首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pistell PJ  Zhu M  Ingram DK 《Neuroscience》2008,152(3):594-600
Research into the underlying mechanisms of cognitive dysfunction in Alzheimer's disease (AD) has relied traditionally on tasks such as the water maze which evaluate spatial learning and memory. Since non-spatial forms of memory are also disrupted by AD, it is critical to establish other paradigms capable of investigating these deficits. Utilizing a non-spatial learning task, acquisition of conditioned taste aversion (CTA) was evaluated in a mouse model of AD. This line of transgenic mice encode a mutated allele of the human amyloid precursor protein (APP) and presenilin 1 (PS1) genes and exhibit extensive amyloid plaque deposition in the brain by 6-7 mo of age. Compared with wild-type mice, 10-17 month old APP/PS1 mice failed to acquire CTA to saccharin. Mice that only possessed one of the two mutations were able to acquire CTA to the saccharin. In 2-5 month old APP/PS1 mice acquisition of CTA was disrupted despite the lack of extensive plaque deposition. However, further analysis indicated a potential gender difference in both the CTA deficit and onset of plaque deposition with females showing greater conditioned aversion.  相似文献   

2.
The accumulation of β-amyloid (Aβ) peptide derived from abnormal processing of amyloid precursor protein (APP) is a common pathological hallmark of Alzheimer's disease (AD) brains. In this study, we evaluated the therapeutic effect of berberine (BBR) extracted from Coptis chinensis Franch, a Chinese medicinal herb, on the neuropathology and cognitive impairment in TgCRND8 mice, a well established transgenic mouse model of AD. Two-month-old TgCRND8 mice received a low (25 mg/kg per day) or a high dose of BBR (100 mg/kg per day) by oral gavage until 6 months old. BBR treatment significantly ameliorated learning deficits, long-term spatial memory retention, as well as plaque load compared with vehicle control treatment. In addition, enzyme-linked immunosorbent assay (ELISA) measurement showed that there was a profound reduction in levels of detergent-soluble and -insoluble β-amyloid in brain homogenates of BBR-treated mice. Glycogen synthase kinase (GSK)3, a major kinase involved in APP and tau phosphorylation, was significantly inhibited by BBR treatment. We also found that BBR significantly decreased the levels of C-terminal fragments of APP and the hyperphosphorylation of APP and tau via the Akt/glycogen synthase kinase 3 signaling pathway in N2a mouse neuroblastoma cells stably expressing human Swedish mutant APP695 (N2a-SwedAPP). Our results suggest that BBR provides neuroprotective effects in TgCRND8 mice through regulating APP processing and that further investigation of the BBR for therapeutic use in treating AD is warranted.  相似文献   

3.
Manganese-enhanced MRI (MEMRI) is a newly developed noninvasive imaging technique of brain activities. The signal intensity of MEMRI reflects cumulative activities of the neurons. To validate the use of MEMRI technique to investigate the neural mechanisms of learning and memory, we tried to map brain areas involved in the retrieval of conditioned taste aversion (CTA) memory. CTAs were established to saccharin (conditioned stimulus: CS) by pairing its ingestion with an i.p. injection of LiCl (unconditioned stimulus: US). LiCl solutions (as a robust aversion chemical) of 0.15 M were injected i.p. 15 min after drinking the saccharine solution (CS). After the two times conditionings, these rats showed a robust aversion to the saccharine solution (CS). Rats of the control group were injected saline i.p. instead of LiCl solutions. The MRI signal intensities at the gustatory cortex (GC), the core subregion of the nucleus accumbens (NAcC), the shell subregion of the nucleus accumbens (NAcSh), the ventral pallidum (VP), the central nucleus of amygdala (CeA), the lateral hypothalamus (LH), and the basolateral nucleus of amygdala (BLA) of the conditioned group were higher than those of the control group. There were no significant differences between the conditioned and the control groups in the intensities for other regions, such as the striatum area, motor cortex, cingulate cortex, interstitial nucleus of the posterior limb of the anterior commissure and hippocampus. These indicate that the GC, NAcC, NAcSh, VP, CeA, LH and BLA have important roles in the memory retrieval of CTA.  相似文献   

4.
Alzheimer's disease (AD) is not only characterized by cognitive decline and neuropathological changes, but also by non-cognitive behavioral symptoms like restlessness, sleep disturbance, and wandering. These symptoms are categorized in the "Behavioral and Psychological Symptoms of Dementia" (BPSD). We investigated transgenic and wildtype mice of an APP transgenic mouse model of AD (TgCRND8) with respect to 24 h activity and spontaneous home cage behavior at 30, 60, 90 and 120 days of age. At all test days, transgenic and wildtype animals differed significantly with respect to activity patterns. In addition, activity rhythms changed distinctly in transgenic mice with increasing age. Transgenic mice also clearly showed more stereotypic behavior, which correlated significantly at 90 and 120 days of age with elevated corticosterone metabolite concentrations in fecal samples. Activity patterns in TgCRND8 mice resemble altered rhythms of activity in AD patients. Stereotypic behaviors may be caused by the same mechanisms as non-cognitive behavioral symptoms of AD. Thus, it is likely that analogies to BPSD that precede Abeta pathology are found in APP-overexpressing TgCRND8 mice.  相似文献   

5.
Conditioned taste aversion (CTA) induced by the application of a novel taste such as sodium saccharin (Sac) as the conditioned stimulus (CS) and a malaise-inducing agent as the unconditioned stimulus (US), results in acquisition of CTA memory to Sac. In contrast, CTA is extinguished by repeated presentations of the CS without the US, resulting in acquisition of the extinction memory. We examined the effects of androgenic hormones on acquisition and retention of extinction memory in mice. We gonadectomized sexually immature mice and continuously administered androgens to these animals. After sexual maturation, the mice underwent a conditioning period followed by an extinction period. Retrieval tests revealed that the androgen-treated group showed significantly greater retention of extinction memory than the non-treated group 5 weeks later, whereas such significant difference was not observed in acquisition of extinction memory. These results demonstrate the enhancing effect of androgens on retention of extinction memory.  相似文献   

6.
The investigation was devoted to the role of the synthesis of protein and peptide factors during the formation of chemosensory memory in rats. Two models of gustatory memorization were used: conditioned taste aversion (CTA), induced by the association of the taste of saccharine with a toxic injection of lithium chloride, and enhanced taste preference (ETP), induced by the influence of preliminary drinking of a saccharine solution on its repeat consumption. It was found that, under conditions of the inhibition of protein synthesis in the brain of 43% by cycloheximide and of 59% by 8-azaguanine. CTA does not form. ETP does not form under the influence of cycloheximide, but not [sic] of 8-azaguanine. A hypothesis was advanced regarding the participation of a varied spectrum of protein and peptide substances in the formation of taste aversion and preference. An influence of protein synthesis blockers on the process of retrieval of gustatory memory was not found. P K. Anokhin Research Institute of Normal Physiology. Russian Academy of Medical Sciences, Moscow. Translated from Zhurnal Vysshei Nervnoi Deyatel'nosti imeni I. P. Pavlova, Vol. 45, No. 4, pp. 742–747, July–August, 1995.  相似文献   

7.
Curcumin is a natural product with several anti-Alzheimer's disease (AD) neuroprotective properties. This study aimed to investigate the effects of curcumin on memory deficits, lactate content, and monocarboxylate transporter 2 (MCT2) in APP/PS1 mouse model of AD. APP/PS1 transgenic mice and wild-type (WT) C57BL/6J mice were used in the present study. Spatial learning and memory of the mice was detected using Morris water-maze test. Cerebral cortex and hippocampus lactate contents were detected using lactate assay. MCT2 expression in the cerebral cortex and hippocampus was examined by immunohistochemistry and Western blotting. Results showed that spatial learning and memory deficits were improved in curcumin-treated APP/PS1 mouse group compared with those in APP/PS1 mice group. Brain lactate content and MCT2 protein level were increased in curcumin-treated APP/PS1 mice than in APP/PS1 mice. In summary, our findings indicate that curcumin could ameliorate memory impairments in APP/PS1 mouse model of AD. This phenomenon may be at least partially due to its improving effect on the lactate content and MCT2 protein expression in the brain. Anat Rec, 302:332–338, 2019. © 2018 Wiley Periodicals, Inc.  相似文献   

8.
Alzheimer's disease (AD) patients typically present short-term memory deficits, before long-term memory capacity declines with disease progression. Several studies have described learning and memory deficits in the APP23 mouse model. Our group reported a decline of learning and memory capacities from the age of 3 months onwards using a hidden-platform Morris water maze (MWM). The aim of the present study was to evaluate working and reference memory in APP23 mice in the same plus-shaped water maze. The transgenic mice had slower learning curves; however, consolidation of the learned information appeared intact in this learning paradigm. This report demonstrates impairment of working memory in this transgenic Alzheimer model.  相似文献   

9.
Rats were used to examine the impact of systemic protein synthesis inhibition (PSI) on the reconsolidation of a contextually reactivated memory of conditioned taste aversion (CTA). Rats were administered intraperitoneal injections of saline or lithium chloride (LiCl; .15 M) following exposure to a novel sucrose solution in a unique context. Seven days later, rats were injected subcutaneously with saline or cycloheximide (CXM; 1 mg/kg) and returned to their home cage or placed into the CTA training context in the absence of the target conditioned stimulus to reactivate the training memory. At testing, LiCl-trained rats that had been given CXM at reactivation had significantly greater difference scores (sucrose-water) in comparison with LiCl/CXM rats that had not been given a reactivation treatment and LiCl/saline memory-reactivated rats. These results suggest that context re-exposure effectively reactivates memory of CTA training that may be weakened through PSI. Extinction tests revealed rapid attenuation of taste aversions in all of the LiCl-injected groups. The involvement of taste-potentiated aversions and the role of the context in taste aversion conditioning are discussed.  相似文献   

10.
Two thalamic nuclear groups, the anterior thalamic nuclei (ATN) and midline and intralaminar thalamic complex (MITC) have connections to the prefrontal cortex, amygdala, hippocampus and accumbens that are important for learning and memory. However, the anatomical proximity between the ATN and MITC makes it difficult to reveal their roles in memory retrieval of aversive conditioned behavior. To address the issue, we explored the activation of the ATN and MITC, as represented by the expression of the immediate early gene c-fos, following either the retrieval of a conditioned taste aversion (CTA) induced by taste-LiCl pairing (visceral aversion) or of inhibitory avoidance (IA) induced by context-foot shock pairing (somatic aversion) in rats. The anterodorsal (AD) nucleus in the ATN was activated by foot shock and the recall of IA, but not by i.p. injection of LiCl or the recall of CTA. No significant elevation was observed in the other ATN following these treatments. Among nuclei of the MITC, the paraventricular thalamic nucleus (PVT) was activated by the delivery of shock or LiCl and by the recall of both CTA and IA, while the mediodorsal thalamus (MD) and central medial and intermediate thalamus (CM/IMD) were not. The innately aversive taste of quinine did not elevate c-fos expression in either the ATN or MITC. These results suggest that the PVT in the MITC is involved in the processing and retrieval of both taste-malaise and context-shock association tasks, while the AD in the ATN is involved in those of context-shock association only. The difference of the activity between the ATN and MITC demonstrates their functional and anatomical heterogeneity in neural substrates for aversive learning tasks.  相似文献   

11.
Effects of various doses (0-250 micrograms/kg, SC) of estradiol-17 beta (E2) in a two-bottle choice conditioned taste aversion and a two-compartment conditioned place preference procedure were studied in male and female rats. Dose-dependent taste aversion and place aversion effects of E2 were established, and the conditioned taste aversion procedure was found to be more sensitive in detecting aversive properties of E2 than the conditioned place preference procedure. Although aversive properties of E2 were found in both sexes, the effects were clearly more prominent in males as compared to females. From this study, it was concluded that E2 acts as an unconditioned aversive stimulus in both male and female rats capable of gaining control over different types of behavior by associative learning.  相似文献   

12.
Lesions in the gustatory zone of the parabrachial nuclei (PBN) severely impair acquisition of a conditioned taste aversion (CTA) in rats. To test whether this deficit has a memorial basis, intact rats (n = 15) and rats with PBN lesions (PBNX; n = 10) received seven intraoral taste stimulus infusions (30 s, 0.5 ml) distributed over a 30.5-min period after either LiCl or NaCl injection. This task measures the rapid formation of a CTA and has minimum demands on memory. LiCl-injected intact rats progressively changed their oromotor response profile from one of ingestion to one of aversion. NaCl-injected intact rats did not change their ingestive pattern of responding. In contrast, there was no difference between LiCl- and NaCl-injected PBNX rats. These same PBNX rats failed to avoid licking the taste stimulus when tested in a different paradigm. A simple impairment in a memorial process is not likely the basis for the CTA deficit.  相似文献   

13.
Latent inhibition is a form of negative priming in which repeated non-reinforced pre-exposures to a stimulus retard subsequent learning about the predictive significance of that stimulus. The nucleus accumbens shell and the anatomical projection it receives from the hippocampal formation have been attributed a pivotal role in the control or regulation of latent inhibition expression. A number of studies in rats have demonstrated the efficacy of selective shell lesions to disrupt latent inhibition in different associative learning paradigms, including conditioned active avoidance and conditioned emotional response. Here, we extended the test to the conditioned taste aversion paradigm, in which the effect of direct hippocampal damage on latent inhibition remains controversial. We demonstrated the expected effect of selective shell lesions on latent inhibition of conditioned emotional response and of conditioned active avoidance, before evaluating in a separate cohort of rats the effect of comparable selective lesions on latent inhibition of conditioned taste aversion: a null effect of the lesions was first obtained using parameters known to be sensitive to amphetamine treatment, then an enhancement of latent inhibition was revealed with a modified conditioned taste aversion procedure. Our results show that depending on the associative learning paradigm chosen, shell lesions can disrupt or enhance the expression of latent inhibition; and the pattern is reminiscent of that seen following hippocampal damage.  相似文献   

14.
Numerous studies have demonstrated that the forgetting of stimulus attributes is a common occurrence; that is, organisms forget the specific characteristics of training stimuli over long retention intervals, while retaining general information of the training stimuli themselves. However, most studies have examined this effect after a learning episode, and there have been virtually no accounts to test whether the forgetting of attributes occurs for stimuli presented prior to training. Therefore, this experiment was designed to test that possibility, and it examined whether the forgetting of stimulus attributes occurred prior to training for the flavor stimulus in a conditioned taste aversion (CTA) procedure. Specifically, a latent inhibition (LI) procedure was used to measure the extent of forgetting for a pre-exposed flavor over short and long retention intervals. The results indicate that rats forgot the specific characteristics of the flavor stimulus (CS) while retaining memory for pre-exposure sessions over a long retention interval. That is, subjects pre-exposed and conditioned with different concentrations of sucrose showed no LI effect with a 1-day delay between pre-exposure and training, but demonstrated a generalized LI with an 8-day delay between pre-exposure and conditioning. This experiment provides further evidence for the robustness of the forgetting of stimulus attributes, and demonstrates that this specific type of forgetting also occurs prior to the learning of a CTA task.  相似文献   

15.
Latent inhibition (LI) is the retardation of associative conditioning resulting from preexposure of the conditioned stimulus (CS) alone prior to conditioning. Schizophrenic patients show deficient prepulse inhibition (PPI) and, at least acutely, deficient LI as well. We recently found that Brown Norway (BN) rats show a PPI deficit compared to Wistar-Kyoto (WKY) rats. If PPI and LI depend on neural processes with common genetic substrates, then LI should be deficient in BN rats as well. Here, LI of a conditioned taste aversion was examined in BN and WKY rats. One group from each strain was preexposed to a saccharin-flavored solution (CS) the day prior to conditioning. For taste aversion conditioning, these two groups again consumed saccharin and were injected with lithium chloride (unconditioned stimulus) 10 min later. A second group from each strain was not preexposed to the CS and was treated identically during conditioning, while a third group was not conditioned (injected with sodium chloride). To test for taste aversion conditioning, saccharin was offered for 20 min/day for 3 days. Nonconditioned BN and WKY rats consumed equal amounts of saccharin on test days. In both strains, conditioned rats showed a saccharin aversion. However, conditioning was less robust in BN than in WKY rats. WKY rats showed good LI of the conditioned taste aversion in that preexposed WKY rats consumed significantly more saccharin on test days than conditioned, nonpreexposed WKY rats. Preexposed BN rats did not consume significantly more saccharin on test days than conditioned, nonpreexposed BN rats. The previously reported deficiency in PPI in the BN rats was confirmed here 1 week after the taste aversion experiment. These results suggest that BN rats show deficient LI as well as PPI and display poor associative learning, a trait also reported in schizophrenia.  相似文献   

16.
Chen L  Yoo SE  Na R  Liu Y  Ran Q 《Neurobiology of aging》2012,33(2):432-432.e26
Pesticide exposure is a risk factor of Alzheimer's disease (AD). However, little is known about how pesticide exposure may promote AD pathogenesis. In this study, we investigated the effects of paraquat pesticide exposure on β-amyloid (Aβ) levels and cognition using wild-type (WT) mice and β-amyloid precursor protein (APP) transgenic mice. Our results showed that wild-type mice and APP transgenic mice after paraquat exposure had increased oxidative damage specifically in mitochondria of cerebral cortex and exhibited mitochondrial dysfunction. Moreover, the elevated mitochondrial damage was directly correlated with impaired associative learning and memory and increased Aβ levels in APP transgenic mice exposed to paraquat. Furthermore, overexpression of peroxiredoxin 3, a mitochondrial antioxidant defense enzyme important for H2O2 removal, protected against paraquat-induced mitochondrial damage and concomitantly improved cognition and decreased Aβ levels in APP transgenic mice. Therefore, our results demonstrate that mitochondrial damage is a key mechanism underlying cognitive impairment and elevated amyloidogenesis induced by paraquat and that enhanced removal of mitochondrial H2O2 could be an effective strategy to ameliorate AD pathogenesis induced by pesticide exposure.  相似文献   

17.
Reports suggest that Alzheimer's disease (AD) patients show a high life-time prevalence of seizure-like disorders. The transgenic CRND8 (TgCRDN8) is a mouse model of AD-like amyloid pathogenesis that expresses a double-mutant form of human amyloid precursor protein 695 (K670N/M671L and V717F). We have previously reported that post-plaque TgCRND8 mice exhibited a lower threshold to seizure with a more severe seizure type when challenged with pentylenetetrazole (PTZ) intravenously. Here, we now report that pre-plaque TgCRND8 mice also demonstrate an increased sensitivity to PTZ-induced seizures with a more severe seizure type over age-matched littermate controls. A lower threshold and more severe seizure type in TgCRND8 mice prior to and after plaque deposition suggest that this genotype difference may be due to beta-amyloid (Abeta) toxicity rather than plaque formation. Thus, the TgCRND8 mice are not only a model for Abeta production and plaque deposition, but may also be useful for AD associated seizure.  相似文献   

18.
When an odor conditioned stimulus (CS) precedes illness (unconditioned stimulus; UCS), rats acquire relatively weak odor aversions. Conversely, when a compound odor-taste (flavor) CS precedes illness, rats acquire robust aversions both to the odor and to the taste components of a compound flavor CS. Thus, tastes potentiate odor-illness aversions during toxiphobic conditioning. Such conditioning effects have been referred to as taste-potentiated odor aversion learning (POA). Previous neurobehavioral experiments have shown that the anterior insular gustatory neocortex contributes to conditioned taste aversion (CTA) learning. The present experiment examined the involvement of the anterior insular gustatory neocortex in CTA learning and POA learning. To that end, four distinct groups of rats received bilateral electrolytic lesion placements in the orbitofrontal neocortex, the "somatic" gustatory neocortex, the anterior insular gustatory neocortex or the posterior insular neocortex. Control animals received anesthesia only. Subgroups of animals thereafter received aversion conditioning using either an odor (almond) CS or a compound odor-taste (almond-saccharin) CS. Aversions to the almond odorant and/or saccharin tastant were evaluated during extinction. Results indicated that animals lacking orbitofrontal neocortex or posterior insular neocortex acquired normal CTAs and POAs. Animals lacking somatic gustatory neocortex exhibited impaired CTA learning, yet those animals showed normal POA learning. Lesions centered in the anterior insular neocortex impaired both CTA learning and POA learning. These results demonstrate that the insular gustatory neocortex is uniquely involved in the higher-order integration of odors, tastes and illness.  相似文献   

19.
The morphology and neurochemistry of beta-amyloid (A beta) plaque-associated dystrophic neurites present in TgCRND8 and Tg2576 mice was demonstrated to be strikingly similar to that observed in pathologically aged human cases, but not in Alzheimer's disease (AD) cases. Specifically, pathologically aged cases and both transgenic mouse lines exhibited alpha-internexin- and neurofilament-triplet-labelled ring- and bulb-like dystrophic neurites, but no classical hyperphosphorylated-tau dystrophic neurite pathology. In contrast, AD cases demonstrated abundant classical hyperphosphorylated-tau-labelled dystrophic neurites, but no neurofilament-triplet-labelled ring-like dystrophic neurites. Importantly, quantitation demonstrated that the A beta plaques in TgCRND8 mice were highly axonopathic, and localised displacement or clipping of apical dendrite segments was also associated with A beta plaques in both transgenic mouse models. These results suggest that neuronal pathology in these mice represent an accurate and valuable model for understanding, and developing treatments for, the early brain changes of AD.  相似文献   

20.
The present study examined the effects of neurotoxic lesions of the central nucleus (CNA) and basolateral complex (BLA) of the amygdala on conditioned taste aversion (CTA) in a latent inhibition design. In Experiment 1, lesions of the CNA were found to have no affect on CTA acquisition regardless of whether the taste conditioned stimulus (CS) was novel or familiar. Lesions of the BLA, although having no influence on performance when the CS was familiar, retarded CTA acquisition when the CS was novel in Experiment 2. The pattern of results suggests that the CTA deficit in rats with BLA lesions may be a secondary consequence of a disruption of perceived stimulus novelty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号