首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Apoptosis of autoaggressive T-cells in the CNS is an effective, noninflammatory mechanism for the resolution of T-cell infiltrates, contributing to clinical recovery in T-cell-mediated neuroinflammatory diseases. The clearance of apoptotic leukocytes by tissue-specific phagocytes is critical in the resolution of the inflammatory infiltrate and leads to a profound downregulation of phagocyte immune functions. Adult human microglia from surgically removed normal brain tissue was used in a standardized, light-microscopic in vitro phagocytosis assay of apoptotic autologous peripheral blood-derived mononuclear cells (MNCs). Microglia from five different patients had a high capacity for the uptake of apoptotic MNCs in contrast to nonapoptotic target cells with the phagocytosis rate for nonapoptotic MNCs amounting to only 61.6% of the apoptotic MNCs. A newly described phosphatidylserine receptor, critical in the phagocytosis of apoptotic cells by macrophages, is also expressed at similar levels on human microglia. The effects of the therapeutically used immunomodulatory agent interferon-beta (IFNbeta) were investigated using Lewis rat microglia and apoptotic, encephalitogenic, myelin basic protein-specific autologous T-cells. Also, rat microglia had a high capacity to phagocytose apoptotic T-cells specifically. IFNbeta increased the phagocytosis of apoptotic T-cells to 36.8% above the untreated controls. The enhanced phagocytic activity was selective for apoptotic T-cells and was not mediated by increased IL-10 secretion. Apoptotic inflammatory cells may be efficiently and rapidly removed by microglial cells in the autoimmune-inflamed human CNS. The in vitro increase of phagocytosis by IFNbeta merits further investigations whether this mechanism could also be therapeutically exploited.  相似文献   

2.
Apoptosis of T lymphocytes is a common pathway to terminate autoimmune inflammation in the brain as shown in experimental autoimmune encephalomyelitis (EAE) and in the autoimmune inflamed human brain. To date it is unclear to what extent different glial cells are involved in the removal of apoptotic cells. In an in vitro phagocytosis assay we compared the phagocytic capacity of rat microglia cells to remove apoptotic lymphocytes with that of astrocytes. Apoptosis was induced in autologous thymocytes and myelin basic protein (MBP)-specific T-cells by methylprednisolone (MP) or by irradiation. Apoptotic cells were then added to glial cells that were untreated or prestimulated with interferon-gamma (IFN-gamma), interleukin-4 (IL-4), transforming growth factor-beta (TGF-beta), or tumor necrosis factor-a (TNF-a). Supernatants were collected from cell cultures to measure their cytokine secretion. Surface antigen expression was analyzed by flow cytometry. Both cell types significantly increased their phagocytic activity in response to the addition of apoptotic lymphocytes when compared to non-apoptotic cells (p < 0.0001). Astrocytes removed only up to one third of the number of apoptotic lymphocytes ingested by microglia cells (p < 0.0001). Microglia cells significantly increased their phagocytosis rate after IFN-gamma stimulation and decreased it in response to IL-4. In contrast, astrocyte phagocytosis was almost unresponsive to cytokine stimulation. After interaction with apoptotic cells, microglia secreted significantly less TNF-alpha. Astrocytic TNF-alpha production was also decreased but not to a statistically significant extent. MHC-class II expression after phagocytosis was increased on microglia cells but not on astrocytes. Both microglia cells and astrocytes are capable of ingesting apoptotic cells, but microglia cells are much more efficient phagocytes. Their phagocytic capacity is modulated by the local microenvironment and microglial immune function is downregulated after phagocytosis. We suggest that in vivo astrocytes might be activated as phagocytes once the limit of microglial phagocytic capacity has been reached.  相似文献   

3.
Calpain activity and expression at the protein level were examined in inflammatory cells, activated microglia, and astrocytes prior to or at onset of symptomatic experimental allergic encephalomyelitis (EAE), an animal model for the human demyelinating disease multiple sclerosis (MS). EAE was induced in Lewis rats by injection of guinea pig spinal cord homogenate and myelin basic protein (MBP) emulsified with Complete Freund's Adjuvant (CFA). Calpain translational expression, determined by Western blot and immunocytochemistry, was correlated with calpain activity, infiltration of inflammatory cells, and myelin loss at 2-11 days following challenge with antigen. Controls (CFA only) did not show any changes over time in these parameters and very few changes (CD11+ microglia/mononuclear phagocytes) were seen in either group from days 2 to 8 post-induction. In contrast, from days 9 to 11, the animals that developed the disease (at least grade 1) demonstrated extensive cellular infiltration (CD4+, CD25+, and CD11+ as well as increased calpain expression (content) and activity. This study demonstrates that cell infiltration and increased calpain activity do not begin in the CNS until the onset of clinical signs.  相似文献   

4.
Apoptosis of autoaggressive T cells in the central nervous system (CNS) and subsequent phagocytosis by microglia is probably crucial in the rapid resolution of the inflammatory infiltrate in T cell mediated neuroinflammatory diseases. In addition to mere clearance, phagocytosis of apoptotic leukocytes results in the downregulation of different microglial immune functions. Chemoattractive functions of Lewis rat microglia and secretion of chemokines and matrix-metalloproteinases (MMPs) were investigated after phagocytosis of apoptotic T cells in vitro. In a modified Boyden chamber assay migration of encephalitogenic T cells toward LPS-stimulated microglial supernatants after phagocytosis of apoptotic thymocytes was reduced by 24.9% in comparison to interaction with viable target cells (P < 0.001). Phagocytosis of apoptotic cells downregulated CC-chemokine ligand (CCL)-5-secretion by LPS-stimulated microglia by 66.2% (P < 0.001), whereas there was only a trend toward decreased CCL2-secretion. As determined by gelatinase-zymography, secretion of MMP-9 by microglia was decreased after phagocytosis of apoptotic cells, whereas MMP-2 secretion was not altered. These mechanisms may reduce further recruitment of pathogenic inflammatory cells into the CNS-lesion and thus contribute to the active resolution of the inflammatory infiltrate and termination of the autoimmune attack.  相似文献   

5.
Macrophages and microglia in the nervous system   总被引:24,自引:0,他引:24  
  相似文献   

6.
Cell death in the Drosophila embryonic central nervous system (CNS) proceeds by apoptosis, which is revealed ultrastructurally by nuclear condensation, shrinkage of cytoplasmic volume, and preservation of intracellular organelles. Apoptotic cells do not accumulate in the CNS but are continuously removed and engulfed by phagocytic haemocytes. To determine whether embryonic glia can function as phagocytes, we studied serial electron microscopic sections of the Drosophila CNS. Apoptotic cells in the nervous system are engulfed by a variety of glia including midline glia interface (or longitudinal tract) glia, and nerve root glia. However, the majority of apoptotic cells in the CNS are engulfed by subperineurial glia in a fashion similar to the microglia of the vertebrate CNS. A close proximity between macrophages and subperineurial glia suggests that glia may transfer apoptotic profiles to the macrophages. Embryos affected by the maternal-effect mutation Bicaudal-D have no macrophages. In the absence of macrophages, most apoptotic cells are retained at the outer surfaces of the CNS, and subperineurial glia contain an abundance of apoptotic cells. Some apoptotic cells are expelled from the CNS, which suggests that the removal of apoptotic cells can occur in the absence of macrophages. The number of subperineurial glia is unaffected by changes in the rate of neuronal apoptosis. © 1995 Wiley-Liss, Inc.  相似文献   

7.
目的确定小胶质细胞和星形胶质细胞在实验性自身免疫性脑脊髓炎(EAE)发病及病变发展中的作用。方法用牛脊髓髓鞘碱性蛋白(MBP)免疫豚鼠发生EAE,用免疫组化法观察EAE不同病期小胶质细胞和星形胶质细胞对炎性脱髓鞘病灶的反应。结果发生EAE的前3天,小胶质细胞即开始激活,在临床症状出现时其数量及激活程度达高峰,并持续至高峰期。恢复期数量逐渐减少,激活程度逐渐减弱。星形胶质细胞在症状高峰期开始激活并围绕在浸润细胞和病变血管周围,似有隔离小胶质细胞与病灶接触的作用,至恢复期激活明显。结论小胶质细胞激活在EAE的发病及进展中起重要作用,而星形胶质细胞主要与疾病的恢复有关。  相似文献   

8.
B cells have long played an enigmatic role in the scenario of multiple sclerosis pathogenesis. This review summarizes recent progress in our understanding of B-cell trafficking, survival, and differentiation in the central nervous system (CNS). We propose four possible routes of intrathecal immunoglobulin-producing cells. The inflammatory CNS provides a unique, B-cell-friendly environment, in which B lineage cells, notably long-lived plasma cells, can survive for many years, perhaps even for a lifetime. These new findings offer a plausible explanation for the notorious persistence and stability of cerebrospinal fluid oligoclonal bands. Furthermore, we highlight similarities and differences of intrathecal immunoglobulin production in multiple sclerosis patients and patients with other CNS inflammatory conditions. Finally, we outline the possibly double-edged effects of B cells and immunoglobulin in the CNS and discuss various therapeutic strategies for targeting the B-cell response.  相似文献   

9.
Scavenger receptor class A (SR-A, CD204), scavenger receptor-BI (SR-BI), and CD36 are cell surface proteins that mediate cell adhesion to, and endocytosis of, various native and pathologically modified substances, and participate in intracellular signaling, lipid metabolism, and host defense against bacterial pathogens. Microglia, Mato cells, astrocytes, cerebral microvascular endothelial cells, cerebral arterial smooth muscle cells, and retinal pigment epithelial cells express one or more of these SR. Expression of SR-A and SR-BI by microglia is developmentally regulated. Neonatal microglia express SR-A and SR-BI, while microglia in normal mouse and human adult brain express neither. Astrocytes in adult brain express SR-BI. In Alzheimer's disease, microglial expression of SR-A is increased. Such findings, and evidence that SR-A and SR-BI mediate adhesion and endocytosis of fibrillar beta-amyloid by microglia and astrocytes, respectively, and that SR-A, SR-BI, and CD36 participate in secretion of reactive oxygen species by microglia, suggest roles for these receptors in homeostasis and neuropathology.  相似文献   

10.
High exposure to vitamin D may protect against development and progression of multiple sclerosis (MS), possibly through the immunomodulatory properties of its biologically active metabolite 1,25-dihydroxyvitamin D. So far, most studies on the possible mechanisms for vitamin D involvement in MS have focused on immune modulation outside the central nervous system (CNS). However, vitamin D may also interfere with the pathophysiology of MS within the CNS. In this review, the potential presence and functions of vitamin D in the inflamed and healthy CNS are explored. We discuss that vitamin D, vitamin D binding protein (DBP), the vitamin D receptor (VDR) and enzymes needed for metabolism (CYP27B1) are present in the CNS. Both VDR and CYP27B1 are expressed on a variety of cells, including neurons, glial cells, and invading lymphocytes. Additionally, vitamin D has been postulated to play a modulating role in several key-processes in MS pathophysiology, including inflammation, demyelination, axonal damage, and remyelination. We conclude that a local role of vitamin D in the inflamed CNS is likely and potentially relevant to MS. Future studies should further characterize the impact of vitamin D on the local disease process of MS in the CNS.  相似文献   

11.
12.
13.
Pender MP  Rist MJ 《Glia》2001,36(2):137-144
The elimination of inflammatory cells within the central nervous system (CNS) by apoptosis plays an important role in protecting the CNS from immune-mediated damage. T cells, B cells, macrophages, and microglia all undergo apoptosis in the CNS. The apoptotic elimination of CNS-reactive T cells is particularly important, as these cells can recruit and activate other inflammatory cells. T-cell apoptosis contributes to the resolution of CNS inflammation and clinical recovery from attacks of experimental autoimmune encephalomyelitis (EAE), an animal model of the demyelinating disease multiple sclerosis (MS). T-cell apoptosis in the CNS in EAE occurs in both an antigen-specific and an antigen-nonspecific manner. In antigen-specific T-cell apoptosis, it is proposed that T cells that recognize their antigen in the CNS, such as CNS-reactive T cells, are deleted by the process of activation-induced apoptosis after activation of the T-cell receptor. This may result from the ligation of T-cell death receptors (such as CD95 (Fas) or tumor necrosis factor (TNF) receptor 1) by CD95 ligand (CD95L) or TNF expressed by the same T cell or possibly by microglia, astrocytes or neurons. Inadequate costimulation of the T cell by antigen-presenting glial cells may render T cells susceptible to activation-induced apoptosis. T cells expressing CD95 may also die in an antigen-nonspecific manner after interacting with glial cells expressing CD95L. Other mechanisms for antigen-nonspecific T-cell apoptosis include the endogenous release of glucocorticosteroids, deprivation of interleukin-2, and the release of nitric oxide by macrophages or glia. Apoptosis of autoreactive T cells in the CNS is likely to be important in preventing the development of autoimmune CNS diseases such as MS.  相似文献   

14.
15.
Lymphocytes from the central nervous system (CNS) of animals with acute experimental autoimmune encephalomyelitis (EAE) have been isolated and characterized. The lymphocytes were separated from Lewis rats which were injected either with an emulsion of myelin basic protein (BP) emulsified in complete Freund's adjuvant (CFA) to cause EAE or with CFA alone as a control. Using density gradient centrifugation, from 9 days post-inoculation (d.p.i.) (before clinical signs appear), to 19 d.p.i. (after signs abate), lymphocytes were recovered from the spinal cords and popliteal lymph nodes of BP-injected animals. Lymphocyte cell number, phenotype, and antigen specificity were determined. Results show that the onset of clinical signs correlated with lymphocyte influx into the CNS. A clinical index of 1 was associated with less than 10(6) cells per gram of CNS wet weight (cells/g CNS) while animals with a clinical index of 4 had more than 15 X 10(6) cells/g CNS. During remission, when only minor residual neurologic signs were evident, significant numbers of lymphocytes (greater than 10(7) cells/g CNS) could still be isolated. In contrast, no lymphocytes were obtained from control CNS tissue. The phenotype of the recovered cells was predominantly of the helper/inducer T cell subset (greater than 40%). Although the percentages of these cells in the CNS were increased when compared to the lymph nodes, I-A expression on CNS-isolated lymphocytes showed the most significant increase with disease progression. Recovered lymphocytes responded to both BP and CFA-related antigens indicating that both CNS-specific and CNS-non-specific inflammatory cells were present in the exudate.  相似文献   

16.
17.
Ameboid microglia as effectors of inflammation in the central nervous system   总被引:14,自引:0,他引:14  
Techniques for selective isolation, labeling, stimulation, and destruction of ameboid microglia allow study of some fundamental questions in neuroimmunology. Examination of surface morphology, proliferative capacity, and cytochemistry suggests that microglia are a class of brain mononuclear phagocytes distinct from blood monocytes, spleen macrophages, or resident peritoneal macrophages. Moreover, cultured ameboid microglia isolated from newborn brain can be induced to grow thin cytoplasmic projections several hundred microns in length; these process-bearing cells resemble a differentiated form of microglia found in adult brain. Ameboid microglia may contribute to brain inflammation by engulfing debris, by releasing cytotoxins, by killing neighboring cells, and by secreting astroglial growth factors. Importantly, ameboid microglia are closely tied to a network of immunomodulators that include colony-stimulating factors and Interleukin-1. The presence of activated microglia during normal embryogenesis and at sites of penetrating brain injury suggests that these cells serve as important effectors linking the immune system with growth and repair of the CNS.  相似文献   

18.
Adrenoleukodystrophy is a disorder of long-chain fatty acid metabolism associated with adrenal cortical insufficiency and central nervous system demyelination. The central nervous system disease is unusual in that it is abrupt in onset and accompanied by a considerable infiltration of mononuclear inflammatory cells. To determine the nature of these inflammatory cells, immunocytochemical staining was carried out on the mononuclear cells in the brain and cerebrospinal fluid of patients with adrenoleukodystrophy. Monoclonal antibodies to T lymphocytes (T11), the helper/inducer (T4) and cytotoxic/suppressor (T8) subsets of T lymphocytes, B lymphocytes (B1), and monocyte/macrophages (M1 or esterase) were used. Mononuclear cells in the perivascular cuffs of autopsy material from 4 patients were, on average, 59% T cells, 34% T4 cells, 16% T8 cells, 24% B cells, and 11% monocyte/macrophages. Cerebrospinal fluid from 8 of 10 patients had increased IgG concentrations. Mononuclear cells in the cerebrospinal fluid of 6 patients with active disease were, on average, 61% T cells, 40% T4 cells, 16% T8 cells, 3% B cells, and 18% monocyte/macrophages. This distribution of cells is similar to that found in the central nervous system during a cellular immune response and suggests the possibility that one component of this disease is immunologically mediated.  相似文献   

19.
Astrocyte-enriched cultures were established upon passaging of primary cultures from the myelencephalon and mesencephalon of 7-9-week-old human embryos. Immunocytochemical analysis showed that third-fourth passage cultures were composed of a highly enriched population of proliferating, epithelioid cells, up to 90% of which expressed glial fibrillary acidic protein (GFAP); no macrophages and very few fibroblasts (less than 2%) were present. GFAP expression and proliferation declined upon further culturing in serum-containing medium but could be transiently reinduced by growing the cells in a serum-free chemically defined medium. Large numbers of GFAP+ astrocytes were obtained from each embryo and could be stored frozen and recultured. Using flow cytometric analysis, human astrocyte cultures were examined for basal and cytokine [interferon-gamma (IFN-gamma), interleukin-1 beta (IL-1 beta), and tumor necrosis factor-alpha (TNF-alpha)]-induced expression of molecules that may be involved in astrocyte-T-lymphocyte interactions. Cultured human astrocytes spontaneously expressed major histocompatibility complex (MHC) class I antigens and variable levels of MHC class II; MHC class I levels were increased upon IFN-gamma and TNF-alpha treatment, whereas MHC class II antigens were induced on most of the astrocytes by IFN-gamma. Among the molecules involved in antigen-independent interactions between T lymphocytes and target cells, lymphocyte function-associated molecule-3 (LFA-3) was spontaneously expressed by most cultured human astrocytes, whereas intercellular adhesion molecule-1 (ICAM-1) was present at variable levels in non-stimulated astrocytes and was greatly induced by IFN-gamma, TNF-alpha, and IL-1 beta. In this study we also show that the above cytokines upregulate astroglial expression of adhesion molecules of the integrin family (VLA-1, VLA-2, and VLA-6) that may be involved in astrocyte-extracellular matrix interaction and play a role in the astrocyte reactive changes occurring at sites of brain injury and inflammation. The human astrocyte cultures developed here represent a useful in vitro model to further investigate mechanisms involved in bidirectional communication between central glia and cells of the immune system.  相似文献   

20.
Expression of CD1 by microglia, macrophages and T cells was investigated ex vivo. In the healthy central nervous system (CNS), resident microglia, macrophages and T cells express levels of CD1 significantly lower than that expressed by splenic macrophages and T cells. During experimental autoimmune encephalomyelitis (EAE), CD1 expression by microglia and the number of CD1+ microglia increase. Macrophages and T cells strongly upregulate CD1 expression in the CNS, but not in the spleen. Whereas the function of CD1 expressed by T cells remains unclear, the expression by microglia and macrophages provides the CNS with a (glyco)lipidic-presenting molecule in an inflammatory and demyelinating environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号