首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long intergenic noncoding RNAs (lincRNAs) play important roles in regulating the biological functions and underlying molecular mechanisms of colorectal cancer (CRC). Here, we investigated the association of linc-POU3F3 and prognosis in CRC. We demonstrated that linc-POU3F3 was overexpressed in CRC tissues and positively correlated with tumor grade and N stage. Inhibition of linc-POU3F3 resulted in inhibition of cell proliferation and G1 cell cycle arrest, which was mediated by cyclin D1, CDK4, p18, Rb, and phosphorylated Rb. Inhibition of linc-POU3F3 induced apoptosis, and suppressed migration and invasion in LOVO and SW480 cell lines. This inhibition also increased the expressions of epithelial markers and decreased the expressions of mesenchymal markers, thus inhibiting the cancer epithelial-mesenchymal transition. The decreased migration and invasion following linc-POU3F3 knockdown were mediated by an increased BMP signal. Furthermore, autophagy was enhanced by linc-POU3F3 knockdown, suggesting the involvement of autophagy in the induced apoptosis. Collectively, linc-POU3F3 might be crucial in pro-proliferation, anti-apoptosis, and metastasis in LOVO and SW480 cells by regulating the cell cycle, intrinsic apoptosis, BMP signaling and autophagy. Thus, linc-POU3F3 is a potential therapeutic target and novel molecular biomarker for CRC.  相似文献   

2.
We sought to evaluate the biological function of the receptor tyrosine kinase EphB4 in bladder cancer. All of the nine bladder cancer cell lines examined express EphB4 and the receptor could be phosphorylated following stimulation with its cognate ligand, EphrinB2. Out of the 15 fresh bladder cancer specimens examined, 14 expressed EphB4 with a mean sevenfold higher level of expression compared to adjacent normal urothelium. EphB4 expression was regulated by several mechanisms: EPHB4 gene locus was amplified in 27% tumor specimens and 33% cell lines studied; inhibition of EGFR signaling downregulated EphB4 levels; and forced expression of wild-type p53 reduced EphB4 expression. EphB4 knockdown using specific siRNA and antisense oligodeoxynucleotides molecules led to a profound inhibition in cell viability associated with apoptosis via activation of caspase-8 pathway and downregulation of antiapoptotic factor, bcl-xl. Furthermore, EphB4 knockdown significantly inhibited tumor cell migration and invasion. EphB4 knockdown in an in vivo murine tumor xenograft model led to a nearly 80% reduction in tumor volume associated with reduced tumor proliferation, increased apoptosis and reduced tumor microvasculature. EphB4 is thus a potential candidate as a predictor of disease outcome in bladder cancer and as target for novel therapy.  相似文献   

3.
12-O-tetradecanoylphorbolacetate (TPA) influences proliferation, differentiation, and apoptosis in a variety of cells including prostate cancer cells. Here, we show that androgen treatment potentiates TPA-induced apoptosis in androgen-sensitive prostate cancer LNCaP cells but not in androgen-independent prostate cancer cell lines DU145 and PC-3. The use of the antiandrogen bicalutamide (Casodex) rescued LNCaP cells from 5-alpha-dihydrotestosterone (DHT)/TPA-induced apoptosis, suggesting that DHT/TPA-induced apoptosis is mediated by androgen/androgen receptor (AR). In addition, a caspase-3 inhibitor (Ac-DEVD-CHO) reduced the level of apoptosis, suggesting that DHT/TPA-mediated apoptosis occurs through a caspase-3-dependent pathway. A functional reporter assay using nuclear factor (NF) kappaB-luciferase and an electromobility gel shift assay showed that DHT suppressed NFkappaB activity. In addition, apoptosis mediated by combined DHT/TPA treatment was abrogated by overexpression of the NFkappaB subunit p65 in LNCaP-p65 cells, suggesting that NFkappaB may play an important role in regulating the effects of androgen/AR and TPA on apoptosis. Furthermore, use of the c-Jun N-terminal kinase (JNK) inhibitor SB202190 showed that the combination of DHT/TPA increased JNK activation in LNCaP cells but not in LNCaP-p65 cells, demonstrating that NFkappaB may be able to suppress JNK activity. These results indicate that androgen/AR facilitates TPA-induced apoptosis by interruption of the NFkappaB signaling pathway, leading to activation of JNK in LNCaP cells. These data describe a signaling pathway that could potentially be useful in proposed therapeutic treatment strategies exploiting combinations of different agents that control apoptosis in prostate tumors.  相似文献   

4.
Simvastatin (SVA) was shown to up-regulate expression of death receptor-5 (DR5), CCAAT/enhancer binding protein homologous protein (CHOP) and phosphorylated c-Jun N-terminal kinase (pJNK) in human breast cancer cell lines. siRNA knockdown of DR5, CHOP or JNK significantly blocked SVA-induced apoptosis, demonstrating the importance of JNK/CHOP/DR5 signaling pathway in SVA-induced apoptosis. Exogenous addition of either mevalonate or geranylgeranyl pyrophosphate (GGPP) inhibited SVA activation of JNK/CHOP/DR5 pro-apoptotic pathway, indicating that activation of JNK/CHOP/DR5 pro-apoptotic pathway is dependent on SVA inhibition of 3-hydroxy-3-methylglutaryl Coenzyme A (HMG-CoA) reductase and its intermediate GGPP. Data provide novel insight into better understanding the anticancer mechanisms of SVA.  相似文献   

5.
6.
BPTF, a subunit of NURF, is well known to be involved in the development of eukaryotic cell, but little is known about its roles in cancers, especially in non-small-cell lung cancer (NSCLC). Here we showed that BPTF was specifically overexpressed in NSCLC cell lines and lung adenocarcinoma tissues. Knockdown of BPTF by siRNA significantly inhibited cell proliferation, induced cell apoptosis and arrested cell cycle progress from G1 to S phase. We also found that BPTF knockdown downregulated the expression of the phosphorylated Erk1/2, PI3K and Akt proteins and induced the cleavage of caspase-8, caspase-7 and PARP proteins, thereby inhibiting the MAPK and PI3K/AKT signaling and activating apoptotic pathway. BPTF knockdown by siRNA also upregulated the cell cycle inhibitors such as p21 and p18 but inhibited the expression of cyclin D, phospho-Rb and phospho-cdc2 in lung cancer cells. Moreover, BPTF knockdown by its specific shRNA inhibited lung cancer growth in vivo in the xenografts of A549 cells accompanied by the suppression of VEGF, p-Erk and p-Akt expression. Immunohistochemical assay for tumor tissue microarrays of lung tumor tissues showed that BPTF overexpression predicted a poor prognosis in the patients with lung adenocarcinomas. Therefore, our data indicate that BPTF plays an essential role in cell growth and survival by targeting multiply signaling pathways in human lung cancers.  相似文献   

7.
Gastric cancer is the fourth most common malignancy and the third leading cause of cancer-related deaths worldwide. This study aimed to investigate the expression patterns, biological roles, and underlying mechanisms of microRNA-147 (miR-147) in gastric cancer. The present study demonstrated that miR-147 was significantly upregulated in gastric cancer tissues and cell lines. Downregulation of miR-147 decreased cell proliferation and enhanced the chemosensitivity of gastric cancer cells to 5-fluorouracil (5-FU) through the cell apoptosis pathway. In addition, phosphatase and tensin homolog (PTEN) was mechanically identified as the direct target of miR-147 in gastric cancer. PTEN knockdown reversed the effects of miR-147 downregulation on the proliferation, chemosensitivity, and 5-FU-induced apoptosis of gastric cancer cells. Moreover, miR-147 regulated the PI3K/AKT signaling pathway in gastric cancer by targeting PTEN. In conclusion, miR-147 suppressed the proliferation and enhanced the chemosensitivity of gastric cancer cells to 5-FU by promoting cell apoptosis through directly targeting PTEN and regulating the PI3K/AKT signaling pathway. This study provides important insight into the molecular mechanism that underlies the chemoresistance of gastric cancer cells. The results of this study could aid the development of a novel therapeutic strategy for gastric cancer.  相似文献   

8.
Cooperation between JNK1 and JNK2 in activation of p53 apoptotic pathway   总被引:1,自引:0,他引:1  
Oleinik NV  Krupenko NI  Krupenko SA 《Oncogene》2007,26(51):7222-7230
FDH (10-formyltetrahydrofolate dehydrogenase) is strongly downregulated in tumors while its elevation suppresses proliferation of cancer cells and induces p53-dependent apoptosis. We have previously shown that FDH induces phosphorylation of p53 at Ser6, which is a required step in the activation of apoptosis. In the present study, we report that FDH-induced p53 phosphorylation is carried out by JNK1 and JNK2 (c-Jun N-terminal kinases) working in concert. We have demonstrated that FDH induces phosphorylation of JNK1 and JNK2, while treatment of FDH-expressing cells with JNK inhibitor SP600125, as well as knockdown of JNK1 or JNK2 by siRNA, prevents phosphorylation of p53 at Ser6 and protects cells from apoptosis. Interestingly, the knockdown of JNK1 abolished phosphorylation of JNK2 in response to FDH, while knockdown of JNK2 did not prevent JNK1 phosphorylation. Pull-down assay with the p53-specific antibody has shown that JNK2, but not JNK1, is physically associated with p53. Our studies revealed a novel mechanism in which phosphorylation of JNK2 is mediated by JNK1 before phosphorylation of p53, and then p53 is directly phosphorylated by JNK2 at Ser6.  相似文献   

9.
Mucin 13 (MUC13) is a glycoprotein that is expressed on the cell surface and participates in the tumorigenesis of multiple malignancies, including pancreatic cancer, colorectal cancer and renal cancer. However, to the best of our knowledge, the expression levels and function of MUC13 in lung cancer progression have not yet been demonstrated. Therefore, the present study examined the expression pattern and regulatory role of MUC13 in lung cancer tumorigenesis. The results demonstrated that MUC13 was highly expressed in lung cancer tissues and cell lines compared with that in normal tissues and cell lines. Functionally, knockdown of MUC13 inhibited cell proliferation and enhanced the apoptosis of A549 and NCI-H1650 lung cancer cells. Furthermore, silencing of MUC13 suppressed the migration and invasion of lung cancer cells. Additionally, a xenograft tumor model demonstrated that knockdown of MUC13 delayed the development of the lung cancer xenograft and suppressed the expression of proliferation marker Ki-67 in tumor tissues. Mechanistically, MUC13 activated the ERK signaling pathway by enhancing the phosphorylation of ERK, JNK and p38 in lung cancer tissues compared with that in normal tissues. Knockdown of MUC13 inhibited the phosphorylation of ERK/JNK/p38 in A549 and NCI-H1650 cells. Overall, these findings suggested that MUC13 could act as an oncogenic glycoprotein to accelerate the progression of lung cancer via abnormal activation of the ERK/JNK/p38 signaling pathway and might serve as a therapeutic target for lung cancer treatment.  相似文献   

10.
Wang H  Liu H  Chen K  Xiao J  He K  Zhang J  Xiang G 《Oncology reports》2012,28(1):311-318
SIRT1 is the human orthologue of SIR2, a conserved NAD-dependent protein deacetylase that regulates longevity in yeast and in Caenorhabditis elegans. Overexpression of SIRT1 in cancer tissue, compared with normal tissue, has been demonstrated, suggesting that SIRT1 may act as a tumor promoter. The function of SIRT1 in liver cancer has not been elucidated. In the present study, SIRT1 re-expression or knockdown was induced in hepatoma cell lines and liver normal cell lines. Our study demonstrated that overexpression of SIRT1 promoted mitotic entry of liver cells, cell growth and proliferation and inhibited apoptosis. The apoptosis involved caspase-3 and caspase-7, and was related to the PTEN/PI3K/AKT signaling pathway. The results demonstrate that SIRT1 promotes tumorigenesis of hepatocellular carcinoma (HCC) through the PTEN/PI3K/AKT signaling pathway. SIRT1 may serve as a novel target for selective killing of cancer versus normal liver cells.  相似文献   

11.
Park YS  Huh JW  Lee JH  Kim HR 《Oncology reports》2012,27(2):339-346
CD44 is a causal factor for tumor invasion, metastasis and acquisition of resistance to apoptosis. CD44 knockdown using inducible short hairpin RNA (shRNA) significantly reduces cell growth and invasion. Short hairpin RNA against CD44 and pGFP-V-RS-vector was used for knockdown of CD44 expression in SW620 colon cancer cells. Cell growth, invasion and migration assay, immunofluorescence for β-catenin expression and western blotting for Wnt signaling molecules were analyzed. Cell cycle analysis and western blot analysis for apoptotic molecules were evaluated. Short hairpin RNA against CD44 reduced the expression of CD44. Cell proliferation, migration and invasion were markedly inhibited and apoptosis was increased in shRNA CD44-transfected cells. Knockdown of CD44 decreased the phosphorylation of PDK1, Akt and GSK3β, and β-catenin levels. Decreased phosphorylated Akt led to an increase in phosphorylated FoxO1 and induced cell cycle arrest in the G0-G1 phase and a decrease in the S phase. The levels of Bcl-2 and Bcl-xL expression were down-regulated, while the levels of BAX expression and cleaved caspase-3, -8 and -9 were increased. CD44 knockdown by way of shRNA inhibited cell proliferation and induced cell apoptosis. This can be used as a therapeutic intervention with the anti-survival/pro-apoptotic machinery in human colon cancer.  相似文献   

12.
PRKAA1 (protein kinase AMP-activated catalytic subunit 1) is a catalytic subunit of AMP-activated protein kinase (AMPK), which plays a key role in regulating cellular energy metabolism through phosphorylation, and genetic variations in the PRKAA1 have been found to be associated with gastric cancer risk. However, the effect and underlying molecular mechanism of PRKAA1 on gastric cancer tumorigenesis, especially the proliferation and apoptosis, are not fully understood. Our data showed that PRKAA1 is highly expressed in BGC- 823 and MKN45 cells and is expressed low in SGC-7901 and MGC-803 cells in comparison with the other gastric cancer cells. PRKAA1 downregulation by shRNA or treatment of AMPK inhibitor compound C significantly inhibited proliferation as well as promoted cell cycle arrest and apoptosis of BGC-823 and MKN45 cells. Moreover, the expression of PCNA and Bcl-2 and the activity of JNK1 and Akt signaling were also reduced in BGC-823 and MKN45 cells after PRKAA1 downregulation. In vivo experiments demonstrated that tumor growth in nude mice was significantly inhibited after PRKAA1 silencing. Importantly, inactivation of JNK1 or Akt signaling pathway significantly inhibited PRKAA1 overexpression-induced increased cell proliferation and decreased cell apoptosis in MGC-803 cells. In conclusion, our findings suggest that PRKAA1 increases proliferation and restrains apoptosis of gastric cancer cells through activating JNK1 and Akt pathways.  相似文献   

13.
目的 探讨长链非编码RNA(lncRNA)HCP5在三阴性乳腺癌中的作用及其机制。方法 通过qPCR分析HCP5在乳腺癌细胞系和正常乳腺细胞系中的mRNA含量,RNA Scope方法分析HCP5在乳腺组织和癌组织中的表达;通过CCK-8实验和细胞存活/死亡实验分析敲低HCP5对三阴性乳腺癌细胞增殖能力的影响;裸鼠体内实验分析敲低HCP5对三阴性乳腺癌细胞成瘤能力的影响;抗体芯片技术分析敲低HCP5影响凋亡通路中BIRC3和Caspase-3蛋白的表达。结果 与正常乳腺细胞和其他类型乳腺癌细胞相比,HCP5在三阴性乳腺癌细胞系中表达上调(P<0.05),与正常乳腺组织和其他亚型乳腺癌组织相比,HCP5在三阴性乳腺癌组织中表达上调(P<0.05);与对照组相比,HCP5敲低组三阴性乳腺癌细胞增殖减少、凋亡增加,且原位移植瘤的生长受到抑制(P<0.01);敲低HCP5引起凋亡通路中凋亡抑制因子BIRC3表达量降低、Caspase-3表达增加,差异具有统计学意义(P<0.05),对MAPK信号通路蛋白的影响组间差异无统计学意义。结论 lncRNA HCP5通过调控细胞凋亡途径促进三阴性乳腺癌的恶性进展。  相似文献   

14.
Deregulated cell signaling pathways result in cancer development. More than one signal transduction pathway is involved in colorectal cancer pathogenesis and progression. Koetjapic acid (KA) is a naturally occurring seco-A-ring oleanene triterpene isolated from the Sandoricum koetjape stem bark. We report the cellular and molecular mechanisms of anticancer activity of KA towards human colorectal cancer. The results showed that KA induces apoptosis in HCT 116 colorectal carcinoma cells by inducing the activation of extrinsic and intrinsic caspases. We confirmed that KA-induced apoptosis was mediated by DNA fragmentation, nuclear condensation and disruption in the mitochondrial membrane potential. Further studies on the effect of KA on cancer pathways show that the compound causes down-regulation of Wnt, HIF-1α, MAP/ERK/JNK and Myc/Max signaling pathways and up-regulates the NF-κB signaling pathway. The result of this study highlights the anticancer potential of KA against colorectal cancer.  相似文献   

15.
Qanungo S  Das M  Haldar S  Basu A 《Carcinogenesis》2005,26(5):958-967
Polyphenols such as epigallocatechin-3-gallate (EGCG) from green tea extract can exert a growth-suppressive effect on human pancreatic cancer cells in vitro. In pursuit of our investigations to dissect the molecular mechanism of EGCG action on pancreatic cancer, we observed that the antiproliferative action of EGCG on pancreatic carcinoma is mediated through programmed cell death or apoptosis as evident from nuclear condensation, caspase-3 activation and poly-ADP ribose polymerase (PARP) cleavage. EGCG-induced apoptosis of pancreatic cancer cells is accompanied by growth arrest at an earlier phase of the cell cycle. In addition, EGCG invokes Bax oligomerization and depolarization of mitochondrial membranes to facilitate cytochrome c release into cytosol. EGCG-induced downregulation of IAP family member X chromosome linked inhibitor of apoptosis protein (XIAP) might be helpful to facilitate cytochrome c mediated downstream caspase activation. On the other end, EGCG elicited the production of intracellular reactive oxygen species (ROS), as well as the c-Jun N-terminal kinase (JNK) activation in pancreatic carcinoma cells. Interestingly, inhibitor of JNK signaling pathway as well as antioxidant N-acetyl-L-cysteine (NAC) blocked EGCG-induced apoptosis. To summarize, our studies suggest that EGCG induces stress signals by damaging mitochondria and ROS-mediated JNK activation in MIA PaCa-2 pancreatic carcinoma cells.  相似文献   

16.
The human leukemic T-cell line Jurkat was used to define the role of the cellular stress pathway with its key player kinase JNK in cancer therapy-induced apoptosis. JNK activity was inhibited by stable transfection with a dominant negative mutant of the upstream kinase JNKK/MKK4 or with the novel, potent and selective JNK1, -2 and -3 inhibitor SP600125. Inhibition of JNK activity delayed the onset of apoptosis induced by cisplatin, doxorubicin, gamma-irradiation and CD95-L but did not prevent apoptosis per se. Early events during apoptosis such as induction of CD95-L, activation of caspase-8 and exposure of phosphatidylserine on the cell surface were strongly inhibited. Also, at early time points of apoptosis, loss of the mitochondrial membrane potential and release of cytochrome c were markedly impaired. However, late signaling events during apoptosis such as cleavage of PARP and DNA fragmentation apoptosis were only marginally affected. These findings are in accordance with the activity of initiator and effector caspases. Whereas activity of the initiator caspase-8 was strongly inhibited early and late after induction, an inhibition of caspase-3 activity was only observed early after induction of apoptosis. We therefore suggest that cellular stress signaling contributes to the initiation of apoptosis, whereas it might be dispensable for the progression of apoptosis. Dysfunction of this pathway under pathological conditions might contribute to therapy resistance of cancer cells.  相似文献   

17.
PURPOSE: To study the effect of moscatilin (purified from the stem of orchid Dendrobrium loddigesii) on the proliferation of human colorectal cancer HCT-116 cells in vitro and in vivo. EXPERIMENTAL DESIGN: The growth inhibition of moscatilin was screened on several human cancer cell lines. The effect of moscatilin on tubulin was detected in vitro. Following moscatilin treatment on HCT-116 cells, c-Jun NH(2)-terminal protein kinase (JNK) and caspase activation was studied by Western blot analysis, and DNA damage was done by Comet assay. Specific JNK inhibitor SP600125 was cotreated to reverse moscatilin-induced apoptosis. Tumor growth inhibition of moscatilin was done on HCT-116 xenograft models. RESULTS: Moscatilin induced a time-dependent arrest of the cell cycle at G(2)-M, with an increase of cells at sub-G(1). Moscatilin inhibited tubulin polymerization, suggesting that it might bind to tubulins. Moscatilin also induced the phosphorylation of JNK1/2. SP600125 significantly inhibited the activation of caspase-9 and caspase-3 and the subsequent moscatilin-induced apoptosis. The data suggest that JNK activation may contribute to moscatilin-mediated apoptosis signaling. A parallel experiment showed that SP600125 significantly inhibits Taxol- and vincristine-induced HCT-116 cell apoptosis. This suggests that the JNK activation may be a common mechanism for tubulin-binding agents. Moreover, moscatilin induces DNA damage, phosphorylation of H2AX and p53, and up-regulation of p21. Our HCT-116 xenograft models show the in vivo efficacy of moscatilin. CONCLUSIONS: In summary, our results suggest that moscatilin induces apoptosis of colorectal HCT-116 cells via tubulin depolymerization and DNA damage stress and that this leads to the activation of JNK and mitochondria-involved intrinsic apoptosis pathway.  相似文献   

18.
19.
Advanced ovarian cancer (OC) is not curable by surgery alone and chemotherapy is essential for its treatment. Isothiocyanates have been shown to inhibit carcinogen-induced tumorigenesis in animal models, yet no efforts have been made to determine their therapeutic potential in OC. In the present study, we investigated the mechanism of the anti-proliferative and apoptotic activity of benzyl isothiocyanate (BITC) in OC. BITC inhibited the proliferation of OC cells and induced apoptosis in OC cells. Apoptosis was induced by a strong activation of caspase-3 and -9, and cleavage of PARP-1. However, caspase-8 was not activated by BITC. Cytotoxic effects of BITC were reversed by the inhibition caspase-3 and -9 specific inhibitors. BITC showed a concentration dependent decrease in the levels of Bcl-2 with a concomitant increase in Bax levels. In addition, BITC activated proapoptotic signaling by phosphorylation JNK1/2 and p38 while simultaneously inhibiting survival signaling mediated by ERK1/2 and Akt phosphorylation in a dose-dependent manner. While JNK inhibitor SP600125 and p38 inhibitor SB203580, abolished the cytotoxic effect of BITC, MEK inhibitor, PD98059 and PI3 kinase inhibitor, LY294002 failed to show such reversal indicating a critical role played by JNK1/2 and p38 signaling in apoptosis induced by BITC. In summary, our studies demonstrate that BITC inhibits proliferation of OC cells and induces apoptosis via caspase-9 and -3 pathways. BITC inhibits ERK1/2 and Akt survival signaling while simultaneously activating pro-apoptotic p38 and JNK1/2. Therefore, BITC can be potentially developed as a therapeutic agent to treat OC.  相似文献   

20.
The roles of glycogen synthase kinase-3 (GSK-3) in cell survival and apoptosis are controversial. We examined the effect of a specific GSK-3 inhibitor (SB-415286) on the regulation of leukemic cells proliferation and apoptosis. SB-415286 (40 μM) induced cell growth inhibition, β-catenin stabilization, cell cycle arrest in G(2)/M phase, cyclin B1 downregulation, and apoptosis in leukemic cell lines KG1a, K562, and CMK. Blocking the death receptor pathway by using a specific inhibitor of caspase-8, did not inhibit SB-415286-induced apoptosis. This indicates that activation of caspase-8 is part of the intrinsic apoptotic pathway and occurs downstream of mitochondria membrane potential depolarization mediated by other caspases. Furthermore, we found that depolarization of mitochondria membrane caused by GSK-3 inhibition is regulated by dephosphorylation of anti-apoptotic protein Bcl-2 and downregulation of Bcl-xL. Thus, inhibition of GSK-3-induced apoptosis of leukemic cells could be an attractive target for treatment of leukemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号