首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anthrax vaccine candidate AV7909 is being developed as a next-generation vaccine for post-exposure prophylaxis (PEP) against inhalational anthrax. In clinical studies, two vaccinations with AV7909 administered either two or four weeks apart induced an enhanced immune response compared to BioThrax® (Anthrax Vaccine Adsorbed) (AVA). Anthrax toxin-neutralizing antibody (TNA) levels on Day 70 following initial vaccination that were associated with protection of animals exposed to inhalational anthrax were previously reported for the 0, 4-week AV7909 vaccination regimen. The current study shows that a 0, 2-week AV7909 vaccination regimen protected guinea pigs (GPs) and nonhuman primates (NHPs) against a lethal inhalational anthrax challenge on Days 28 and 70 after the first immunization. An earlier induction of protective TNA levels using a 0, 2-week AV7909 vaccination regimen may provide benefit over the currently approved AVA PEP 0, 2, and 4-week vaccination regimen.  相似文献   

2.
《Vaccine》2019,37(43):6356-6361
The anthrax vaccine candidate AV7909 is being developed as a next-generation vaccine for a post-exposure prophylaxis (PEP) indication against anthrax. AV7909 consists of the anthrax vaccine adsorbed (AVA) (Emergent BioSolutions Inc., Lansing, MI) bulk drug substance adjuvanted with the immunostimulatory oligodeoxynucleotide (ODN) compound, CPG 7909. The addition of CPG 7909 to AVA enhances both the magnitude and the kinetics of antibody responses in animals and human subjects, making AV7909 a suitable next-generation vaccine for use in a PEP setting. Emergent has produced a thermostable (lyophilized) formulation of AV7909 vaccine utilizing drying technology. The purpose of the study described here was to assess the immunogenicity and efficacy of the lyophilized formulation of the AV7909 vaccine candidate as compared with the liquid formulation in the guinea pig general-use prophylaxis (GUP) model. The study also provides initial information on the relationship between the immune response induced by the thermostable formulation of the vaccine, as measured by the toxin neutralization assay (TNA), and animal survival following lethal anthrax aerosol challenge. Results demonstrated that there were no significant differences in the immunogenicity or efficacy of lyophilized AV7909 against lethal anthrax spore aerosol challenge in the guinea pig model as compared to liquid AV7909. For both vaccine formulations, logistic regression modeling showed that the probability of survival increased as the pre-challenge antibody levels increased.  相似文献   

3.
《Vaccine》2020,38(10):2307-2314
A next-generation anthrax vaccine candidate, AV7909, is being developed for post-exposure prophylaxis (PEP) of inhalational anthrax in combination with the recommended course of antimicrobial therapy. Clinical efficacy studies of anthrax countermeasures in humans are not ethical or feasible, therefore, licensure of AV7909 for PEP is being pursued under the US Food and Drug Administration (FDA) Animal Rule, which requires that evidence of effectiveness be demonstrated in an animal model of anthrax, where results of studies in such a model can establish reasonable likelihood of AV7909 to produce clinical benefit in humans. Initial development of a PEP model for inhalational anthrax included evaluation of post-exposure ciprofloxacin pharmacokinetics (PK), tolerability and survival in guinea pigs treated with various ciprofloxacin dosing regimens. Three times per day (TID) intraperitoneal (IP) dosing with 7.5 mg/kg of ciprofloxacin initiated 1 day following inhalational anthrax challenge and continued for 14 days was identified as a well tolerated partially curative ciprofloxacin treatment regimen. The added benefit of AV7909 vaccination was evaluated in guinea pigs given the partially curative ciprofloxacin treatment regimen. Groups of ciprofloxacin-treated guinea pigs were vaccinated.1 and 8 days post-challenge with serial dilutions of AV7909, a 1:16 dilution of AVA, or normal saline. A group of untreated guinea pigs was included as a positive control to confirm lethal B. anthracis exposure. Post-exposure vaccination with the AV7909 anthrax vaccine candidate administered in combination with the partially curative ciprofloxacin treatment significantly increased survival of guinea pigs compared to ciprofloxacin treatment alone. These results suggest that the developed model can be useful in demonstrating added value of the vaccine for PEP.  相似文献   

4.
《Vaccine》2016,34(51):6512-6517
Anthrax vaccine adsorbed (AVA, BioThrax) was recently approved by the Food and Drug Administration (FDA) for a post-exposure prophylaxis (PEP) indication in adults 18–65 years of age. The schedule is three doses administered subcutaneous (SC) at 2-week intervals (0, 2, and 4 weeks), in conjunction with a 60-day course of antimicrobials. The Public Health Emergency Medical Countermeasures Enterprise (PHEMCE) developed an animal model to support assessment of a shortened antimicrobial PEP duration following Bacillus anthracis exposure. A nonhuman primate (NHP) study was completed to evaluate the efficacy of a two dose anthrax vaccine absorbed (AVA) schedule (0, 2 weeks) aerosol challenged with high levels of B. anthracis spores at week 4– the time point at which humans would receive the third vaccination of the approved PEP schedule. Here we use logistic regression models to combine the survival data from the NHP study along with serum anthrax lethal toxin neutralizing activity (TNA) and anti-PA IgG measured by enzyme linked immunosorbent assay (ELISA) data to perform a cross-species analysis to estimate survival probabilities in vaccinated human populations at this time interval (week 4 of the PEP schedule). The bridging analysis demonstrated that high levels of NHP protection also yield high predicted probability of human survival just 2 weeks after the second dose of vaccine with the full or half antigen dose regimen. The absolute difference in probability of human survival between the full and half antigen dose was estimated to be at most approximately 20%, indicating that more investigation of the half-antigen dose for vaccine dose sparing strategies may be warranted.  相似文献   

5.
NuThrax™ (Anthrax Vaccine Adsorbed with CPG 7909 Adjuvant) (AV7909) is in development. Samples obtained in a phase Ib clinical trial were tested to confirm biomarkers of innate immunity and evaluate effects of CPG 7909 (PF-03512676) on adaptive immunity. Subjects received two intramuscular doses of commercial BioThrax® (Anthrax Vaccine Adsorbed, AVA), or two intramuscular doses of one of four formulations of AV7909. IP-10, IL-6, and C-reactive protein (CRP) levels were elevated 24–48 h after administration of AV7909 formulations, returning to baseline by Day 7. AVA (no CPG 7909) resulted in elevated IL-6 and CRP, but not IP-10. Another marker of CpG, transiently decreased absolute lymphocyte counts (ALCs), correlated with transiently increased IP-10. Cellular recall responses to anthrax protective antigen (PA) or PA peptides were assessed by IFN-γ ELISpot assay performed on cryopreserved PBMCs obtained from subjects prior to immunization and 7 days following the second immunization (study day 21). One-half of subjects that received AV7909 with low-dose (0.25 mg/dose) CPG 7909 possessed positive Day 21 T cell responses to PA. In contrast, positive T cell responses occurred at an 11% average rate (1/9) for AVA-treated subjects. Differences in cellular responses due to dose level of CPG 7909 were not associated with differences in humoral anti-PA IgG responses, which were elevated for recipients of AV7909 compared to recipients of AVA. Serum markers at 24 or 48 h (i.e. % ALC decrease, or increase in IL-6, IP-10, or CRP) correlated with the humoral (antibody) responses 1 month later, but did not correlate with cellular ELISpot responses. In summary, biomarkers of early responses to CPG 7909 were confirmed, and adding a CpG adjuvant to a vaccine administered twice resulted in increased T cell effects relative to vaccine alone. Changes in early biomarkers correlated with subsequent adaptive humoral immunity but not cellular immunity.  相似文献   

6.
《Vaccine》2015,33(21):2470-2476
Background/objectivesAnthrax vaccine adsorbed (AVA, BioThrax®) is recommended for post-exposure prophylaxis administration for the US population in response to large-scale Bacillus anthracis spore exposure. However, no information exists on AVA use in children and ethical barriers exist to performing pre-event pediatric AVA studies. A Presidential Ethics Commission proposed a potential pathway for such studies utilizing an age de-escalation process comparing safety and immunogenicity data from 18 to 20 year-olds to older adults and if acceptable proceeding to evaluations in younger adolescents. We conducted exploratory summary re-analyses of existing databases from 18 to 20 year-olds (n = 74) compared to adults aged 21 to 29 years (n = 243) who participated in four previous US government funded AVA studies.MethodsData extracted from studies included elicited local injection-site and systemic adverse events (AEs) following AVA doses given subcutaneously at 0, 2, and 4 weeks. Additionally, proportions of subjects with ≥4-fold antibody rises from baseline to post-second and post-third AVA doses (seroresponse) were obtained.ResultsRates of any elicited local AEs were not significantly different between younger and older age groups for local events (79.2% vs. 83.8%, P = 0.120) or systemic events (45.4% vs. 50.5%, P = 0.188). Robust and similar proportions of seroresponses to vaccination were observed in both age groups.ConclusionsAVA was safe and immunogenic in 18 to 20 year-olds compared to 21 to 29 year-olds. These results provide initial information to anthrax and pediatric specialists if AVA studies in adolescents are required.  相似文献   

7.
Immunization with BioThrax® (Anthrax Vaccine Adsorbed) is a safe and effective means of preventing anthrax. Animal studies have demonstrated that the addition of CpG DNA adjuvants to BioThrax can markedly increase the immunogenicity of the vaccine, increasing both serum anti-protective antigen (PA) antibody and anthrax toxin-neutralizing antibody (TNA) concentrations. The immune response to CpG-adjuvanted BioThrax in animals was not only stronger, but was also more rapid and led to higher levels of protection in spore challenge models. The B-class CpG DNA adjuvant CPG 7909, a 24-base synthetic, single-strand oligodeoxynucleotide, was evaluated for its safety profile and adjuvant properties in a Phase 1 clinical trial. A double-blind study was performed in which 69 healthy subjects, age 18-45 years, were randomized to receive three doses of either: (1) BioThrax alone, (2) 1 mg of CPG 7909 alone or (3) BioThrax plus 1 mg of CPG 7909, all given intramuscularly on study days 0, 14 and 28. Subjects were monitored for IgG to PA by ELISA and for TNA titers through study day 56 and for safety through month 6. CPG 7909 increased the antibody response by 6-8-fold at peak, and accelerated the response by 3 weeks compared to the response seen in subjects vaccinated with BioThrax alone. No serious adverse events related to study agents were reported, and the combination was considered to be reasonably well tolerated. The marked acceleration and enhancement of the immune response seen by combining BioThrax and CPG 7909 offers the potential to shorten the course of immunization and reduce the time to protection, and may be particularly useful in the setting of post-exposure prophylaxis.  相似文献   

8.
《Vaccine》2016,34(51):6518-6528
Anthrax Vaccine Adsorbed (AVA, BioThrax) is approved by the US Food and Drug Administration for post-exposure prophylaxis (PEP) of anthrax in adults. The PEP schedule is 3 subcutaneous (SC) doses (0, 14 and 28 days), in conjunction with a 60 day course of antimicrobials.The objectives of this study were to understand the onset of protection from AVA PEP vaccination and to assess the potential for shortening the duration of antimicrobial treatment (http://www.phe.gov/Preparedness/mcm/phemce/Documents/2014-phemce-sip.pdf). We determined the efficacy against inhalation anthrax in nonhuman primates (NHP) of the first two doses of the PEP schedule by infectious challenge at the time scheduled for receipt of the third PEP dose (Day 28). Forty-eight cynomolgus macaques were randomized to five groups and vaccinated with serial dilutions of AVA on Days 0 and 14. NHP were exposed to Bacillus anthracis Ames spores on Day 28 (target dose 200 LD50 equivalents). Anti-protective antigen (PA) IgG and toxin neutralizing antibody (TNA) responses to vaccination and in post-challenge survivors were determined. Post-challenge blood and selected tissue samples were assessed for B. anthracis at necropsy or end of study (Day 56). Pre-challenge humoral immune responses correlated with survival, which ranged from 24 to 100% survival depending on vaccination group. Surviving, vaccinated animals had elevated anti-PA IgG and TNA levels for the duration of the study, were abacteremic, exhibited no apparent signs of infection, and had no gross or microscopic lesions. However, survivors had residual spores in lung tissues.We conclude that the first two doses of the PEP schedule provide high levels of protection by the scheduled timing of the third dose. These data may also support consideration of a shorter duration PEP antimicrobial regimen.  相似文献   

9.
《Vaccine》2017,35(44):6030-6040
We recently reported the development of a novel, next-generation, live attenuated anthrax spore vaccine based on disruption of the htrA (High Temperature Requirement A) gene in the Bacillus anthracis Sterne veterinary vaccine strain. This vaccine exhibited a highly significant decrease in virulence in murine, guinea pig and rabbit animal models yet preserved the protective value of the parental Sterne strain. Here, we report the evaluation of additional mutations in the lef and cya genes, encoding for the toxin components lethal factor (LF) and edema factor (EF), to further attenuate the SterneΔhtrA strain and improve its compatibility for human use. Accordingly, we constructed seven B. anthracis Sterne-derived strains exhibiting different combinations of mutations in the htrA, cya and lef genes. The various strains were indistinguishable in growth in vitro and in their ability to synthesise the protective antigen (PA, necessary for the elicitation of protection). In the sensitive murine model, we observed a gradual increase (ΔhtrA < Δhtrcya < Δhtrlef < ΔhtrlefΔcya) in attenuation – up to 108-fold relative to the parental Sterne vaccine strain. Most importantly, all various SterneΔhtrA derivative strains did not differ in their ability to elicit protective immunity in guinea pigs. Immunisation of guinea pigs with a single dose (109 spores) or double doses (>107 spores) of the most attenuated triple mutant strain SterneΔhtrAlefMUTΔcya induced a robust immune response, providing complete protection against a subsequent respiratory lethal challenge. Partial protection was observed in animals vaccinated with a double dose of as few as 105 spores. Furthermore, protective immune status was maintained in all vaccinated guinea pigs and rabbits for at least 40 and 30 weeks, respectively.  相似文献   

10.
《Vaccine》2017,35(26):3416-3422
A major difference between two currently licensed anthrax vaccines is presence (United Kingdom Anthrax Vaccine Precipitated, AVP) or absence (United States Anthrax Vaccine Adsorbed, AVA) of quantifiable amounts of the Lethal Toxin (LT) component Lethal Factor (LF). The primary immunogen in both vaccine formulations is Protective Antigen (PA), and LT-neutralizing antibodies directed to PA are an accepted correlate of vaccine efficacy; however, vaccination studies in animal models have demonstrated that LF antibodies can be protective. In this report we compared humoral immune responses in cohorts of AVP (n = 39) and AVA recipients (n = 78) matched 1:2 for number of vaccinations and time post-vaccination, and evaluated whether the LF response contributes to LT neutralization in human recipients of AVP. PA response rates (≥95%) and PA IgG concentrations were similar in both groups; however, AVP recipients exhibited higher LT neutralization ED50 values (AVP: 1464.0 ± 214.7, AVA: 544.9 ± 83.2, p < 0.0001) and had higher rates of LF IgG positivity (95%) compared to matched AVA vaccinees (1%). Multiple regression analysis revealed that LF IgG makes an independent and additive contribution to the LT neutralization response in the AVP group. Affinity purified LF antibodies from two independent AVP recipients neutralized LT and bound to LF Domain 1, confirming contribution of LF antibodies to LT neutralization. This study documents the benefit of including an LF component to PA-based anthrax vaccines.  相似文献   

11.
《Vaccine》2021,39(42):6333-6339
Px563L is a next-generation anthrax vaccine candidate consisting of a protein subunit, mutant recombinant protective antigen SNKE167-ΔFF-315-E308D (mrPA), and liposome-embedded monophosphoryl lipid A (MPLA) adjuvant. Px563L has the potential to deliver an improved safety and immunogenicity profile relative to the currently licensed vaccine, which is produced from filtered B. anthracis culture supernatants.We conducted a Phase 1, double–blind, placebo–controlled, dose–escalation study in 54 healthy subjects to evaluate Px563L at 3 dose levels of mrPA (10, 50, and 80 mcg). For each dose level, 18 subjects were randomized in an 8:8:2 ratio to Px563L (mrPA with adjuvant), RPA563 (mrPA only) or placebo (saline). Each subject received an intramuscular (IM) injection on Day 0 and Day 28. Primary safety and immunogenicity analysis was conducted after all subjects completed the Day 70 visit, a duration deemed clinically relevant for post-exposure prophylaxis. Long-term safety was assessed through Day 393.Vaccinations with Px563L at all dose levels were well-tolerated. There were no serious adverse events or adverse events (AE) leading to early withdrawal. In all treatment groups, most AEs were due to injection site reactions, and all AEs at the 10 and 50 mcg dose levels were mild. For the primary immunogenicity endpoint (protective toxin neutralizing antibody 50% neutralization factor [TNA NF50]), titers started to increase significantly after the second administration of Px563L, from Day 35 through Day 70, with the geometric mean and lower bound of the 95% confidence interval exceeding 0.56, a threshold correlating with significant survival in animal models of anthrax exposure.In conclusion, Px563L, administered as two IM doses 28 days apart, was well-tolerated and elicited a protective antibody response starting at seven days after the second vaccination. These findings support the continued development of Px563L in a two-dose regimen for anthrax post-exposure prophylaxis. ClinicalTrials.gov identifier NCT02655549.  相似文献   

12.
《Vaccine》2016,34(35):4188-4195
Anthrax vaccines containing recombinant PA (rPA) as the only antigen face a stability issue: rPA forms aggregates in solution after exposure to temperatures ⩾40 °C, thus losing its ability to form lethal toxin (LeTx) with Lethal Factor. To study rPA aggregation’s impact on immune response, we subjected rPA to several time and temperature combinations. rPA treated at 50 °C for 30 min formed high mass aggregates when analyzed by gel electrophoresis and failed to form LeTx as measured by a macrophage lysis assay (MLA). Aggregated rPA-formed LeTx was about 30 times less active than LeTx containing native rPA. Mice immunized with heat-treated rPA combined with Al(OH)3 developed antibody titers about 49 times lower than mice immunized with native rPA, as measured by a Toxicity Neutralization Assay (TNA). Enzyme Linked Immunosorbent Assay (ELISA) of the same immune sera showed anti-rPA titers only 2–7 times lower than titers elicited by native rPA. Thus, rPA’s ability to form LeTx correlates with its production of neutralizing antibodies, and aggregation significantly impairs the protein’s antibody response. However, while these findings suggest MLA has some value as an in-process quality test for rPA in new anthrax vaccines, they also confirm the superiority of TNA for use in vaccine potency.  相似文献   

13.
《Vaccine》2016,34(18):2096-2105
AV7909 vaccine being developed for post-exposure prophylaxis of anthrax disease may require fewer vaccinations and reduced amount of antigen to achieve an accelerated immune response over BioThrax® (Anthrax Vaccine Adsorbed).A phase 2, randomized, double-blind, BioThrax vacccine-controlled study was conducted to evaluate the safety and immunogenicity of three intramuscular vaccination schedules and two dose levels of AV7909 in 168 healthy adults. Subjects were randomized at a 4:3:2:4:2 ratio to 5 groups: (1) AV7909 on Days 0/14; (2) AV7909 on Days 0/28; (3) AV7909 on Days 0/14/28; (4) half dose AV7909 on Days 0/14/28; and (5) BioThrax vaccine on Days 0/14/28.Vaccinations in all groups were well tolerated. The incidences of adverse events (AEs) were 79% for AV7909 subjects and 65% for BioThrax subjects; 92% of AV7909 subjects and 87% of BioThrax subjects having AEs reported Grade 1–2 AEs. No serious AEs were assessed as potentially vaccine-related, and no AEs of potential autoimmune etiology were reported. There was no discernible pattern indicative of a safety concern across groups in the incidence or severity of reactogenicity events.Groups 2–4 achieved success for the primary endpoint, demonstrated by a lower 95% confidence limit of the percentage of subjects with protective toxin neutralizing antibody NF50 values (≥0.56) to be ≥40% at Day 63. Group 1 marginally missed the criterion (lower bound 95% confidence limit of 39.5%). Immune responses were above this threshold for Groups 1, 3 and 4 at Day 28 and all groups at Day 42.Further study of an AV7909 two-dose schedule given 2 weeks apart is warranted in light of the favorable tolerability profile and immunogenicity response relative to three doses of BioThrax vaccine, as well as preliminary data from nonclinical studies indicating similar immune responses correlate with higher survival for AV7909 than BioThrax vaccine.  相似文献   

14.
Bacillus anthracis, the causative agent of anthrax, is recognized as one of the most serious bioterrorism threats. The current human vaccines are based on the protective antigen component of the anthrax toxins. Concern about possible vaccine resistant strains and reliance on a single antigen has prompted the search for additional immunogens. Bacterial capsules, as surface-expressed virulence factors, are well-established components of several licensed vaccines. In a previous study we showed that an anthrax vaccine consisting of the B. anthracis poly-γ-d-glutamic acid capsule covalently conjugated to the outer membrane protein complex of Neisseria meningitidis serotype B protected mice against parenteral B. anthracis challenge. Here we tested this vaccine in rabbits and monkeys against an aerosol spore challenge. The vaccine induced anti-capsule antibody responses in both species, measured by ELISA and a macrophage opsono-adherence assay. While rabbits were not protected against a high aerosol challenge dose, significant protection was observed in monkeys receiving the capsule conjugate vaccine. The results confirm that the capsule is a protective immunogen against anthrax, being the first non-toxin antigen shown to be efficacious in monkeys and suggest that addition of capsule may broaden and enhance the protection afforded by protective antigen-based vaccines.  相似文献   

15.
《Vaccine》2020,38(50):7970-7976
BackgroundMultiple Anthrax vaccines are licensed or in development for post-exposure prophylaxis in individuals 18 to 65 years of age. No information exists on anthrax vaccines in populations over the age of 65. It is critical that we assess the capacity of anthrax vaccines to generate a protective immune response in older individuals. In this study, we compared BioThrax® to a formulation containing a CpG adjuvant (AV7909).MethodsWe conducted a Phase 2 clinical study to evaluate safety and immunogenicity of three vaccination schedules of the AV7909 vaccine candidate and one vaccination schedule of BioThrax® vaccine in adults over 65 years of age. A total of 305 subjects were enrolled to assess safety and immunogenicity by seroprotection rates, toxin neutralizing antibody titers, and anti-Protective Antigen ELISA titers.ResultsCompared to BioThrax, AV7909 elicited a more robust immune response in older subjects, especially with three doses of AV7909 at Days 1, 15, and 29, or two doses at Days 1 and 29. These trends were true with both seroprotection rates as defined by the percentage of subjects with 50 percent neutralization factors greater than 0.56, and geometric mean antibody titers. The responses to both AV7909 and BioThax were lower in older subjects compared to those aged 18–50.ConclusionThe immunogenicity data suggest that the CpG adjuvant in the AV7909 vaccine helps to elicit a more robust immune response in subjects over the age of 65. Alternative dosing strategies may be considered in this population given the high seroprotection rates with Day 1 and 29, or Day 1, 15, and 29 regimens.Trial Registration: clinicaltrials.gov Identifier: NCT03518125.  相似文献   

16.
《Vaccine》2016,34(34):4012-4016
The efficacy of currently licensed anthrax vaccines is largely attributable to a single Bacillus anthracis immunogen, protective antigen. To broaden protection against possible strains resistant to protective antigen-based vaccines, we previously developed a vaccine in which the anthrax polyglutamic acid capsule was covalently conjugated to the outer membrane protein complex of Neisseria meningitidis serotype B and demonstrated that two doses of 2.5 μg of this vaccine conferred partial protection of rhesus macaques against inhalational anthrax . Here, we demonstrate complete protection of rhesus macaques against inhalational anthrax with a higher 50 μg dose of the same capsule conjugate vaccine. These results indicate that B. anthracis capsule is a highly effective vaccine component that should be considered for incorporation in future generation anthrax vaccines.  相似文献   

17.
We describe the Bacillus anthracis protective antigen IgG antibody response and the B. anthracis lethal toxin neutralization activity to a delayed dose of anthrax vaccine adsorbed (AVA, BioThrax®) using validated assays. 373 individuals received 1, 2, or 3 priming doses, 18–24 months afterward, they received a delayed dose of AVA. Overall, 23.6% of subjects showed detectable anti-PA IgG before the boost, compared to 99.2% (P < 0.0001) 28 days after the boost. Geometric mean anti-PA IgG concentration (GMC) was 1.66 μg/mL before and 887.82 μg/mL after the boost (P < 0.0001). The proportion of individuals with four-fold increase in GMC following the boost ranged from 93.8% to 100%. Robust anti-PA IgG levels and B. anthracis lethal toxin neutralization activity are induced when an AVA dose is delayed as long as two years. These data support continuing with the vaccination schedule when a dose is delayed as long as two years rather than restarting the series.  相似文献   

18.
Mycoplasma contamination of the licensed anthrax vaccine administered to military personnel has been suggested as a possible cause of Persian Gulf illness. Vaccine samples tested by nonmilitary laboratories were negative for viable mycoplasma and mycoplasma DNA and did not support its survival. Mycoplasma contamination of anthrax vaccine should not be considered a possible cause of illness.Key words: anthrax, vaccine, mycoplasmaAnthrax Vaccine Adsorbed (AVA, BioPort Corporation, Lansing, MI) is a licensed vaccine for anthrax that was administered to approximately 150,000 U.S. military personnel during the Persian Gulf War. It was used more recently as part of a comprehensive vaccination policy for Department of Defense (DOD) service members. The vaccine, which is administered subcutaneously over an 18-month schedule, is derived from sterile, acellular filtrates of microaerophilic cultures of the avirulent, nonencapsulated V770-NP1-R strain of Bacillus anthracis. The cultures are grown in a sterile synthetic liquid medium devoid of enriched supplements such as serum. The filtrates predominantly contain the protective antigen of anthrax. The final vaccine formulation contains protective antigen adsorbed to aluminum hydroxide (<2.4 mg/0.5 mL) as an adjuvant. Formaldehyde (<0.02%) is added as a stabilizer and benzethonium chloride (0.0025%) as a preservative. The final product is checked for potency and safety according to U.S. Food and Drug Administration (FDA) regulations.Approximately 1.9 million doses of AVA were administered in the United States from January 1990 through August 2000 (1), with 1,544 adverse reactions (0.08% of all injections) reported through the Vaccine Adverse Event Reporting System (2). Most of these adverse reactions were limited to the injection site; local hypersensitivity, edema, and pain were the most commonly reported, although 76 (4.9%) of the adverse reactions were classified as serious.  相似文献   

19.
Exposure to anthrax leaves susceptible hosts at prolonged risk of infection since spores can persist in vivo for months before germinating to cause life-threatening disease. Anthrax vaccine adsorbed (AVA, the licensed US vaccine) induces immunity too slowly to protect susceptible individuals post-exposure. Antibiotics prevent the proliferation of vegetative bacilli but do not block latent spores from germinating. Thus, anthrax-exposed individuals must remain on antibiotic therapy for months to eliminate the threat posed by delayed spore germination. Unfortunately, long-term antibiotic treatment is poorly tolerated and frequently discontinued. This work explores whether administering a single dose of a long-acting antibiotic (Dalbavancin) combined with a rapidly immunogenic vaccine/adjuvant combination can provide seamless protection from anthrax with minimal patient compliance. Results show that significant protection is achieved by delivering a single dose of this therapeutic combination any time before through 3 days after anthrax exposure.  相似文献   

20.
《Vaccine》2015,33(48):6719-6726
BackgroundGram-negative bacteria (GNB) are a leading cause of nosocomial infection and sepsis. Increasing multi-antibiotic resistance has left clinicians with fewer therapeutic options. Antibodies to GNB lipopolysaccharide (LPS, or endotoxin) have reduced morbidity and mortality as a result of infection and are not subject to the resistance mechanisms deployed by bacteria against antibiotics. In this phase 1 study, we administered a vaccine that elicits antibodies against a highly conserved portion of LPS with and without a CpG oligodeoxynucleotide (ODN) TLR9 agonist as adjuvant.MethodsA vaccine composed of the detoxified LPS (dLPS) from E. coli O111:B4 (J5 mutant) non-covalently complexed to group B meningococcal outer membrane protein (OMP). Twenty healthy adult subjects received three doses at 0, 29 and 59 days of antigen (10 μg dLPS) with or without CPG 7909 (250 or 500 μg). Subjects were evaluated for local and systemic adverse effects and laboratory findings. Anti-J5 LPS IgG and IgM antibody levels were measured by electrochemiluminesence. Due to premature study termination, not all subjects received all three doses.ResultsAll vaccine formulations were well-tolerated with no local or systemic events of greater than moderate severity. The vaccine alone group achieved a ≥4-fold “responder” response in IgG and IgM antibody in only one of 6 subjects. In contrast, the vaccine plus CPG 7909 groups appeared to have earlier and more sustained (to 180 days) responses, greater mean-fold increases, and a higher proportion of “responders” achieving ≥4-fold increases over baseline.ConclusionsAlthough the study was halted before all enrolled subjects received all three doses, the J5dLPS/OMP vaccine, with or without CpG adjuvant, was safe and well-tolerated. The inclusion of CpG increased the number of subjects with a ≥4-fold antibody response, evident even after the second of three planned doses. A vaccine comprising J5dLPS/OMP antigen with CpG adjuvant merits further investigation.Clinical trials registrationClinicalTrials.gov Identifier: NCT01164514.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号