共查询到20条相似文献,搜索用时 15 毫秒
1.
Enhanced angiotensin II-induced activation of Na+, K+-ATPase in the proximal tubules of obese Zucker rats 总被引:2,自引:0,他引:2
Renal angiotensin II (AII) is suggested to play a role in the enhanced sodium reabsorption that causes a shift in pressure natriuresis in obesity related hypertension; however, the mechanism is not known. Therefore, to assess the influence of AII on tubular sodium transport, we determined the effect of AII on the Na+, K+-ATPase activity (NKA), an active transporter regulated by the AT1 receptor activity, in the isolated proximal tubules of lean and obese Zucker rats. Also, we determined the levels of the tubular AT1 receptor and associated signal transducing G proteins, as the initial signaling components that mediate the effects of AII on Na+, K+-ATPase activity. In the isolated proximal tubules, AII produced greater stimulation of the NKA activity in obese compared with lean rats. Determination of the AT1 receptors by Scatchard analysis of the [125I] Sar-Ang II binding and Western blot analysis in the basolateral (BLM) and brush border membrane (BBM) revealed a modest but significant increase (23%) in the AT1 receptor number mainly in the BLM of obese compared with lean rats. The AII affinity for AT1 receptors, as determined by IC50 values of AII to displace [125I] Sar-Ang II binding in BLM and BBM were similar in lean and obese rats. Western blot analysis revealed significant increases in Gialpha1, Gialpha2, Gialpha3, and Gq/11alpha in BLM and Gialpha1, Gialpha3, and Gq/11alpha in BBM of obese as compared with lean rats. The increase in the levels of the AT1 receptor and G proteins, mainly in the BLM, may be contributing to the enhanced AII-induced activation of NKA in the proximal tubules of obese rats. This phenomenon, in part, may be responsible for the increased sodium reabsorption and the development of hypertension in obese Zucker rats. 相似文献
2.
Some of the pathophysiological consequences of obesity include insulin resistance, increased renal sodium reabsorption, and the development of hypertension. Dopamine promotes renal sodium excretion via activation of D(1)-like receptors present on the proximal tubules. Reduced dopamine-induced natriuresis and a defect in D(1)-like receptor function have been reported in the proximal tubules of hypertensive animals. The present study investigated D(1)-like dopamine receptors and associated G proteins as the initial signaling components in the proximal tubular basolateral membranes of obese Zucker and control lean Zucker rats. We found that the obese rats were hyperinsulinemic, hyperglycemic, and hypertensive compared with the lean rats. Dopamine produced concentration-dependent inhibition of Na,K-ATPase activity in the proximal tubules of lean rats, whereas the inhibitory effect of dopamine was reduced in obese rats. The D(1)-like receptors measured by [(3)H]SCH 23390 binding revealed an approximately 45% decrease in B(max) without a change in K(d) in the basolateral membranes of obese rats compared with lean rats. Although we found an increase in G(q)/11alpha and no change in G(s)alpha in the basolateral membranes of obese rats, dopamine and SKF 38393 failed to stimulate G proteins as measured by [(35)S]GTPgammaS binding in obese rats, suggesting a receptor-G protein coupling defect. We conclude that decrease in D(1)-like dopamine receptor binding sites and diminished activation of G proteins, resulting perhaps from defective coupling, led to the reduced inhibition by dopamine of Na,K-ATPase activity in the proximal tubules of obese Zucker rats. Such a defect in renal dopamine receptor function may contribute to sodium retention and development of hypertension in obese rats. 相似文献
3.
R. Huhn A. Heinen M.W. Hollmann W. Schlack B. Preckel N.C. Weber 《Nutrition, metabolism, and cardiovascular diseases : NMCD》2010,20(10):706-712
Background and aimsHyperglycaemia blocks sevoflurane-induced postconditioning, and cardioprotection in hyperglycaemic myocardium can be restored by inhibition of the mitochondrial permeability transition pore (mPTP). We investigated whether sevoflurane-induced postconditioning is also blocked in the prediabetic heart and if so, whether cardioprotection could be restored by inhibiting mPTP.Methods and resultsZucker lean (ZL) and Zucker obese (ZO) rats were assigned to one of seven groups. Animals underwent 25 min of ischaemia and 120 min of reperfusion. Control (ZL-/ZO Con) animals were not further treated. postconditioning groups (ZL-/ZO Sevo-post) received sevoflurane for 5 min starting 1 min prior to the onset of reperfusion. The mPTP inhibitor cyclosporine A (CsA) was administered intravenously in a concentration of 5 (ZO CsA and ZO CsA + Sevo-post) or 10 mg/kg (ZO CsA10 + Sevo-post) 5 min before the onset of reperfusion. At the end of reperfusion, infarct sizes were measured by TTC staining. Blood samples were collected to measure plasma levels of insulin, cholesterol and triglycerides.Sevoflurane postconditioning reduced infarct size in ZL rats to 35 ± 12% (p < 0.05 vs. ZL Con: 60 ± 6%). In ZO rats sevoflurane postconditioning was abolished (ZO Sevo-post: 59 ± 12%, n.s. vs. ZO Con: 58 ± 6%). 5 mg and 10 mg CsA could not restore cardioprotection (ZO CsA + Sevo-post: 59 ± 7%, ZO CsA10 + Sevo-post: 57 ± 14%; n.s. vs. ZO Con). In ZO rats insulin, cholesterol and triglyceride levels were significant higher than in ZL rats (all p < 0.05).ConclusionInhibition of mPTP with CsA failed to restore cardioprotection in the prediabetic but normoglycaemic heart of Zucker obese rats in vivo. 相似文献
4.
It has not been examined whether the pressure-natriuresis response is altered in the insulin-resistant condition. Furthermore, despite an important role of nitric oxide (NO) in modulating pressure-natriuresis, no investigations have been conducted assessing the renal interstitial NO production in insulin resistance. The present study examined whether pressure-natriuresis was altered in insulin-resistant obese Zucker rats (OZ) and assessed the cortical and medullary nitrate/nitrite (NOx) levels with the use of the renal microdialysis technique. In OZ, serum insulin/glucose ratio (23.0+/-4.0x10(-8), n=9) and blood pressure (119+/-3 mm Hg) were greater than those in lean Zucker rats (LZ; 7.0+/-1.9x10(-8) and 103+/-4 mm Hg, n=9). The pressure-natriuresis curve in OZ was shifted to higher renal perfusion pressure (RPP), and the slope was blunted compared with that in LZ (0.073+/-0.015 vs 0.217+/-0.047 microEq/min kidney weight/mm Hg, P<0.05). The basal renal NOx level was reduced in OZ (cortex, 4.032+/-0.331 micromol/L; medulla, 4. 329+/-0.515 micromol/L) compared with that in LZ (cortex, 7.315+/-1. 102 micromol/L; medulla: 7.698+/-0.964 micromol/L). Furthermore, elevating RPP increased the medullary NOx in LZ, but this pressure-induced response was lost in OZ. Four-week treatment with troglitazone, an insulin-sensitizing agent, improved hyperinsulinemia, systemic hypertension, and basal renal NOx levels (cortex, 5.639+/-0.286 micromol/L; medulla, 5.978+/-0.284 micromol/L), and partially ameliorated the pressure-natriuresis curves; the slope of pressure-natriuresis curves and elevated RPP-induced NOx, however, were not corrected. In conclusion, our study suggests that insulin resistance is closely associated with abnormal pressure-natriuresis and hypertension. These deranged renal responses to insulin resistance are most likely attributed to impaired medullary NO production within the medulla. 相似文献
5.
6.
7.
BACKGROUND: Ventilation in response to hypoxia is reduced in some obese humans and is believed to represent part of the pathogenesis of obesity hypoventilation syndrome (OHS). Ventilation in response to hypoxic exposure is closely related to the release of excitatory neurotransmitters, in particular glutamate, acting specifically on N-methyl-D-aspartate (NMDA) receptors. OBJECTIVES: The aim of the present study was to investigate whether NMDA receptor-mediated mechanisms are responsible for the altered ventilatory response to sustained hypoxia observed in obese Zucker (Z) rats. SUBJECTS: Seven lean and seven 15-week-old obese male Z rats were studied. MEASUREMENTS: Ventilation ([V](E)) at rest and during 30 min sustained hypoxic (10% O(2)) exposure was measured by the barometric method. [V](E) was assessed following the blinded-random administration of equal volumes of either saline (vehicle) or dextromethorphan (DM, 10 mg/kg), a non-competitive glutamate NMDA receptor antagonist. RESULTS: DM had no effects on resting [V(E) in both lean and obese rats during room air breathing. Lean rats treated with DM exhibited a significant (P<0.05) depression in [V](E), V(T), and V(T)/T(I) during either the early (5 min) or the late phase (30 min) of ventilatory response to sustained hypoxia. In contrast, DM administration in obese rats did not change [V(E), V(T), or V(T)/T(I) during the early phase of ventilatory response to hypoxia. During the late phase of ventilatory response to hypoxia. obese rats treated with DM exhibited a similar depression in [V](E) and V(T) as observed in lean rats, but had no significant change in V(T)/T(I) during the 30 min hypoxic exposure. CONCLUSION: Our findings indicate that altered glutamatergic mechanisms acting on NMDA receptors are partially responsible for a blunted early phase of ventilatory response to hypoxia noted in obese rats and also contribute to their reduced neural respiratory drive. 相似文献
8.
Dehydroepiandrosterone (DHEA) reduces weight gain in the hypercorticosteronemic Zucker fatty rat, an animal model of genetic obesity. However, the mechanism of action of DHEA is still unclear. We propose that DHEA acts as an antiglucocorticoid in the Zucker fatty rat. To test this hypothesis we examined DHEA's ability to block the activation of the glucocorticoid-inducible enzymes tyrosine aminotransferase (TAT) and ornithine decarboxylase (ODC) by dexamethasone (i.p. 5 micrograms/100 g body weight) in hepatic tissue of 6-10 week old Zucker rats. Injections of DMSO, the vehicle, served as a control. DHEA alone did not affect TAT, but when DHEA (500 micrograms/100 g b.w.) was administered simultaneously with dexamethasone, activation did not occur. Similar results were seen using a second tissue (kidney). We conclude that DHEA can act acutely as an antiglucocorticoid in the young obese Zucker rat and hypothesize that its chronic anti-obesity effect may reflect, at least in part, a chronic antiglucocorticoid activity. 相似文献
9.
Bone structure and calcium metabolism in obese Zucker rats. 总被引:3,自引:0,他引:3
Obesity is associated with altered bone mass. However, reports on bone status in obesity are inconsistent. Increased or normal bone mass was reported in obese adults but decreased bone mineral content was described in obese children. Therefore we evaluated the obese fa/fa rat as a possible model to assist in studies of bone metabolism in obesity. Obese and lean 14-week-old male rats underwent 24 h balance studies for calcium, magnesium and phosphate. Plasma calcium, magnesium, phosphate, immunoreactive parathyroid hormone, urinary cAMP (cyclic adenosine monophosphate) and femur bone histomorphometry were also analysed. Obese rats were heavier and had higher plasma insulin, cholesterol and triglycerides levels (P less than 0.05). A comparable positive balance for calcium, magnesium and phosphate was found in obese and lean rats. Total plasma calcium was higher in the obese, but albumin corrected calcium and plasma magnesium, phosphate and glucose were similar to the lean. In contrast to human obesity, obese rats were hypercalciuric, hypermagnisuric and hyperphosphaturic (P less than 0.05). iPTH and urinary cAMP were higher in the obese. Femora of fa/fa rats were shorter and lighter. Their bone osteoid surface and bone calcium content were similar to controls. Femora metaphysis in the obese had increased number of trabeculae, decreased trabecular width and higher erosion surface/bone surface ratio. Their diaphysis had increased cortical area/bone area and cortical width/bone width ratios and decreased medullary area. In summary, obese rats have higher iPTH, are hypercalciuric and have decreased bone mass. These last two observations differ from what is described in adult human obesity. Therefore, the obese fa/fa rat is of limited assistance in studies of bone status in adult human obesity. It might be of help in studies of bone metabolism in juvenile obesity. 相似文献
10.
Hayashi K Kanda T Homma K Tokuyama H Okubo K Takamatsu I Tatematsu S Kumagai H Saruta T 《Metabolism: clinical and experimental》2002,51(12):1553-1561
Although available evidence demonstrates that obesity manifests insulin resistance and causes glomerular sclerosis, it has not been determined whether insulin resistance alters the renal microvascular reactivity. This study examined whether insulin- and acetylcholine (ACH)-induced vasodilation was impaired in Zucker obese rats, and attempted to clarify the change in myogenic afferent arteriolar constriction, a determinant of glomerular pressure. Isolated perfused hydronephrotic rat kidneys were used to visualize the renal microcirculation. In Zucker lean rats, insulin (10 to 300 microU/mL) inhibited norepinephrine (NE)-induced afferent and efferent arteriolar constriction in a dose-dependent manner, with 112 % +/- 8% and 98% +/- 8% reversal at 300 microU/mL Similarly, ACH elicited dose-dependent dilation of these vessels. In Zucker obese rats, by contrast, afferent and efferent arterioles failed to dilate in response to insulin, and manifested diminished vasodilator responses to acetylcholine In the presence of nitro-L-arginine methylester (LNAME; 100 micromol/L), ACH (10 micromol/L) induced transient afferent arteriolar dilation (121% +/- 9% reversal) in Zucker lean rats, whereas this response was blunted in obese rats (72% +/- 8% reversal) Furthermore, myogenic afferent arteriolar constriction by elevating renal arterial pressure to 180 mm Hg was diminished in Zucker obese rats (-14% +/- 3% decrement in diameter), compared with that in lean rats (-23% +/- 2% decrement) Finally, the impairment in these vasodilator and vasoconstrictor responses was partially prevented by troglitazone, an insulin-sensitizing agent. Collectively, in insulin resistance, renal microvessels are refractory to the vasodilator action of insulin. Furthermore, "renal insulin resistance" is associated with the impaired vasodilator responses to ACH-induced nitric oxide (NO) and the diminished vasoconstrictor responses to pressure. The blunted myogenic afferent arteriolar constriction would allow glomerular hypertension, and in concert with the impaired endothelium-dependent vasodilation, could be responsible for the development of glomerular injury in obesity. 相似文献
11.
OBJECTIVES: To gain insight into the pathogenesis of hypertension in the spontaneously hypertensive rat (SHR), we compared the maturation of the Na-independent H+ efflux and Na(+)-H+ exchange in microdissected superficial proximal cortical tubule (PCT) S1 and S2 segments of SHR and normotensive Wistar-Kyoto (WKY) rats. METHODS: Isolated superfused PCT segments were loaded with 2'-7'-bis-carboxyethyl-5(6)-carboxyfluorescein and incubated in nominally HCO3-free solution. We assessed Na-independent N-ethylmaleimide (NEM)-sensitive H+ efflux and Na-dependent H+ efflux by measuring the recovery rate of the intracellular pH following acid loading induced by prepulsing with NH4+. RESULTS: In young prehypertensive SHR the Na(+)-H+ exchange recovery rate in S1 at pH(i) 6.8 was significantly higher than in young WKY rats, whereas in adult rats no significant difference between the two strains could be observed. In S2 segments the Na(+)-H+ exchange recovery rate was similar between SHR and WKY rats for both age groups. In the young, no difference in the NEM-sensitive H+ efflux in S2 PCT was observed between the two strains. In contrast, in the adult, although the NEM-sensitive H+ efflux had increased profoundly with age for WKY rats, it remained markedly low in SHR. CONCLUSIONS: These studies indicate that apical Na+ reabsorption coupled with H+ efflux in the S1 segment is increased in the PCT of SHR, and demonstrate a marked impairment in the maturation of H+ pump activity in the S2 segment of the SHR compared with the normotensive strain. The impairment of these cell transport systems in the SHR may be relevant to the pathogenesis or maintenance of hypertension in this model. 相似文献
12.
In the rat, elevated arterial pressure is not consistently associated with obesity. The purpose of this study was to compare measurements of blood pressure, cardiac output, and total peripheral resistance in obese and lean Zucker rats on different NaCl intakes. Obese and lean rats drank either water or isotonic NaCl for 18 days. Tail systolic blood pressures of saline-drinking obese rats were higher than all other groups (p less than 0.05). NaCl intake did not affect blood pressure in lean rats, and blood pressures of water-drinking obese rats did not differ from those of lean controls. In a subsequent experiment, direct arterial pressures and cardiac outputs (thermodilution) were measured in separate groups of conscious rats that had been maintained on a 1% or 4% NaCl intake for 12 weeks. Arterial pressure was higher (p less than 0.01) in obese rats fed 4% NaCl (130 +/- 4 mm Hg) than in obese rats fed 1% NaCl (118 +/- 2 mm Hg) or than in lean rats fed either NaCl intake (118 +/- 3 mm Hg and 116 +/- 3 mm Hg, respectively). Cardiac output of obese rats was higher than that of lean rats (p less than 0.01); however, the NaCl-induced increase of blood pressure was accounted for by an increase of peripheral resistance (p less than 0.01). Thus, in contrast to the lean Zucker rat, arterial pressure of the obese Zucker rat is increased by a high dietary intake of NaCl. 相似文献
13.
J. Triscari J.S. Stern P.R. Johnson A.C. Sullivan 《Metabolism: clinical and experimental》1979,28(2):183-189
Carbohydrate metabolism was evaluated in lean and obese Zucker rats. Plasma glucose concentration, renal and hepatic gluconeogenesis, and hepatic glycogen content and rates of synthesis were investigated in 2-mo and 8-mo-old animals. Mild hyperglycemia was observed in obese Zucker rats compared to lean rats and was more pronounced in males than in females. Rates of glucose disappearance were normal in both female and male rats, although there was a trend toward decreased clearance in the male. Total organ hepatic and kidney PEPCK activity and kidney glucose production were elevated in obese compared to lean rats. Total organ hepatic glycogen levels and rates of glycogen synthesis were increased significantly in obese compared to lean, the increase being greater in males than females. The mild hyperglycemia present in obese Zucker rats is not associated with delayed disappearance of intravenously administered glucose, but may be due to the increased production of glucose by whole kidney and liver. 相似文献
14.
15.
Dynamics of insulin hypersecretion by obese Zucker rats 总被引:2,自引:0,他引:2
The relationship between obesity and hypersecretion of insulin by the pancreas was studied. We found that pancreata from obese Zucker rats secrete significantly more insulin than do pancreata from lean Zucker rats. At a glucose stimulation of 300 mg/dL, the overall dynamic biphasic insulin secretory profiles from obese and lean rats were similar. Further studies to investigate the glucose-insulin dose response relationship in obese and lean rat pancreata demonstrated insulin hypersecretion by pancreata from obese rats which was particularly pronounced at normoglycemic and hypoglycemic levels (by factors as much as 14-fold). This hypersecretion is so striking as to suggest that in the intact state the obese animal may lack the ability to readily "shut off" its insulin secretion under normoglycemic conditions, whereas lean animals possess such an ability. Under hypoglycemic conditions (75 mg/dL), the hypersecretion is transient and insulin secretion returns to normal basal levels after 30 minutes of perfusion. Thus the degree to which this hypersecretory phenomenon may occur in vivo remains to be established. 相似文献
16.
De Gennaro-Colonna V Rossoni G Cocchi D Rigamonti AE Berti F Muller EE 《The Journal of endocrinology》2000,166(3):529-536
Genetically obese male Zucker rats have an impaired secretion of GH, coupled to hyperinsulinemia, hyperlipidemia and glucose intolerance. The aim of this study was to evaluate whether a chronic treatment with hexarelin, a synthetic enkephalin-derived hexapeptide with a potent GH-releasing activity, might be able to ameliorate the somatotropic function and reverse some metabolic alterations associated with obesity in male obese Zucker rats. Furthermore, as decreased GH secretion and insulin resistance are associated with increased cardiovascular risk, we also tested the capacity of hexarelin to prevent postischemic ventricular dysfunction in hearts of male obese Zucker rats. Obese and lean male rats of the Zucker strain were treated with hexarelin (80 microgram/kg, b.i.d., s.c.) or saline (1 ml/kg, b.i.d., s.c.) for 30 days. An acute hexarelin injection (80 microgram, s.c.) at the 28th day of treatment elicited a rise in plasma GH levels in ! lean but not in obese rats (pretreated or not with hexarelin); lean rats chronically treated with hexarelin showed a greater increase in plasma GH as compared with control counterparts. At the end of the experiment, pituitary GH mRNA levels were significantly reduced in obese rats and hexarelin administration failed to increase pituitary GH mRNA and IGF-I concentrations in plasma and heart. Chronic treatment with hexarelin increased insulinemia and blood glucose levels in obese but not in lean rats, left unaltered the high triglyceride levels but significantly decreased plasma cholesterol concentrations in obese rats. Heart preparations from lean and obese Zucker rats treated with saline, subjected to low flow ischemia and reperfusion, showed at reperfusion: a) a low recovery of postischemic left ventricular developed pressure (LVDP), coupled to a substantial increase in coronary perfusion pressure, and b) a marked increase in creatine kinase released in the perfusates. Hexare! lin administration for 30 days counteracted the heart ischemic damage both in lean and obese Zucker rats. In fact, the recovery of LVDP at reperfusion was significantly higher than in controls and the increase in coronary resistance was minimal. Collectively, these data indicate that a 30-day treatment with hexarelin was unable to improve somatotropic function in male obese Zucker rats but was successful in decreasing plasma cholesterol concentrations. Hexarelin exerted a cardioprotective effect in both lean and obese rats. The heart-protective activity afforded by the peptide was divorced from any stimulation of the GH axis and is probably exerted through activation of specific cardiac receptors. 相似文献
17.
The effects of a cafeteria diet on nitrogen balance in lean (Fa/?) and obese Zucker rats (fa/fa) was studied for two consecutive 15 day periods after weaning. Obese rats were able to absorb a lower proportion of dietary nitrogen than the lean controls. Cafeteria diet increased the retention of dietary nitrogen, and lowered urinary nitrogen losses in both obese and lean rats. Urea constituted practically the only product of urinary nitrogen excretion in obese rats, whereas it accounted for only about 75% of that eliminated by Fa/? rats. Nitrogen accretion in the body was highest for the younger animals, and again increased with cafeteria feeding. Obese fa/fa rats showed a lower percentage of body nitrogen retention than their lean counterparts; obese rats were able, however, to accumulate large amounts of nitrogen and fat, in part because of their higher intake. A significant part of the absorbed nitrogen was not found in either the body or the urine; the cafeteria diet markedly increased the weight of this fraction of nitrogen unaccounted for. In conclusion, the effects of cafeteria feeding on weight and nitrogen handling were comparable in lean and obese rats, i.e. the effects of genetic and dietary obesity seem to be additive with regard to nitrogen extraction and excretion for Zucker rats. 相似文献
18.
Takuya Chiba Toshimitsu Komatsu Masahiko Nakayama Toshiyuki Adachi Yukari Tamashiro Hiroko Hayashi Haruyoshi Yamaza Yoshikazu Higami Isao Shimokawa 《Molecular and cellular endocrinology》2009,309(1-2):17-25
Calorie restriction (CR), which is thought to be largely dependent on the neuroendocrine system modulated by insulin/insulin-like growth factor-I (IGF-I) and leptin signaling, decreases morbidity and increases lifespan in many organisms. To elucidate whether insulin and leptin sensitivities are indispensable in the metabolic adaptation to CR, we investigated the effects of CR on obese Zucker (fa/fa) rats and lean control (+/+) rats. CR did not fully improve insulin resistance in (fa/fa) rats. Nonetheless, CR induced neuropeptide Y (NPY) expression in the hypothalamic arcuate nucleus and metabolism related gene expression changes in the liver in (fa/fa) rats and (+/+) rats. Up-regulation of NPY augmented plasma corticosterone levels and suppressed pituitary growth hormone (GH) expression, thereby modulating adipocytokine production to induce tissue-specific insulin sensitivity. Thus, central NPY activation via peripheral signaling might play a crucial role in the effects of CR, even in insulin resistant and leptin receptor deficient conditions. 相似文献
19.
Hypercorticosteronuria and diminished pituitary responsiveness to corticotropin-releasing factor in obese Zucker rats 总被引:1,自引:0,他引:1
Metabolic defects in obese (fa/fa) Zucker rats have previously been shown to be reversed by adrenalectomy; however, hypercorticosteronemia has not been demonstrated. We now report that the total daily excretion of corticosterone and urea nitrogen are significantly greater (P less than 0.01) in obese Zucker rats than in age-matched lean Zucker rats. This excessive excretion of corticosterone is not of autonomous adrenal origin, since dexamethasone treatment (20 micrograms/kg X day) for 2 days induced a proportionate reduction in corticosterone excretion (approximately 50%) in both obese and lean Zucker rats. Corticosterone excretion was further suppressed to levels not different from those in lean rats after 2 days of dexamethasone (40 micrograms/kg X day). Both the peak and total pituitary beta-endorphin secretion in response to an iv bolus of corticotropin-releasing factor (CRF) were diminished in obese Zuckers. The response to CRF in obese Zucker rats was dampened and superimposable on that of dexamethasone-treated lean Zucker rats, suggesting the existence of chronic hypercorticosteronemia as a component of this genetic obesity. These observations provide evidence for a compensatory alteration of the pituitary-adrenal axis. We suggest that corticosterone turnover may be increased in obese Zucker rats. 相似文献
20.
D J McNamara 《Metabolism: clinical and experimental》1985,34(2):130-135
Studies were performed in male Zucker rats to determine the metabolic effect of genetic obesity on whole body cholesterol homeostasis. Lean and obese mature Zucker rats were studied during intake of either a chow diet or a semisynthetic diet containing 10% corn oil; in addition growing animals were studied during constant body weight gain on a chow diet. Under all conditions the obese Zucker rats had significantly higher levels of total plasma cholesterol and triglyceride; however, measurements of the specific activity of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase and of the rate of whole body cholesterol synthesis by sterol balance techniques demonstrated that the lean and obese animals did not differ in their endogenous rates of cholesterol synthesis. When sterol balance data were calculated per kilogram body weight, lean male Zucker rats synthesized a greater amount of cholesterol per day than obese animals. These studies demonstrate that the obese male Zucker rat, in many ways a model of human obesity, does not overproduce cholesterol and thus fails to exhibit one of major characteristics of the obese human. 相似文献