首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Blinks are known to change the kinematic properties of horizontal saccades, probably by influencing the saccadic premotor circuit. The neuronal basis of this effect could be explained by changes in the activity of omnipause neurons in the nucleus raphe interpositus or in the saccade-related burst neurons of the superior colliculus. Omnipause neurons cease discharge during both saccades and vergence movements. Because eyelid blinks can influence both sets of neurons, we hypothesized that blinks would influence the kinematic parameters of saccades in all directions, vergence, and saccade-vergence interactions. To test this hypothesis, we investigated binocular eye and lid movements in five normal healthy subjects with the magnetic search coil technique. The subjects performed conjugate horizontal and vertical saccades from gaze straight ahead to targets at 20 degrees up, down, right, or left while either attempting not to blink or voluntarily blinking. While following the same blink instruction, subjects made horizontal vergence eye movements of 7 degrees and combined saccade-vergence movements with a version amplitude of 20 degrees. The movements were performed back and forth from two targets simultaneously presented nearby (38 cm) and more distant (145 cm). Small vertical saccades accompanied most vergence movements. These results show that blinks change the kinematics (saccade duration, peak velocity, peak acceleration, peak deceleration) of not only horizontal but also of vertical saccades, of horizontal vergence eye movements, and of combined saccade-vergence eye movements. Peak velocity, acceleration, and deceleration of eye movements were decreased on the average by 30%, and their duration increased by 43% on the average when they were accompanied by blinks. The blink effect was time dependent with respect to saccade and vergence onset: the greatest effect occurred 100 ms prior to saccade onset, whereas there was no effect when the blink started after saccade onset. The effects of blinks on saccades and vergence, which are tightly coupled to latency, support the hypothesis that blinks cause profound spatiotemporal perturbations of the eye movements by interfering with the normal saccade/vergence premotor circuits. However, the measured effect may to a certain degree but not exclusively be explained by mechanical interference.  相似文献   

2.
Saccadic eye movements are thought to be influenced by blinking through premotor interactions, but it is still unclear how. The present paper describes the properties of blink-associated eye movements and quantifies the effect of reflex blinks on the latencies, metrics, and kinematics of saccades in the monkey. In particular, it is examined to what extent the saccadic system accounts for blink-related perturbations of the saccade trajectory. Trigeminal reflex blinks were elicited near the onset of visually evoked saccades by means of air puffs directed on the eye. Reflex blinks were also evoked during a straight-ahead fixation task. Eye and eyelid movements were measured with the magnetic-induction technique. The data show that saccade latencies were reduced substantially when reflex blinks were evoked prior to the impending visual saccades as if these saccades were triggered by the blink. The evoked blinks also caused profound spatial-temporal perturbations of the saccades. Deflections of the saccade trajectory, usually upward, extended up to approximately 15 degrees. Saccade peak velocities were reduced, and a two- to threefold increase in saccade duration was typically observed. In general, these perturbations were largely compensated in saccade mid-flight, despite the absence of visual feedback, yielding near-normal endpoint accuracies. Further analysis revealed that blink-perturbed saccades could not be described as a linear superposition of a pure blink-associated eye movement and an unperturbed saccade. When evoked during straight-ahead fixation, blinks were accompanied by initially upward and slightly abducting eye rotations of approximately 2-15 degrees. Back and forth wiggles of the eye were frequently seen; but in many cases the return movement was incomplete. Rather than drifting back to its starting position, the eye then maintained its eccentric orbital position until a downward corrective saccade toward the fixation spot followed. Blink-associated eye movements were quite rapid, albeit slower than saccades, and the velocity-amplitude-duration characteristics of the initial excursions as well as the return movements were approximately linear. These data strongly support the idea that blinks interfere with the saccade premotor circuit, presumably upstream from the neural eye-position integrator. They also indicated that a neural mechanism, rather than passive elastic restoring forces within the oculomotor plant, underlies the compensatory behavior. The tight latency coupling between saccades and blinks is consistent with an inhibition of omnipause neurons by the blink system, suggesting that the observed changes in saccade kinematics arise elsewhere in the saccadic premotor system.  相似文献   

3.
Omnidirectional pause neurons (OPNs) pause for the duration of a saccade in all directions because they are part of the neural mechanism that controls saccade duration. In the natural situation, however, large saccades are accompanied by head movements to produce rapid gaze shifts. To determine whether OPNs are part of the mechanism that controls the whole gaze shift rather than the eye saccade alone, we monitored the activity of 44 OPNs that paused for rightward and leftward gaze shifts but otherwise discharged at relatively constant average rates. Pause duration was well correlated with the duration of either eye or gaze movement but poorly correlated with the duration of head movement. The time of pause onset was aligned tightly with the onset of either eye or gaze movement but only loosely aligned with the onset of head movement. These data suggest that the OPN pause does not encode the duration of head movement. Further, the end of the OPN pause was often better aligned with the end of the eye movement than with the end of the gaze movement for individual gaze shifts. For most gaze shifts, the eye component ended with an immediate counterrotation owing to the vestibuloocular reflex (VOR), and gaze ended at variable times thereafter. In those gaze shifts where eye counterrotation was delayed, the end of the pause also was delayed. Taken together, these data suggest that the end of the pause influences the onset of eye counterrotation, not the end of the gaze shift. We suggest that OPN neurons act to control only that portion of the gaze movement that is commanded by the eye burst generator. This command is expressed by driving the saccadic eye movement directly and also by suppressing VOR eye counterrotation. Because gaze end is less well correlated with pause end and often occurs well after counterrotation onset, we conclude that elements of the burst generator typically are not active till gaze end, and that gaze end is determined by another mechanism independent of the OPNs.  相似文献   

4.
Pontine omnipause neurons (OPNs) are inhibitory neurons projecting to saccade-related premotor burst neurons. OPNs exhibit sustained discharge during fixations and cease firing before and during saccades. The pause in OPN discharge releases the burst neurons from tonic inhibition, resulting in generation of saccadic eye movements. OPNs are thought to receive two major inhibitory inputs during saccades: an early component that determines the pause onset and a late component that controls the pause duration. Although there is evidence that numerous glycinergic and GABAergic terminals contact OPNs, their physiological roles remain unclear. To reveal functions of glycinergic and GABAergic inputs, we investigated effects of iontophoretic application of strychnine, a glycine receptor antagonist, and bicuculline, a GABAA receptor antagonist, on discharge patterns of OPNs in alert cats. Application of strychnine reduced the ratio of pause duration to saccade duration. Analysis of the timing of pause relative to saccades showed that pause onset was delayed and pause end was advanced. These effects were observed for saccades in all directions. Application of bicuculline, in contrast, had no effect on the OPN pause duration or timing. Both strychnine and bicuculline increased tonic firing rate during intersaccadic intervals. These results suggest that glycinergic, but not GABAergic, afferents convey inhibitory signals that determine the onset as well as duration of pause in OPN activity during saccades.  相似文献   

5.
Blinks executed during eye movements affect kinetic eye movement parameters, e.g., peak velocity of saccades is decreased, their duration is increased, but their amplitude is not altered. This effect is mainly explained by the decreased activity of premotor neurons in the brainstem: omni-pause neurons (OPN) in the nucleus raphe interpositus. Previous studies examined the immediate effect of blinks directly on eye movements but not their effect when they are elicited several hundred milliseconds before the eye movements. In order to address this question we tested blinks elicited before the target onset of saccades and pursuit and compared the results to the gap effect: if a fixation light is extinguished for several hundred milliseconds, the reaction time (latency) for subsequent saccades or smooth pursuit eye movements is decreased. Monocular eye and lid movements were recorded in nine healthy subjects using the scleral search-coil system. Laser stimuli were front-projected onto a tangent screen in front of the subjects. Horizontal step-ramp smooth pursuit of 20 deg/s was elicited in one session, or 5 deg horizontal visually guided saccades in another experimental session. In one-third of the trials (smooth pursuit or saccades) the fixation light was extinguished for 200 ms before stimulus onset (gap condition), and in another third of the trials reflexive blinks were elicited by a short airpuff before the stimulus onset (blink condition). The last third of the trials served as controls (control condition). Stimulus direction and the three conditions were randomized for saccades and smooth pursuit separately. The latency of the step-ramp smooth pursuit in the blink condition was found to be decreased by 10 ms, which was less than in the gap condition (38 ms). However, the initial acceleration and steady-state velocity of smooth pursuit did not differ in the three conditions. In contrast, the latency of the saccades in the gap condition was decreased by 39 ms, but not in the blink condition. Saccade amplitude, peak velocity, and duration were not different in the three conditions. There was also no difference in blink amplitude and duration of pupil occlusion in the blink condition, neither in saccades nor in smooth pursuit. The latency reduction of smooth pursuit, but not of saccades, may neither be explained by the brief pupil occlusion nor by visual suppression, warning signals, or the startle response. Whether the effects are caused by the influence of blinks on OPNs or other premotor structures remains to be tested.  相似文献   

6.
Omnipause neurons (OPNs) are midline pontine neurons that are thought to control a number of oculomotor behaviors, especially saccades. Intracellular recordings were made from OPNs in alert cats to elucidate saccade-associated postsynaptic events in OPNs and thereby determine what patterns of afferent discharge impinge on OPNs to cause their saccadic inhibition. The membrane potential of impaled OPNs exhibited steep hyperpolarization before each saccade that lasted for the whole period of the saccade. The hyperpolarization was reversed to depolarization by intracellular injection of Cl- ions, indicating it consisted of temporal summation of inhibitory postsynaptic potentials (IPSPs). The duration of the saccade-related hyperpolarization was almost equal to the duration of the concurrent saccades. The time course of the hyperpolarization was similar to that of the radial eye velocity except for the initial phase. During the falling phase of eye velocity, the correlation between the instantaneous amplitude of hyperpolarization and the instantaneous eye velocity was highly significant. The amplitude of hyperpolarization at the eye velocity peak was correlated significantly with the peak eye velocity. The time integral of the hyperpolarization was correlated with the radial amplitude of saccades. The initial phase disparity between the hyperpolarization and eye velocity was due to the relative constancy of peak time (approximately 20 ms) of the initial steep hyperpolarization regardless of the later potential profile that covaried with the eye velocity. The initial steep hyperpolarization led the beginning of saccades by 15.9 +/- 3.8 (SD) ms, which is longer than the lead time for medium-lead burst neurons. These results demonstrate that the pause of activity in OPNs is caused by IPSPs initiated by an abrupt, intense input and maintained, for the whole duration of the saccade, by afferents conveying eye velocity signals. We suggest that the initial sudden inhibition originates from central structures such as the superior colliculus and frontal eye fields and that the eye velocity-related inhibition originates from the burst generator in the brain stem.  相似文献   

7.
Trigeminal reflex blinks evoked near the onset of a saccade cause profound spatial-temporal perturbations of the saccade that are typically compensated in mid-flight. This paper investigates the influence of reflex blinks on the discharge properties of saccade-related burst neurons (SRBNs) in intermediate and deep layers of the monkey superior colliculus (SC). Twenty-nine SRBNs, recorded in three monkeys, were tested in the blink-perturbation paradigm. We report that the air puff stimuli, used to elicit blinks, resulted in a short-latency ( approximately 10 ms) transient suppression of saccade-related SRBN activity. Shortly after this suppression (within 10-30 ms), all neurons resumed their activity, and their burst discharge then continued until the perturbed saccade ended near the extinguished target. This was found regardless whether the compensatory movement was into the cell's movement field or not. In the limited number of trials where no compensation occurred, the neurons typically stopped firing well before the end of the eye movement. Several aspects of the saccade-related activity could be further quantified for 25 SRBNs. It appeared that 1) the increase in duration of the high-frequency burst was well correlated with the (two- to threefold) increase in duration of the perturbed movement. 2) The number of spikes in the burst for control and perturbed saccades was quite similar. On average, the number of spikes increased only 14%, whereas the mean firing rate in the burst decreased by 52%. 3) An identical number of spikes were obtained between control and perturbed responses when burst and postsaccadic activity were both included in the spike count. 4) The decrease of the mean firing rate in the burst was well correlated with the decrease in the velocity of perturbed saccades. 5) Monotonic relations between instantaneous firing rate and dynamic motor error were obtained for control responses but not for perturbed responses. And 6) the high-frequency burst of SRBNs with short-lead and long-lead presaccadic activity (also referred to as burst and buildup neurons, respectively) showed very similar features. Our findings show that blinking interacts with the saccade premotor system already at the level of the SC. The data also indicate that a neural mechanism, rather than passive elastic restoring forces within the oculomotor plant, underlies the compensation for blink-related perturbations. We propose that these interactions occur downstream from the motor SC and that the latter may encode the desired displacement vector of the eyes by sending an approximately fixed number of spikes to the brainstem saccadic burst generator.  相似文献   

8.
The countermanding saccade task has been used in many studies to investigate the neural mechanisms that underlie the decision to execute or restrain rapid eye movements. In this task, the presentation of a saccade target is sometimes followed by the appearance of a stop cue that indicates that the subject should cancel the planned movement. Performance has been modeled as a race between motor preparation and cancellation processes. The signal that reaches its activation threshold first determines whether a saccade is generated or cancelled. In these studies, an important parameter is the time required to process the stop cue, referred to as the stop signal reaction time (SSRT). The SSRT is estimated using statistical approaches, the validity of which has not been unequivocally established. A more direct measure of this parameter might be obtainable if a method was available to "unmask" the developing motor command. This can be accomplished by air-puff-evoked blinks, which inhibit pontine omnipause neurons that serve as an inhibitory gate for the saccadic system. In the present study, brief puffs of air were used to elicit blinks at various times while rhesus monkeys performed a countermanding saccade task. If the developing motor command has not yet been cancelled, this should trigger a saccade. When blinks occurred between approximately 50 and 200 ms after target onset, saccades were often evoked. Saccades were rarely evoked more than approximately 70 ms after stop cue onset; this value represents a behavioral evaluation of SSRT and was comparable to the estimates obtained using standard statistical approaches. When saccades occurred near the SSRT on blink trials, they were often hypometric. Furthermore, Monte Carlo simulations were performed to model the effects of blink time on the race model. Overall, the study supports the validity of the statistical methods currently in use.  相似文献   

9.
Stimulation of the rostral approximately 2 mm of the superior colliculus (SC) during a large, visual target-initiated saccade produces a spatial deviation of the ongoing saccade and then stops it in midflight. After the termination of the stimulation, the saccade resumes and ends near the location of the flashed target. The density of collicular projections to the omnipause neuron (OPN) region is greatest from the rostral SC and decreases gradually for the more caudal regions. It has been hypothesized that the microstimulation excites the OPNs through these direct connections, and the reactivation of OPNs, which are normally silent during saccades, stops the initial component in midflight by gating off the saccadic burst generator. Two predictions emerge from this hypothesis: 1) for microstimulation triggered on the onset of large saccades, the time from stimulation onset to resumption of OPN discharge should decrease as the stimulation site is moved rostral and 2) the lead time from reactivation of OPNs to the end of the initial saccade on stimulation trials should be equal to the lead time of pause end with respect to the end of control saccades. We tested this hypothesis by recording OPN activity during saccades perturbed by stimulation of the rostral approximately 2 mm of the SC. The distance of the stimulation site from the most rostral extent of the SC and the time of reactivation with respect to stimulation onset were not significantly correlated. The mean lead of reactivation of OPNs relative to the end of the initial component of perturbed saccades (6.5 ms) was significantly less than the mean lead with respect to the end of control (9.6 ms) and resumed saccades (10.4 ms). These results do not support the notion that the excitatory input from SC neurons-in particular, the fixation neurons in the rostral SC-provide the major signal to reactivate OPNs and end saccades. An alternative, conceptual model to explain the temporal sequence of events induced by stimulation of the SC during large saccades is presented. Other OPN activity parameters also were measured and compared for control and stimulation conditions. The onset of pause with respect to resumed saccade onset was larger and more variable than the onset of pause with respect to control saccades, whereas pause end with respect to the end of resumed and control saccades was similar. The reactivated discharge of OPNs during the period between the end of the initial and the onset of the resumed saccades was at least as strong as that following control movements. This latter observation is interpreted in terms of the resettable neural integrator hypothesis.  相似文献   

10.
It is important to have a simple. accurate method for recording eye movements. Of the two popular approaches commonly adopted, electro-oculography (EOG) and infrared oculography (IROG), IROG is often accepted as the more accurate, and it is the method that is currently used most frequently to examine eye movements in schizophrenia. This study investigated whether the misclassification of blinks as saccades affects saccade rates when the presence of a blink is determined using only IROG recordings of eye position. Both vertical electro-oculography (VEOG), which can be used to objectively identify blinks, and IROG were recorded while 17 schizophrenia patients and 19 healthy controls were presented with sinusoidal stimuli. Of the blinks identified with the VEOG for the total group of participants, a substantial number (37%) were misclassified as catch-up and anticipatory saccades when only the IROG was used. Furthermore, in the schizophrenia group, but not in the healthy control group, the use of the IROG led to a significant misclassification of blinks as anticipatory saccades. Therefore, when IROG alone is used to identify blinks, the misclassification of blinks as saccades is likely to introduce measurement error into estimates of saccade rates, particularly estimates of anticipatory saccade rates in schizophrenia patients.  相似文献   

11.
The superior colliculus (SC), via its projections to the pons, is a critical structure for driving rapid orienting movements of the visual axis, called gaze saccades, composed of coordinated eye-head movements. The SC contains a motor map that encodes small saccade vectors rostrally and large ones caudally. A zone in the rostral pole may have a different function. It contains superior colliculus fixation neurons (SCFNs) with probable projections to omnipause neurons (OPNs) of the pons. SCFNs and OPNs discharge tonically during visual fixation and pause during single-step gaze saccades. The OPN tonic discharge inhibits saccades and its cessation (pause) permits saccade generation. We have proposed that SCFNs control the OPN discharge. We compared the discharges of SCFNs and OPNs recorded while cats oriented horizontally, to the left and right, in the dark to a remembered target. Cats used multiple-step gaze shifts composed of a series of small gaze saccades, of variable amplitude and number, separated by periods of variable duration (plateaus) in which gaze was immobile or moving at low velocity (<25 degrees /s). Just after contralaterally (ipsilaterally) presented targets, the firing frequency of SCFNs decreased to almost zero (remained constant at background). As multiple-step gaze shifts progressed in either direction in the dark, these activity levels prevailed until the distance between gaze and target [gaze position error (GPE)] reached approximately 16 degrees. At this point, firing frequency gradually increased, without saccade-related pauses, until a maximum was reached when gaze arrived on target location (GPE = 0 degrees). SCFN firing frequency encoded GPE; activity was not correlated to characteristics or occurrence of gaze saccades. By comparison, after target presentation to left or right, OPN activity remained steady at pretarget background until first gaze saccade onset, during which activity paused. During the first plateau, activity resumed at a level lower than background and continued at this level during subsequent plateaus until GPE approximately 8 degrees was reached. As GPE decreased further, tonic activity during plateaus gradually increased until a maximum (greater than background) was reached when gaze was on goal (GPE = 0 degrees). OPNs, like SCFNs, encoded GPE, but they paused during every gaze saccade, thereby revealing, unlike for SCFNs, strong coupling to motor events. The firing frequency increase in SCFNs as GPE decreased, irrespective of trajectory characteristics, implies these cells get feedback on GPE, which they may communicate to OPNs. We hypothesize that at the end of a gaze-step sequence, impulses from SCFNs onto OPNs may suppress further movements away from the target.  相似文献   

12.
1. The discharge of 255 neurons in the fastigial nuclei of three trained macaque monkeys was investigated during visually guided saccades. Responses of these neurons were examined also during horizontal head rotation and during microstimulation of the oculomotor vermis (lobules VIc and VII). 2. One hundred and two units were characterized by bursts of firing in response to visually guided saccades. Ninety-eight of these (96.1%) were located within the anatomic confines of the fastigial oculomotor region (FOR), on the basis of reconstruction of recording sites. During contralateral saccades, these neurons showed bursts that preceded the onset of saccades (presaccadic burst), whereas, during ipsilateral saccades, they showed bursts associated with the end of saccades (late saccadic burst). They were hence named saccadic burst neurons. Sixty-one saccadic burst neurons (62.2%) were inhibited during microstimulation of the oculomotor vermis with currents less than 10 microA. 3. All saccadic burst neurons were spontaneously active, and the resting firing rate varied considerably among units, ranging from 10 to 50 imp/s. The tonic levels of activity did not correlate significantly with eye position. 4. The presaccadic burst started 18.5 +/- 4.7 (SD) ms (n = 45) before the onset of saccades in the optimal direction (the direction associated with the maximum values of burst lead time, number of spikes per burst, and burst duration). Optimal directions covered the entire contralateral hemifield, although there was a slightly higher incidence in both horizontal and upper-oblique directions in the present sample. The duration of the presaccadic burst was highly correlated with the duration of saccade (0.85 less than or equal to r less than or equal to 0.97). 5. The late saccadic burst was most robust in the direction opposite to the optimal in each unit (the nonoptimal direction). Its onset preceded the completion of ipsilateral saccade by 30.4 +/- 5.9 ms. The lead time to the end of saccade was consistent among different units and was constant also for saccades of various sizes. Thus the late saccadic burst started even before the saccade onset when the saccade duration was less than 30 ms. Unlike the presaccadic burst, its duration was not related to the duration of saccade. 6. Discharge rates of saccadic burst neurons were correlated neither to eye positions during fixation nor to the initial eye positions before saccades. 7. Eye-position units and horizontal head-velocity units were located rostral to the FOR.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Cerebellar output changes during motor learning. How these changes cause alterations of motoneuron activity and movement remains an unresolved question for voluntary movements. To answer this question, we examined premotor neurons for saccadic eye movement. Previous studies indicate that cells in the fastigial oculomotor region (FOR) within the cerebellar nuclei on one side exhibit a gradual increase in their saccade-related discharge as the amplitude of ipsiversive saccades adaptively decreases. This change in FOR activity could cause the adaptive change in saccade amplitude because neurons in the FOR project directly to the brain stem region containing premotor burst neurons (BNs). To test this possibility, we recorded the activity of saccade-related burst neurons in the area that houses premotor inhibitory burst neurons (IBNs) and examined their discharge during amplitude-reducing adaptation elicited by intrasaccadic target steps. We specifically analyzed their activity for off-direction (contraversive) saccades, in which the IBN activity would increase to reduce saccade size. Before adaptation, 29 of 42 BNs examined discharged, at least occasionally, for contraversive saccades. As the amplitude of contraversive saccades decreased adaptively, half of BNs with off-direction spike activity showed an increase in the number of spikes (14/29) or an earlier occurrence of spikes (7/14). BNs that were silent during off-direction saccades before adaptation remained silent after adaptation. These results indicate that the changes in the off-direction activity of BNs are closely related to adaptive changes in saccade size and are appropriate to cause these changes.  相似文献   

14.
Primate frontal eye fields. I. Single neurons discharging before saccades   总被引:25,自引:0,他引:25  
We studied the activity of single neurons in the frontal eye fields of awake macaque monkeys trained to perform several oculomotor tasks. Fifty-four percent of neurons discharged before visually guided saccades. Three different types of presaccadic activity were observed: visual, movement, and anticipatory. Visual activity occurred in response to visual stimuli whether or not the monkey made saccades. Movement activity preceded purposive saccades, even those made without visual targets. Anticipatory activity preceded even the cue to make a saccade if the monkey could reliably predict what saccade he had to make. These three different activities were found in different presaccadic cells in different proportions. Forty percent of presaccadic cells had visual activity (visual cells) but no movement activity. For about half of the visual cells the response was enhanced if the monkey made saccades to the receptive-field stimulus, but there was no discharge before similar saccades made without visual targets. Twenty percent of presaccadic neurons discharged as briskly before purposive saccades made without a visual target as they did before visually guided saccades, and had weak or absent visual responses. These cells were defined as movement cells. Movement cells discharged much less or not at all before saccades made spontaneously without a task requirement or an overt visual target. The remaining presaccadic neurons (40%) had both visual and movement activity (visuomovement cells). They discharged most briskly before visually guided eye movements, but also discharged before purposive eye movements made in darkness and responded to visual stimuli in the absence of saccades. There was a continuum of visuomovement cells, from cells in which visual activity predominated to cells in which movement activity predominated. This continuum suggests that although visual cells are quite distinct from movement cells, the division of cell types into three classes may be only a heuristic means of describing the processing flow from visual input to eye-movement output. Twenty percent of visuomovement and movement cells, but fewer than 2% of visual cells, had anticipatory activity. Only one cell had anticipatory activity as its sole response. When the saccade was delayed relative to the target onset, visual cells responded to the target appearance, movement cells discharged before the saccade, and visuomovement cells discharged in different ways during the delay, usually with some discharge following the target and an increase in rate immediately before the saccade. Presaccadic neurons of all types were actively suppressed following a saccade into their response fields.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
 Pontine omnipause neurons (OPNs) have so far been considered as forming a homogeneous group of neurons whose tonic firing stops during the duration of saccades, when the head is immobilized. In cats, they pause for the total duration of gaze shifts, when the head is free to move. In the present study, carried out on alert cats with fixed heads, we present observations made during self-initiated saccades and during tracking of a moving target which show that the OPN population is not homogeneous. Of the 76 OPNs we identified, 39 were found to have characteristics similar to those of previously described neurons, ”saccade” (S-) OPNs: (1) the durations of their pauses were significantly correlated with the durations of saccades; (2) the discharge ceased shortly before saccade onset and resumed before saccade end; (3) visual responses to target motion were excitatory; and (4) during tracking, S-OPNs interrupted the discharge for the duration of saccades and resumed firing during perisaccadic ”drifts”. However, the characteristics of 37 neurons (”complex” (C-) OPNs) were different: (1) the pause duration was not correlated with the duration of self-initiated saccades; (2) time lead of pause onsets relative to saccades was, on average, longer than in the group of S-OPNs, and firing resumed after the saccade end; (3) visual target motion suppressed tonic discharges; and (4) during tracking, firing was interrupted for the total duration of gaze shifts, including not only saccades but also perisaccadic ”drifts”. We conclude that cat OPNs can be subdivided into two main groups. The first comprises neurons whose firing patterns are compatible with gating individual saccades (”saccade” OPNs). The second group consists of ”complex” OPNs whose firing characteristics are appropriate to gate total gaze displacements rather than individual saccades. The function of these neurons may be to disinhibit pontobulbar circuits participating in the generation of saccade sequences and associated perisaccadic drifts. Received: 20 January 1998 / Accepted: 22 October 1998  相似文献   

16.
Blinks are known to affect eye movements, e.g., saccades, slow and fast vergence, and saccade-vergence interaction, in two ways: by superimposition of blink-associated eye movements and changes of the central premotor activity in the brainstem. The goal of this study was to determine, for the first time, the effects of trigeminal evoked blinks on ongoing smooth pursuit eye movements which could be related to visual sensory or premotor neuronal changes. This was compared to the effect of a target disappearing for 100–300 ms duration during ongoing smooth pursuit (blank paradigm) in order to control for the visual sensory effects of a blink. Eye and blink movements were recorded in eight healthy subjects with the scleral search coil technique. Blink-associated eye movements during the first 50% of the blink duration were non-linearly superimposed on the smooth pursuit eye movements. Immediately after the blink-associated eye movements, the pursuit velocity slowly decreased by an average of 3.2±2.1°/s. This decrease was not dependent on the stimulus direction. The pursuit velocity decrease caused by blinks which occluded the pupil more than 50% could be explained mostly by blanking the visual target. However, small blinks that did not occlude the pupil (<10% of lid closure) also decreased smooth pursuit velocity. Thus, this blink effect on pursuit velocity cannot be explained by blink-associated eye movements or by the blink having blanked the visual input. We propose that part of this effect might either be caused by incomplete visual suppression during blinks and/or a change in the activity of omnipause neurons.  相似文献   

17.
A small region in the dorsal midline portion of the nucleus reticularis tegmenti pontis (NRTP) in monkeys contains neurons that respond to focal visual stimuli or during saccadic eye movements or both. None of these cells or any others in this region respond to the motion of large visual fields (optokinetic stimulation), although such responses were specifically sought. Thus, this group of NRTP neurons forms a completely different set of cells than those previously described in more rostral but closely adjacent portions of the pontine nuclei which respond well to optokinetic stimulation. The most frequently encountered cell type in this region of NRTP (153 neurons) produced a high-frequency burst of discharges during saccadic eye movements. Neural discharge (burst intensity or duration) was not related to saccade metrics. Instead, peak burst frequency and/or the number of spikes in a unit's burst reached a maximum when the saccade moved the eyes to a circumscribed region (movement field) of the animal's visual field. There were two subtypes of these burst neurons. In one type (44%) the movement fields were smaller and entirely contained within the oculomotor range. In the other type (56%) the movement fields consisted of a whole sector (some as wide as 180 degrees) of the entire oculomotor range. All the neurons in this sample that we were able to test in total darkness continued to produce bursts of discharges of similar profile during spontaneous saccades into their movement field. All the movement fields were retinotopically organized, although a few cells (22%) showed a marked variation of burst metrics with initial eye position. Another small group of cells in NRTP (8 neurons) responded to small spots of light turned on within a circumscribed region of the visual field while the animal maintained fixation on a separate spot of light. These visual neurons produced no saccade-related discharge. A larger group of neurons (24 out of 52 tested cells) produced both a visual response and a saccadic burst. The visual field of this type of cell was always smaller and was contained within the movement field of the cell. The response of both types of NRTP visual neurons was enhanced when the visual stimulus was to be the target for a saccadic eye movement. On double-saccade trials the visual stimulus was never present in the hemifield containing the cell's visual field.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Saccade-related Purkinje cells (PCs) were recorded in the oculomotor vermis (lobules VI, VII) during spontaneous eye movements and fast phases of optokinetic and vestibular nystagmus in the light and darkness, from two macaque monkeys. All neurons (n=46) were spontaneously active and exhibited a saccade-related change of activity with all saccades and fast phases of nystagmus. Four types of neurons were found: most neurons (n=31) exhibited a saccade-related burst of activity only (VBN); other units (n=7) showed a burst of activity with a subsequent pause (VBPN); some of the units (n=5) paused in relation to the saccadic eye movement (pause units,VPN); a few PCs (n=3) showed a burst of activity in one direction and a pause of activity in the opposite direction. For all neurons, burst activity varied considerably for similar saccades. There were no activity differences between spontaneous saccades and vestibular or optokinetically elicited fast phases of nystagmus. The activity before, during, and after horizontal saccades was quantitatively analyzed. For 24 burst PCs (VBN, VBPN), the burst started before saccade onset in one horizontal direction (preferred direction), on average by 15.3 ms (range 27-5 ms). For all these neurons, burst activity started later in the opposite (non-preferred) direction, on average 4.9 ms (range 20 to -12 ms, P<0.01) before saccade onset. The preferred direction could be either with ipsilateral (42% of neurons) or contralateral (58%) saccades. Nine burst PCs had similar latencies and burst patterns in both horizontal directions. The onset of burst activity of a minority of PCs (n=5) lagged saccade onset in all directions. The pause for VBPN neurons started after the end of the saccade and reached a minimum of activity some 40–50 ms after saccade completion. For all saccades and quick phases of nystagmus, burst duration increased with saccade duration. Peak burst activity was not correlated with saccade amplitude or peak eye velocity. PCs continued to show saccade-related burst activity in the dark. However, in 59% of the PCs (VBN, VBPN), peak burst activity was significantly reduced in the dark (on average 28%, range 15–36%) when saccades with the same amplitude (but longer duration in the dark) were compared. For VBP neurons, the pause component after the saccade disappeared in the dark. The difference in peak burst activity (light vs darkness) is similar to that seen for saccade-related neurons in the fastigial oculomotor region (FOR, the structure receiving direct input from vermal PCs) and suggests that the oculomotor vermis also might affect saccade acceleration and/or deceleration. The findings indicate that in the oculomotor vermis — in contrast to the FOR — several different types of saccade-related neurons (PCs) are found. However, the vast majority of PCs behave qualitatively similar to FOR neurons with regard to the burst activity pattern and a direction-specific burst activity onset starting well before saccade onset. This latency will allow these neurons to influence the initiation of saccades in the saccadic brainstem generator through multisynaptic pathways. At present, it has to be determined how (saccade-related) PC activity determines FOR activity.  相似文献   

19.
The study of the saccadic system has focused mainly on neurons active before the beginning of saccades, in order to determine their contribution in movement planning and execution. However, most oculomotor structures contain also neurons whose activity starts only after the onset of saccades, the maximum of their activity sometimes occurring near saccade end. Their characteristics are still largely unknown. We investigated pretectal neurons with saccade-related activity in the alert cat during eye movements towards a moving target. They emitted a high-frequency burst of action potentials after the onset of saccades, irrespective of their direction, and will be referred to as "pretectal saccade-related neurons". The delay between saccade onset and cell activity varied from 17 to 66 ms on average. We found that burst parameters were correlated with the parameters of saccades; the peak eye velocity was correlated with the peak of the spike density function, the saccade amplitude with the number of spikes in the burst, and burst duration increased with saccade duration. The activity of six pretectal saccade-related neurons was studied during smooth pursuit at different velocities. A correlation was found between smooth pursuit velocity and mean firing rate. A minority of these neurons (2/6) were also visually responsive. Their visual activity was proportional to the difference between eye and target velocity during smooth pursuit (retinal slip). These results indicate that the activity of pretectal saccade-related neurons is correlated with the characteristics of eye movements. This finding is in agreement with the known anatomical projections from premotor regions of the saccadic system to the pretectum.  相似文献   

20.
1. We recorded single-unit activity in the caudal central nucleus (CCN) of the oculomotor complex in monkeys trained to make vertical saccadic, smooth-pursuit, and fixation eye movements. We confirmed that our recordings were from motoneurons innervating the upper lid, because small lesions placed at the sites of responsive units were recovered among neurons labeled by horseradish peroxidase (HRP) injections into the levator palpebrae superioris muscle. 2. For fixations above a threshold lid position, levator motoneurons discharged at a steady rate, which increased linearly with upward lid position. The average position sensitivity during fixation was 2.9 spikes/s per deg, and the average lid motoneuron was recruited into steady firing when the eye was looking 10 degrees down. 3. During upward saccades, levator motoneurons discharged a burst of spikes that began, on average, 7.3 ms before the lid movement if the saccade started from a straight-ahead position; the lead time decreased considerably as the initial eye and lid positions shifted downward. The firing rate usually reached its peak (130-280 spikes/s) at the very onset of the burst and declined gradually during the course of the saccade. The steady rate associated with the new fixation position was reached about halfway during the saccade. All units exhibited a pause in firing during the initial half of large downward saccades; during small saccades, the pause was inconspicuous or absent. 4. During vertical sinusoidal smooth pursuit, levator motoneurons exhibited a sinusoidal modulation in firing rate, which led eye position by an average of 23 degrees at 0.3 Hz. The average velocity sensitivity calculated from such data was 0.63 spikes/s per deg/s. 5. Although they exhibit a number of qualitative similarities, the discharge patterns of levator motoneurons and superior rectus motoneurons differ in several respects. First, during a blink, when the lid undergoes a large depression but the eye exhibits only a brief transient displacement, levator motoneurons cease firing completely, whereas superior rectus motoneurons continue to discharge. Second, for all types of coordinated lid and eye movements, levator motoneurons discharge at lower firing rates than do superior rectus motoneurons. Third, during saccades, levator motoneurons have less conspicuous and shorter-lasting bursts and pauses than do motoneurons involved in rotating the eye. 6. During upward gaze, the qualitative similarity of their burst-tonic discharge patterns suggests that levator and superior rectus motoneurons receive input signals that originate from a common source, but that the signals are processed differently to deal with the different loads facing these muscles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号