT03589794 (registered 18 July 2018)  相似文献   

3.
Malaria represents a major global health problem but despite extensive efforts, no effective vaccine is available. Various vaccine candidates have been developed that provide protection in animal models, such as a gene gun-delivered DNA vaccine encoding the circumsporozoite protein (CSP) of Plasmodium berghei. A common shortcoming of most malaria vaccines is the requirement for multiple immunizations leaving room for improvement even for established vaccine candidates such as the CSP-DNA vaccine. In this study, we explored whether regulating apoptosis in DNA vaccine transfected host cells could accelerate the onset of protective immunity and provide significant protection after a single immunization. A pro-apoptotic gene (Bax) was used as a molecular adjuvant in an attempt to mimic the immunostimulatory apoptosis triggered by viral or virus-derived vaccines, while anti-apoptotic genes such as Bcl-XL may increase the life span of transfected cells thus prolonging antigen production. Surprisingly, co-delivery of either Bax or Bcl-XL greatly reduced CSP-DNA vaccine efficacy after a single immunization. Co-delivery of Bax for three immunizations still had a detrimental effect on protective immunity, while repeated co-delivery of Bcl-XL had no negative impact. The fine characterization of humoral and cellular immune response modulated by these two molecular adjuvants revealed a previously unknown effect, i.e., a shift in the Th-profile. These results demonstrate that pro- or anti-apoptotic molecules should not be used as molecular adjuvants without careful evaluation of the resulting immune response. This finding represents yet another example that strategies to enhance vaccine efficacy developed for other model systems such as viral diseases cannot easily be applied to any vaccine.  相似文献   

4.
《Vaccine》2016,34(38):4618-4625
Regulatory T (Treg) cells have been shown in some cases to limit vaccine-specific immune responses and impact efficacy. Very little is known about the regulatory responses to the leading malaria vaccine candidate, RTS,S. The goal of this study was to begin to characterize the regulatory responses to the RTS,S vaccine. Using multi-parameter flow cytometry, we examined responses in 13 malaria naïve adult volunteers who received 2 doses of RTS,S given eight weeks apart. Five of these volunteers had previously received 3 doses of a candidate DNA-CSP vaccine, with the final dose given approximately one year prior to the first dose of the RTS,S vaccine.We found that the frequency of CD25hiFoxp3+ Treg cells decreased following administration of RTS,S (p = 0.0195), with no differences based on vaccine regimen. There was a concomitant decrease in CTLA-4 expression on CD25hiFoxp3+ Treg cells (p = 0.0093) and PD-1 levels on CD8+ T cells (p = 0.0002). Additionally, the frequency of anergic CTLA-4+CCR7+ T cells decreased following vaccination. An inverse correlation was observed between the frequency of Plasmodium falciparum circumsporozoite protein (PfCSP)-specific IFN-γ and PfCSP-specific IL-10, as well as an inverse correlation between IL-10 induced by Hepatitis B surface antigen, the carrier of RTS,S, and PfCSP-specific IFN-γ, suggesting that immunity against the vaccine backbone could impact vaccine immunogenicity. These results have implications for future malaria vaccine design.  相似文献   

5.
《Vaccine》2017,35(24):3239-3248
Malaria remains a considerable burden on public health. In 2015, the WHO estimates there were 212 million malaria cases causing nearly 429,000 deaths globally. A highly effective malaria vaccine is needed to reduce the burden of this disease. We have developed an experimental vaccine candidate (PyCMP) based on pre-erythrocytic (CSP) and erythrocytic (MSP1) stage antigens derived from the rodent malaria parasite P. yoelii. Our protein-based vaccine construct induces protective antibodies and CD4+ T cell responses. Based on evidence that viral vectors increase CD8+ T cell-mediated immunity, we also have tested heterologous prime-boost immunization regimens that included human adenovirus serotype 5 vector (Ad5), obtaining protective CD8+ T cell responses. While Ad5 is commonly used for vaccine studies, the high prevalence of pre-existing immunity to Ad5 severely compromises its utility. Here, we report the use of the novel simian adenovirus 36 (SAd36) as a candidate for a vectored malaria vaccine since this virus is not known to infect humans, and it is not neutralized by anti-Ad5 antibodies. Our study shows that the recombinant SAd36PyCMP can enhance specific CD8+ T cell response and elicit similar antibody titers when compared to an immunization regimen including the recombinant Ad5PyCMP. The robust immune responses induced by SAd36PyCMP are translated into a lower parasite load following P. yoelii infectious challenge when compared to mice immunized with Ad5PyCMP.  相似文献   

6.
《Vaccine》2019,37(29):3793-3803
Antibodies to Circumsporozoite protein (CSP) confer protection against controlled human malaria infection (CHMI) caused by the parasite Plasmodium falciparum. Although CSP is highly immunogenic, it does not induce long lasting protection and efforts to improve CSP-specific immunological memory and duration of protection are underway. We have previously reported that the clinical grade CSP vaccine FMP013 was immunogenic and protective against malaria challenge in mice when combined with the Army Liposomal Formulation adjuvant containing immune modulators 3D-PHAD™ and QS21 (ALFQ). To move forward with clinical evaluation, we now report the safety, toxicity and immunogenicity of clinical grade FMP013 and ALFQ in Rhesus macaques. Three groups of Rhesus (n = 6) received half or full human dose of FMP013 + ALFQ on a 0-1-2 month schedule, which showed mild local site reactions with no hematologic derangements in red blood cell homeostasis, liver function or kidney function. Immunization induced a transient systemic inflammatory response, including elevated white blood cell counts, mild fever, and a few incidences of elevated creatine kinase, receding to normal range by day 7 post vaccination. Optimal immunogenicity in Rhesus was observed using a 1 mL ALFQ + 20 µg FMP013 dose. Doubling the FMP013 antigen dose to 40 µg had no effect while halving the ALFQ adjuvant dose to 0.5 mL lowered immunogenicity. Similar to data generated in mice, FMP013 + ALFQ induced serum antibodies that reacted to all regions of the CSP molecule and a Th1-biased cytokine response in Rhesus. Rhesus antibody response to FMP013 + ALFQ was found to be non-inferior to historical benchmarks including that of RTS,S + AS01 in humans. A four-dose GLP toxicity study in rabbits confirmed no local site reactions and transient systemic inflammation associated with ALFQ adjuvant administration. These safety and immunogenicity data support the clinical progression and testing of FMP013 + ALFQ in a CHMI trial in the near future.  相似文献   

7.
The efficacy of recombinant adenoviruses (Ads) vaccine vectors is diminished by the high prevalence of anti-Ad antibodies (Abs) that hampers gene transfer. Epitope display on Ad capsid constitutes an alternative approach to bypass anti-Ad Ab capacity from blocking antigen expression. To understand the role of the epitope insertion site, an ovalbumin-derived epitope was genetically inserted into either Ad hexon or fiber proteins. Hexon-modified Ads triggered higher anti-ovalbumin Ab responses after one injection but surprisingly fiber-modified Ads were by far more potent after two or several administrations. Our data unravel a role for anti-Ad humoral immunity in controlling anti-epitope humoral responses.  相似文献   

8.
The global eradication of malaria will require the development of vaccines to prevent infection cause by Plasmodium vivax in addition to Plasmodium falciparum. In an attempt to contribute to this effort we have previously reported the cloning and expression of a vaccine based on the circumsporozoite protein of P. vivax. The synthetic vaccine encodes for a full-length molecule encompassing the N-terminal and C-terminal regions flanking a chimeric repeat region representing VK210 and VK247, the two major alleles of P. vivax CSP. The vaccine, designated vivax malaria protein 001 (VMP001), was purified to >95% homogeneity using a three-column purification scheme and had low endotoxin levels and passed the rabbit pyrogenicity assay. The protein is recognized by monoclonal antibodies directed against the two repeat motifs, as well as polyclonal antibodies. Immunization with VMP001 induced high titer antibodies in mice using Montanide ISA 720. We currently have more than 10,000 doses of purified bulk and 1800 vials of formulated bulk vaccine available for clinical testing and VMP001 is currently undergoing further development as a candidate vaccine to prevent malaria in humans.  相似文献   

9.
Immunization of BALB/c mice with irradiated sporozoites (IrSp) of Plasmodium yoelii can lead to sterile immunity. The circumsporozoite protein (CSP) plays a dominant role in protection. Nevertheless after hyper-immunization with IrSp, complete protection is obtained in CSP-transgenic BALB/c mice that are T-cell tolerant to the CSP and cannot produce antibodies [CSP-Tg/JhT(−/−)]. This protection is mediated exclusively by CD8+ T cells [1]. To identify the non-CSP protective T cell antigens, we studied the properties of 34 P. yoelii sporozoite antigens that are predicted to be secreted and to contain strong Kd-restricted CD8+ T cell epitopes. The synthetic peptides corresponding to the epitopes were used to screen for the presence of peptide-specific CD8+ T cells secreting interferon-γ (IFN-γ) in splenocytes from CSP-Tg/JhT(−/−) BALB/c mice hyper immunized with IrSp. However, the numbers of IFN-γ-secreting splenocytes specific for the non-CSP antigen-derived peptides were 20-100 times lower than those specific for the CSP-specific peptide. When mice were immunized with recombinant adenoviruses expressing selected non-CSP antigens, the animals were not protected against challenge with P. yoelii sporozoites although large numbers of CD8+ specific T cells were generated.  相似文献   

10.
Adenovirus vaccine vectors derived from rare human serotypes have been shown to be less potent than serotype 5 (Ad5) at inducing immune responses to encoded antigens. To identify highly immunogenic adenovirus vectors, we assessed pro-inflammatory cytokine expression, binding to the CD46 receptor, and immunogenicity. Species D adenoviruses uniquely suppressed pro-inflammatory cytokines and induced high levels of type I interferon. Thus, it was unexpected that a vector derived from a representative serotype, Ad28, induced significantly higher transgene-specific T cell responses than an Ad35 vector. Prime–boost regimens with Ad28, Ad35, Ad14, or Ad5 significantly boosted T cell and antibody responses. The seroprevalence of Ad28 was confirmed to be <10% in the United States. Together, this shows that a rare human serotype-based vector can elicit strong immune responses, which was not predicted by in vitro results.  相似文献   

11.
We propose a novel influenza vaccine composed of the adenovirus dodecahedron (Dd) as delivery platform carrying an internal influenza matrix protein M1. To attach the antigen to the vector we used WW domains interacting with Dd. Successful internalization of the Dd-M1WW complex was observed using biochemical and cell biology techniques. We show here that the complex of Dd with antigen is a potent activator of human myeloid dendritic cells (MDC), and that it is efficiently presented by MDC to M1-specific CD8+ T lymphocytes. These results show that proposed vaccine model is feasible and that adenovirus dodecahedron is a potent delivery platform for foreign antigens to human cells.  相似文献   

12.
A vaccine that elicits both specific antibodies and IFN-γ-producing T cells is required to protect against pre-erythrocytic malaria. Among the most promising approaches to induce such complex immunity are heterologous prime-boost vaccination regimens, in particular ones containing live viral vector. We have demonstrated previously that adenovectors serotype 35 (Ads35) encoding the circumsporozoite (CS) antigen or liver-stage antigen-1 (LSA-1) are highly effective in improving the T-cell responses induced by immunizations with protein-based vaccines in a heterologous prime-boost schedule. Here we evaluated the potential of a heterologous prime-boost vaccination that combines the Ad35.CS vector with the serologically distinct adenovector Ad5.CS, in rhesus macaques, after establishing the potency in mice. We show that the heterologous Ad35.CS/Ad5.CS prime-boost regimen elicits both antibody responses and robust IFN-γ-producing CD8+ T-cell responses against the CS antigen. Analysis of the quality of the antibody responses in rhesus macaques, using indirect immunofluorescence assay (IFA) with Plasmodium falciparum-coated slides, demonstrated that this heterologous prime-boost regimen elicits a high titer of antibodies that are able to bind to P. falciparum sporozoites. Level of the IFA response was superior to the response measured with sera of an adult human population living in endemic malaria region. In conclusion, the combination of Ad35.CS, a vaccine based on a rare serotype adenovirus, with Ad5.CS or possibly another adenovector of a distinct serotype, induces a complex immune response that is required for protection against malaria, and is thus a highly promising approach for pediatric vaccination.  相似文献   

13.
《Vaccine》2020,38(34):5480-5489
Malaria transmission blocking vaccines (TBV) target the sexual stage of the parasite and have been pursued as a stand-alone vaccine or for combination with pre-erythrocytic or blood stage vaccines. Our efforts to develop TBV focus primarily on two antigens, Pfs25 and Pfs230. Chemical conjugation of these poorly immunogenic antigens to carrier proteins enhances their immunogenicity, and conjugates of these antigens to Exoprotein A (EPA) are currently under evaluation in clinical trials. Nonetheless, more potent carriers may augment the immunogenicity of these antigens for a more efficacious vaccine; here, we evaluate a series of proteins to identify such a carrier. Pfs25 and Pfs230 were chemically conjugated to 4 different carriers [tetanus toxoid (TT), a recombinant fragment of tetanus toxin heavy chain (rTThc), recombinant CRM197 produced in Pseudomonas fluorescens (CRM197) or in E. coli (EcoCRM®)] and compared to EPA conjugates in mouse immunogenicity studies. Conjugates of each antigen formulated in Alhydrogel® elicited similar antibody titers but showed differences in functional activity. At a 0.5 µg dose, Pfs230 conjugated to TT, CRM197 and EcoCRM® showed significantly higher functional activity compared to EPA. When formulated with the more potent adjuvant GLA-LSQ, all 4 alternate conjugates induced higher antibody titers as well as increased functional activity compared to the EPA conjugate. IgG subclass analysis of Pfs230 conjugates showed no carrier-dependent differences in the IgG profile. While Alhydrogel® formulations induced a Th2 dominant immune response, GLA-LSQ formulations induced a mixed Th1/Th2 response.  相似文献   

14.
《Vaccine》2017,35(31):3865-3874
Malaria caused by Plasmodium falciparum continues to threaten millions of people living in the tropical parts of the world. A vaccine that confers sterile and life-long protection remains elusive despite more than 30 years of effort and resources invested in solving this problem. Antibodies to a malaria vaccine candidate circumsporozoite protein (CSP) can block invasion and can protect humans against malaria. We have manufactured the Falciparum Malaria Protein-013 (FMP013) vaccine based on the nearly full-length P. falciparum CSP 3D7 strain sequence. We report here immunogenicity and challenge data on FMP013 antigen in C57BL/6 mice formulated with two novel adjuvants of the Army Liposome Formulation (ALF) series and a commercially available adjuvant Montanide ISA 720 (Montanide) as a control. ALF is a liposomal adjuvant containing a synthetic monophosphoryl lipid A (3D-PHAD®). In our study, FMP013 was adjuvanted with ALF alone, ALF containing aluminum hydroxide (ALFA) or ALF containing QS-21 (ALFQ). Adjuvants ALF and ALFA induced similar antibody titers and protection against transgenic parasite challenge that were comparable to Montanide. ALFQ was superior to the other three adjuvants as it induced higher antibody titers with improved boosting after the third immunization, higher serum IgG2c titers, and enhanced protection. FMP013 + ALFQ also augmented the numbers of splenic germinal center-derived activated B-cells and antibody secreting cells compared to Montanide. Further, FMP013 + ALFQ induced antigen-specific IFN-γ ELISPOT activity, CD4+ T-cells and a TH1-biased cytokine profile. These results demonstrate that soluble CSP can induce a potent and sterile protective immune response when formulated with the QS-21 containing adjuvant ALFQ. Comparative mouse immunogenicity data presented here were used as the progression criteria for an ongoing non-human primate study and a regulatory toxicology study in preparation for a controlled human malaria infection (CHMI) trial.  相似文献   

15.
《Vaccine》2018,36(16):2199-2206
Human adenoviruses types 3 (HAdV-3), 7 (HAdV-7) and 55 (HAdV-55) are major pathogens of acute respiratory infections (ARI) in children and adults. More than one type of HAdV can infect patients simultaneously, and the infections are sometimes fatal. However, there is currently no vaccine approved for general use in children and adults. Thus, development of a multivalent HAdV vaccine to combat HAdV infection becomes imperative. In this study, we constructed a new recombinant trivalent human adenovirus vaccine (rAdMHE3-h55), which expresses the hexon protein of HAdV-55 in the E3 region of rAdMHE3, a previously prepared bivalent vaccine candidate against HAdV-3 and HAdV-7. The results of in vitro neutralization assays indicate that rAdMHE3-h55 can induce the production of neutralizing antibodies against HAdV-3, HAdV-7, and HAdV-55 in mice. Furthermore, immunization with the recombinant trivalent vaccine candidate completely protected the mice challenged with HAdV-3, HAdV-7, orHAdV-55, respectively, showing lower lung viral loads and less lung Pathological changes was compared with those in unvaccinated mice. The current findings contribute to the development of a new adenovirus vaccine candidate and also advance this construction method for the generation of recombinant adenovirus vaccines. In conclusion, our recombinant trivalent vaccine rAdMHE3-h55 can provides protection against challenge with HAdV-3, HAdV-7, or HAdV-55 in mice. Future work of optimizing this vaccine candidate may lead to a more effective way of preventing respiratory diseases caused by common human adenoviruses.  相似文献   

16.
Malaria is still one of the major public health threats in sub-Saharan Africa. An effective vaccine could be a sustainable control measure that can be integrated into existing health infrastructures. The malaria vaccine candidate GMZ2 is a recombinant fusion protein of conserved parts of Plasmodium falciparum Glutamate Rich Protein and Merozoite Surface Protein 3 adjuvanted with aluminium hydroxide. GMZ2 is immunogenic and well tolerated in malaria-naive adults from Germany. To assess safety and immunogenicity in malaria-exposed individuals, 40 adults from Lambaréné, Gabon were randomly assigned to receive either 100 μg GMZ2 or a rabies control vaccine three times in monthly intervals. Both vaccines were well tolerated. One month after a full course of vaccination, GMZ2-vaccinated individuals had 1.4-fold (95% confidence interval: [1.1, 1.7]) higher baseline-corrected anti-GMZ2 antibody levels and more GMZ2-specific memory B-cells compared to the rabies group (p = 0.039), despite a high prevalence of GMZ2-specific immune reactivity due to previous intense exposure to P. falciparum.  相似文献   

17.
Vaccination against Plasmodium falciparum malaria could reduce the worldwide burden of this disease, and decrease its high mortality in children. Replication-defective recombinant adenovirus vectors carrying P. falciparum epitopes may be useful as part of a vaccine that raises cellular immunity to the pre-erythrocytic stage of malaria infection. However, existing immunity to the adenovirus vector results in antibody-mediated neutralization of the vaccine vector, and reduced vaccine immunogenicity. Our aim was to examine a population of children who are at risk from P. falciparum malaria for neutralizing immunity to replication-deficient recombinant chimpanzee adenovirus 63 vector (AdC63), compared to human adenovirus 5 vector (AdHu5). We measured 50% and 90% vector neutralization titers in 200 individual sera, taken from a cohort of children from Kenya, using a secreted alkaline phosphatase neutralization assay. We found that 23% of the children (aged 1–6 years) had high-titer neutralizing antibodies to AdHu5, and 4% had high-titer neutralizing antibodies to AdC63. Immunity to both vectors was age-dependent. Low-level neutralization of AdC63 was significantly less frequent than AdHu5 neutralization at the 90% neutralization level. We conclude that AdC63 may be a useful vector as part of a prime-boost malaria vaccine in children.  相似文献   

18.
《Vaccine》2015,33(52):7551-7558
Malaria remains an important health threat to non-immune travelers with the explosive growth of global travel. Populations at high risk of acquiring malaria infections include once semi-immune travelers who visit friends and relatives, military forces, business travelers and international tourists with destinations to sub-Saharan Africa, where malaria transmission intensity is high. Most malaria cases have been associated with poor compliance with existing preventive measures, including chemoprophylaxis. High risk groups would benefit immensely from an efficacious vaccine to protect them against malaria infection and together make up a sizable market for such a vaccine. The attributes of an ideal malaria vaccine for non-immune travelers and military personnel include a protective efficacy of 80% or greater, durability for at least 6 months, an acceptable safety profile and compatibility with existing preventive measures. It is very likely that a malaria vaccine designed to effectively prevent infection and clinical disease in the non-immune traveler and military personnel will also protect semi-immune residents of malaria-endemic areas and contribute to malaria elimination by reducing or blocking malaria transmission. The RTS,S vaccine (GlaxoSmithKline) and the PfSPZ Vaccine (Sanaria Inc) are the leading products that would make excellent vaccine candidates for these vulnerable populations.  相似文献   

19.
《Vaccine》2023,41(8):1496-1502
BackgroundThe World Health Organization (WHO) recommended widespread use of the RTS,S/AS01 (RTS,S) malaria vaccine among children residing in regions of moderate to high malaria transmission. This recommendation is informed by RTS,S evidence, including findings from the pilot rollout of the vaccine in Ghana, Kenya, and Malawi. This study estimates the incremental costs of introducing and delivering the malaria vaccine within routine immunization programs in the context of malaria vaccine pilot introduction, to help inform decision-making.MethodsAn activity-based, retrospective costing was conducted from the governments’ perspective. Vaccine introduction and delivery costs supported by the donors during the pilot introduction were attributed as costs to the governments under routine implementation. Detailed resource use data were extracted from the pilot program expenditure and activity reports for 2019–2021. Primary data from representative health facilities were collected to inform recurrent operational and service delivery costs. Costs were categorized as introduction or recurrent costs. Both financial and economic costs were estimated and reported in 2020 USD. The cost of donated vaccine doses was evaluated at $2, $5 and $10 per dose and included in the economic cost estimates. Financial costs include the procurement add on costs for the donated vaccines and immunization supplies, along with other direct expenses.FindingsAt a vaccine price of $5 per dose, the incremental cost per dose administered across countries ranges from $2.30 to $3.01 (financial), and $8.28 to $10.29 (economic). The non-vaccine cost of delivery ranges between $1.04 and $2.46 (financial) and $1.52 and $4.62 (economic), by country. Considering only recurrent costs, the non-vaccine cost of delivery per dose ranges between $0.29 and $0.89 (financial) and $0.59 and $2.29 (economic), by country. Introduction costs constitute between 33% and 71% of total financial costs. Commodity and procurement add-on costs are the main cost drivers of total cost across countries. Incremental resource needs for implementation are dependent on country’s baseline immunization program capacity constraints.InterpretationThe financial costs of introducing RTS,S are comparable with costs of introducing other new vaccines. Country resource requirements for malaria vaccine introduction are most influenced by vaccine price and potential donor funding for vaccine purchases and introduction support.  相似文献   

20.
《Vaccine》2018,36(21):2978-2984
Immune responses to poorly immunogenic antigens, such as polysaccharides, can be enhanced by conjugation to carriers. Our previous studies indicate that conjugation to Vi polysaccharide of Salmonella Typhi may also enhance immunogenicity of some protein carriers. We therefore explored the possibility of generating a bivalent vaccine against Plasmodium falciparum malaria and typhoid fever, which are co-endemic in many parts of the world, by conjugating Vi polysaccharide, an approved antigen in typhoid vaccine, to Pfs25, a malaria transmission blocking vaccine antigen in clinical trials. Vi-Pfs25 conjugates induced strong immune responses against both Vi and Pfs25 in mice, whereas the unconjugated antigens are poorly immunogenic. Functional assays of immune sera revealed potent transmission blocking activity mediated by anti-Pfs25 antibody and serum bactericidal activity due to anti-Vi antibody. Pfs25 conjugation to Vi modified the IgG isotype distribution of antisera, inducing a Th2 polarized immune response against Vi antigen. This conjugate may be further developed as a bivalent vaccine to concurrently target malaria and typhoid fever.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号