首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Vaccine》2018,36(27):3894-3900
Chikungunya virus (CHIKV) and Zika virus (ZIKV) have recently expanded their range in the world and caused serious and widespread outbreaks of near pandemic proportions. There are no licensed vaccines that protect against these co-circulating viruses that are transmitted by invasive mosquito vectors. We report here on the development of a single-dose, bivalent experimental vaccine for CHIKV and ZIKV. This vaccine is based on a chimeric vesicular stomatitis virus (VSV) that expresses the CHIKV envelope polyprotein (E3-E2-6K-E1) in place of the VSV glycoprotein (G) and also expresses the membrane-envelope (ME) glycoproteins of ZIKV. This vaccine induced neutralizing antibody responses to both CHIKV and ZIKV in wild-type mice and in interferon receptor-deficient A129 mice, animal models for CHIKV and ZIKV infection. A single vaccination of A129 mice with the vector protected these mice against infection with both CHIKV and ZIKV. Our single-dose vaccine could provide durable, low-cost protection against both CHIKV and ZIKV for people traveling to or living in areas where both viruses are circulating, which include most tropical regions in the world.  相似文献   

3.
4.
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes explosive outbreaks of febrile illness associated with rash, and painful arthralgia. The CHIK vaccine strain 181/clone25 (181/25) developed by the United States Army Medical Research Institute of Infectious Diseases (USAMRIID) was shown to be well-tolerated and highly immunogenic in phase I and II clinical trials although it induced transient arthralgia in some healthy adult volunteers. In an attempt to better understand the host factors that are involved in the attenuating phenotype of CHIK 181/25 vaccine virus we conducted studies in interferon (IFN)-compromised mice and also evaluated its immunogenic potential and protective capacity. Infection of AG129 mice (defective in IFN-α/β and IFN-γ receptor signaling) with CHIK 181/25 resulted in rapid mortality within 3-4 days. In contrast, all infected A129 mice (defective in IFN-α/β receptor signaling) survived with temporary morbidity characterized by ruffled appearance and body weight loss. A129 heterozygote mice that retain partial IFN-α/β receptor signaling activity remained healthy. Infection of A129 mice with CHIK 181/25 induced significant levels of IFN-γ and IL-12 while the inflammatory cytokines, TNFα and IL-6 remained low. A single administration of the CHIK 181/25 vaccine provided both short-term and long-term protection (38 days and 247 days post-prime, respectively) against challenge with wt CHIKV-La Reunion (CHIKV-LR). This protection was at least partially mediated by antibodies since passively transferred immune serum protected both A129 and AG129 mice from wt CHIKV-LR and 181/25 virus challenge. Overall, these data highlight the importance of IFNs in controlling CHIK 181/25 vaccine and demonstrate the ability of this vaccine to elicit neutralizing antibody responses that confer short-and long-term protection against wt CHIKV-LR challenge.  相似文献   

5.
《Vaccine》2016,34(26):2976-2981
Chikungunya virus (CHIKV) is an arthritogenic alphavirus that during the last decade has significantly expanded its geographical range and caused large outbreaks of human disease around the world. Although mortality rates associated with CHIKV outbreaks are low, acute and chronic illnesses caused by CHIKV represent a significant burden of disease largely affecting low and middle income countries. This report summarizes the current status of vaccine development for CHIKV.  相似文献   

6.
《Vaccine》2022,40(22):3009-3017
Chikungunya virus (CHIKV), an arbovirus from the Alphavirus genus, causes sporadic outbreaks and epidemics and can cause acute febrile illness accompanied by severe long-term arthralgias. Over 20 CHIKV vaccine candidates have been developed over the last two decades, utilizing a wide range of vaccine platforms, including virus-like particles (VLP). A CHIKV VLP vaccine candidate is among three candidates in late-stage clinical testing and has potentially promising data in nonclinical and clinical studies exploring safety and vaccine immunogenicity. Despite the consistency of the CHIKV VLP structure, vaccine candidates vary significantly in protein sequence identity, structural protein expression cassettes and their mode of production. Here, we explore the impact of CHIKV VLP coding sequence variation and the chosen expression platform, which affect VLP expression yields, antigenicity and overall vaccine immunogenicity. Additionally, we explore the potential of the CHIKV VLP platform to be modified to elicit protection against other pathogens.  相似文献   

7.
Chikungunya virus (CHIKV), a mosquito-transmitted alphavirus, recently reemerged in the Indian Ocean, India and Southeast Asia, causing millions of cases of severe polyarthralgia. No specific treatment to prevent disease or vaccine to limit epidemics is currently available. Here we describe a recombinant live-attenuated measles vaccine (MV) expressing CHIKV virus-like particles comprising capsid and envelope structural proteins from the recent CHIKV strain La Reunion. Immunization of mice susceptible to measles virus induced high titers of CHIKV antibodies that neutralized several primary isolates. Specific cellular immune responses were also elicited. A single immunization with this vaccine candidate protected all mice from a lethal CHIKV challenge, and passive transfer of immune sera conferred protection to naïve mice. Measles vaccine is one of the safest and most effective human vaccines. A recombinant MV-CHIKV virus could make a safe and effective vaccine against chikungunya that deserves to be further tested in human trials.  相似文献   

8.
Chikungunya virus (CHIKV) is a mosquitoborne alphavirus indigenous to tropical Africa and Asia, where it causes endemic and epidemic chikungunya (CHIK) fever, an acute illness characterized by fever, arthralgias, and sometimes arthritis, commonly accompanied by conjunctivitis and rash. Although symptoms of CHIKV infection usually last days to weeks, joint symptoms and signs usually last for months and occasionally for 1 year or longer; deaths from CHIKV infection are rare. No specific antiviral treatment exists for CHIKV infection; treatment consists of supportive care, including analgesics and anti-inflammatory medication for joint symptoms. During 2005-2006, an epidemic of CHIK fever occurred on islands in the Indian Ocean and in India, resulting in millions of clinically suspected cases, mainly in southern India. In the United States, CHIK fever has been diagnosed in travelers from abroad. CDC previously reported 12 imported cases of CHIK fever diagnosed in the United States from 2005 through late September 2006, including 11 with illness onset in 2006. This report of 26 additional imported cases with onset in 2006 underscores the importance of recognizing such cases among travelers. Health-care providers are encouraged to suspect CHIKV infection in travelers with fever and arthralgias who have recently returned from areas with CHIKV transmission. Acute- and convalescent-phase serum specimens can be submitted to CDC for testing through state health departments. Public health officials and health-care providers are encouraged to be vigilant for the possibility of indigenous CHIKV transmission in areas of the United States where CHIKV mosquito vectors are prevalent.  相似文献   

9.
《Vaccine》2017,35(37):5027-5036
Many healthcare providers are not familiar with the Food and Drug Administration (FDA) vaccine licensure process, the Advisory Committee on Immunization Practices (ACIP) vaccine recommendation process, and how FDA vaccine licensure and ACIP recommendations are related. Vaccines for use in the United States military and civilian populations are licensed by the FDA by several potential pathways but use of licensed vaccines in the civilian population should be based on recommendations made by the ACIP. In performing these distinct activities, FDA and ACIP function under different mandates. In this article, we discuss whether the FDA licensure pathways used to approve a vaccine impacts ACIP recommendation categories for vaccines licensed from 2006 to 2016.  相似文献   

10.
《Vaccine》2022,40(35):5263-5274
Inactivated viral vaccines have long been used in humans for diseases of global health threat (e.g., poliomyelitis and pandemic and seasonal influenza) and the technology of inactivation has more recently been used for emerging diseases such as West Nile, Chikungunya, Ross River, SARS and especially for COVID-19.The Brighton Collaboration Benefit-Risk Assessment of VAccines by TechnolOgy (BRAVATO) Working Group has prepared standardized templates to describe the key considerations for the benefit and risk of several vaccine platform technologies, including inactivated viral vaccines. This paper uses the BRAVATO inactivated virus vaccine template to review the features of an inactivated whole chikungunya virus (CHIKV) vaccine that has been evaluated in several preclinical studies and clinical trials.The inactivated whole CHIKV vaccine was cultured on Vero cells and inactivated by ß-propiolactone. This provides an effective, flexible system for high-yield manufacturing. The inactivated whole CHIKV vaccine has favorable thermostability profiles, compatible with vaccine supply chains.Safety data are compiled in the current inactivated whole CHIKV vaccine safety database with unblinded data from the ongoing studies: 850 participants from phase II study (parts A and B) outside of India, and 600 participants from ongoing phase II study in India, and completed phase I clinical studies for 60 subjects. Overall, the inactivated whole CHIKV vaccine has been well tolerated, with no significant safety issues identified. Evaluation of the inactivated whole CHIKV vaccine is continuing, with 1410 participants vaccinated as of 20 April 2022. Extensive evaluation of immunogenicity in humans shows strong, durable humoral immune responses.  相似文献   

11.
我国基孔肯雅热的流行状况   总被引:2,自引:0,他引:2  
2010年10月,广东省东莞市暴发了我国首起基孔肯雅热社区聚集性疫情,打破了其长期以来以散在输入性病例为特征的流行现状。基孔肯雅热是一种由基孔肯雅病毒引起的急性传染病,伊蚊是其主要传播媒介。而我国大多数地区拥有其主要传播媒介埃及伊蚊和白纹伊蚊,一旦病原体侵入,可能暴发基孔肯雅热疫情。如何控制该疫情,防止疫情的进一步扩散,是摆在我们面前的当务之急。现就基孔肯雅病毒的病原学特征以及基孔肯雅热在我国历年的流行状况做一概述,以便更好地认识基孔肯雅热,为有效地监测和防治提供科学依据。  相似文献   

12.
Chikungunya virus (CHIKV), a mosquito-borne alphavirus, recently re-emerged in Africa and spread to islands in the Indian Ocean, the Indian subcontinent, and to South East Asia. Viremic travelers have also imported CHIKV to the Western hemisphere highlighting the importance of CHIKV in public health. In addition to the great burden of arthralgic disease, which can persist for months or years, epidemiologic studies have estimated case-fatality rates of ∼0.1%, principally from neurologic disease in older patients. There are no licensed vaccines or effective therapies to prevent or treat human CHIKV infections. We have developed a live CHIKV vaccine (CHIKV/IRES) that is highly attenuated yet immunogenic in mouse models, and is incapable of replicating in mosquito cells. In this study we sought to decipher the role of adaptive immunity elicited by CHIKV/IRES in protection against wild-type CHIKV infection. A single dose of vaccine effectively activated T cells with an expansion peak on day 10 post immunization and elicited memory CD4+ and CD8+ T cells that produced IFN-γ, TNF-α and IL-2 upon restimulation with CHIKV/IRES. Adoptive transfer of CHIKV/IRES-immune CD4+ or CD8+ T cells did not confer protection against wtCHIKV-LR challenge. By contrast, passive immunization with anti-CHIKV/IRES immune serum provided protection, and a correlate of a minimum protective neutralizing antibody titer was established. Overall, our findings demonstrate the immunogenic potential of the CHIKV/IRES vaccine and highlight the important role that neutralizing antibodies play in protection against an acute CHIKV infection.  相似文献   

13.
Emerging mosquito-borne alphavirus infections caused by chikungunya virus (CHIKV) or o'nyong-nyong virus (ONNV) are responsible for sporadic and sometimes explosive urban outbreaks. Currently, there is no licensed vaccine against either virus. We have developed a highly attenuated recombinant CHIKV candidate vaccine (CHIKV/IRES) that in preclinical studies was demonstrated to be safe, immunogenic and efficacious. In this study we investigated the potential of this vaccine to induce cross-protective immunity against the antigenically related ONNV. Our studies demonstrated that a single dose of CHIKV/IRES elicited a strong cross-neutralizing antibody response and conferred protection against ONNV challenge in the A129 mouse model. Moreover, CHIKV/IRES immune A129 dams transferred antibodies to their offspring that were protective, and passively transferred anti-CHIKV/IRES immune serum protected AG129 mice, independently of a functional IFN response. These findings highlight the potential of the CHIKV/IRES vaccine to protect humans against not only CHIKV but also against ONNV-induced disease.  相似文献   

14.
The recent resurgence of Chikungunya virus (CHIKV) in India and Indian Ocean Islands with unusual clinical severity is a matter of great public health concern. Despite the fact that CHIKV resurgence is associated with epidemic of unprecedented magnitude, no approved licensed vaccine is currently available. In the present study, a Vero cell adapted purified formalin inactivated prototype vaccine candidate was prepared using a current Indian strain implicated with the explosive epidemic during 2006. The bulk preparation of the vaccine candidate was undertaken in microcarrier based spinner culture using cytodex-1 in virus production serum free medium. The inactivation of the virus was accomplished through standard formalin inactivation protocol. The mice were immunized subcutaneously with alhydrogel gel formulation of inactivated virus preparation. The assessment of both humoral and cell-mediated immune response was accomplished through ELISA, plaque reduction neutralization test (PRNT), microcytotoxicity assay and cytokine production assay. The results revealed that formalin inactivated vaccine candidate induced both high titered ELISA (1:51,200) and plaque reduction neutralizing antibodies (1:6400) with peak antibody titer being observed during 6–8 weeks of post-vaccination. In the absence of suitable murine challenge model, the protective efficacy was established by both in vitro and in vivo neutralization tests. Further assessment of cellular immunity through in vitro stimulation of spleenocytes from immunized mice revealed augmentation of high levels of both pro- and anti-inflammatory cytokines, indicating a mixed balance of Th1 and Th2 response. These findings suggest that the formalin inactivated Chikungunya vaccine candidate reported in this study has very good immunogenic potential to neutralize the virus infectivity by augmenting both humoral and cell-mediated immune response.  相似文献   

15.
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus belonging to the Togaviridae family, causing a febrile illness associated with severe arthralgia and rash.In this review, we summarized a series of articles published from 2013 to 2016 concerning CHIKV epidemiology, phylogeny, vaccine and therapies, to give an update of our most recent article written in 2014 (Lo Presti et al.,2014).CHIKV infection was first reported in 1952 from Makonde plateaus and since this time caused many outbreaks worldwide, involving the Indian Ocean region, African countries, American continent and Italy. CHIKV infection is still underestimated and it is normally associated with clinical symptoms overlapping with dengue virus, recurring epidemics and mutations within the viral genome. These characteristics promote the geographical spread and the inability to control vector-mediated transmission of the virus. For these reasons, the majority of studies were aimed to describe outbreaks and to enhance knowledge on CHIKV biology, pathogenesis, infection treatment, and prevention. In this review, 16 studies on CHIKV phylogenetic and phylodinamics were considered, during the years 2013–2016. Phylogenetic and phylodinamic analysis are useful tools to investigate how the genealogy of a pathogen population is influenced by pathogen's demographic history, host immunological milieu and environmental/ecological factors.Phylogenetic tools were revealed important to reconstruct the geographic spread of CHIKV during the epidemics wave and to have information on the circulating strains of the virus, that are important for the prediction and control of the epidemics, as well as for vaccines and antiviral drugs development.In conclusion, this updating review can give a critical appraisal of the epidemiology, therapeutic and phylogenesis of CHIKV, reinforcing the need to monitor the geographic spread of virus and vectors.  相似文献   

16.
Wang E  Volkova E  Adams AP  Forrester N  Xiao SY  Frolov I  Weaver SC 《Vaccine》2008,26(39):5030-5039
Chikungunya virus (CHIKV) is an emerging alphavirus that has caused major epidemics in India and islands off the east coast of Africa since 2005. Importations into Europe and the Americas, including one that led to epidemic transmission in Italy during 2007, underscore the risk of endemic establishment elsewhere. Because there is no licensed human vaccine, and an attenuated Investigational New Drug product developed by the U.S. Army causes mild arthritis in some vaccinees, we developed chimeric alphavirus vaccine candidates using either Venezuelan equine encephalitis attenuated vaccine strain TC-83, a naturally attenuated strain of eastern equine encephalitis virus (EEEV), or Sindbis virus as a backbone and the structural protein genes of CHIKV. All vaccine candidates replicated efficiently in cell cultures, and were highly attenuated in mice. All of the chimeras also produced robust neutralizing antibody responses, although the TC-83 and EEEV backbones appeared to offer greater immunogenicity. Vaccinated mice were fully protected against disease and viremia after CHIKV challenge.  相似文献   

17.
Chikungunya (CHIK) virus reemerged during 2005–07 as an important pathogen causing massive disease outbreaks affecting India and several countries of the Indian Ocean. Knowledge of the evolutionary rates and divergence times of the CHIK virus may help to better understand the disease epidemiology. Considering the limited availability of such information, we estimated the substitution rates and the ancestral times for all the CHIK genotypes and also the time to the most recent common ancestor (tMRCA) of the 2005–07 isolates. Using whole genomes and partial E1 gene datasets, we applied the Bayesian Markov Chain Monte Carlo (MCMC) framework that explicitly accounts for lineage-specific evolutionary rates through the use of ‘relaxed’ molecular clock models. Under a constant population relaxed clock model, the evolutionary timescale of CHIK viruses in this study was estimated to be in the last 300 years. The progenitor of the 2005–07 viruses was found to have existed around 9 years ago, and to have originated from Central Africa. The presence of a strain in India in 2000 that bears 99% identity with a Ugandan strain of 1982, which correlates with the tMRCA of the Indian and Indian Ocean isolates, confirms our earlier report that the progenitor of the 2005–07 isolates originates from Uganda's neighbourhood. The ‘A226V’ mutation that existed in the Indian Ocean isolates since late 2005 was found to occur only in the 2007 isolate from India. The study confirms the epidemiological data, specifically with regard to the re-emergence of CHIKV and throws light on the evolutionary dynamics of CHIK viruses.  相似文献   

18.
《Vaccine》2017,35(47):6387-6394
Chikungunya virus (CHIKV) is an arthropod-borne virus that is transmitted to humans primarily via the bite of an infected mosquito. Infection of humans by CHIKV can cause chikungunya fever which is an acute febrile illness associated with severe, often debilitating polyarthralgias. Since a re-emergence of CHIKV in 2004, the virus has spread into novel locations in nearly 40 countries including non-endemic regions and has led to millions of cases of disease throughout countries. Handling of CHIKV is restricted to the high-containment Biosafety Level 3 (BSL-3) facilities, which greatly impede the research progress of this virus. In this study, an envelope-pseudotyped virus expressing the firefly luciferase reporter protein (pHIV–CHIKV–Fluc) was generated. An in vitro sensitive neutralizing assay and an in vivo bioluminescent-imaging-based mouse infection model had been developed based on the CHIKV pseudovirus. Utilizing the platform, protection effect of DNA vaccine was evaluated. Therefore, this study provides a safe, sensitive and visualizing model for evaluating vaccines and antiviral therapies against CHIKV in low containment BSL-2 laboratories.  相似文献   

19.
《Vaccine》2020,38(11):2542-2550
Chikungunya virus (CHIKV) is a mosquito-borne virus associated with arthritis and musculoskeletal pains. More than 2.9 million people worldwide have been infected with the virus within the last 1.5 decades; currently, there are no approved vaccines to protect against CHIKV infection. To assess the potential of using CHIKV peptides as vaccine antigens, we multivalently displayed CHIKV peptides representing B-cell epitopes (amino acids 2800–2818, 3025–3058, 3073–3081, 3121–3146, and 3177–3210), from E2 glycoprotein (Singapore strain), on the surface of a highly immunogenic bacteriophage Qβ virus-like particle (VLP). We assessed the immunogenicity of CHIKV E2 amino acid 3025–3058 (including the other epitopes) displayed on Qβ VLPs in comparison to the same peptide not displayed on VLPs. Mice immunized with the E2 peptides displayed on Qβ VLPs elicited high-titer antibodies compared with the group immunized just with the peptide. However, sera from immunized mice did not neutralize CHIKV AF15561 (isolated from Thailand). The data suggest that Qβ VLPs is an excellent approach to elicit high-titer CHIKV E2-protein antibodies at a lower dose of antigen and future studies should assess whether Qβ-CHIKV E2 aa 2800–2818 VLPs and Qβ-CHIKV E2 aa 3025–3058 VLPs can neutralize a Singapore Strain of CHIKV.  相似文献   

20.
Morris SR 《Vaccine》2007,25(16):3115-3117
Although few diseases have had a greater impact on human history, currently there is no vaccine available for protection against plague that is licensed by the Food and Drug Administration (FDA). DynPort Vaccine Company LLC, a CSC company (DVC), is managing the advanced development of a recombinant plague vaccine (rF1V) for the United States Department of Defense that will provide protection against plague aerosols, the most likely form a biological weapon would take. The vaccine was originally developed at the United States Army Medical Research Institute of Infectious Diseases (USAMRIID). To meet the requirements for licensure in the shortest possible time, DVC developed a strategy for the integration of data from USAMRIID with data from clinical and nonclinical studies conducted by DVC. This strategy is based on the parallel development and validation of assays for the analysis of animal and human immune responses to the vaccine that facilitated the transfer of the candidate from the developing lab at USAMRIID. These assays also form the foundation of our approach to the licensure of the rF1V vaccine using the FDA Animal Rule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号