首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Background: Mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MK2) is activated upon stress by p38 MAPK. MK2 is stimulated in a wide range of inflammatory conditions and its catalytic activity is required for cytokine production, cell migration and is a potential drug target for inflammatory diseases. Disruption of MK2 leads to a reduction in TNF-α production. MK2-mediated pro-inflammatory cytokine production has been demonstrated in several inflammatory conditions where TNF-α plays a role. Objective/methods: We discuss the development of specific MK2 inhibitors for the treatment of inflammatory diseases. Results/conclusion: Inhibition of the p38 MAPK pathway may have therapeutic uses for inflammatory diseases. However, blocking p38 MAPK activation in vivo is not advisable due to toxicity, significant off-target effects, and lack of oral bioavailability. This concern may be countered by the use of MK2 inhibitors that can dissect the pathways downstream of p38 without affecting additional cellular functions.  相似文献   

2.
3.
4.
P2 receptors are a class of plasma membrane receptors ligated by extracellular nucleotides and expressed ubiquitously throughout the body. Two main families are known: P2X and P2Y. P2X are ligand (ATP)-gated channels, while P2Y are G-protein-coupled seven membrane-spanning receptors. The P2X and the P2Y subfamilies comprise seven and eight members, respectively. While ATP is the only known physiological ligand of P2X receptors, P2Y receptors are known to be also activated by ADP, UTP, UDP and UDP-glucose in a subtype-specific manner. Several P2 subtypes are expressed by leukocytes where they have been implicated in a host of different responses ranging from chemotaxis to differentiation, from proliferation to cytotoxicity, from secretion of inflammatory mediators to cell fusion. However, until recently there was no in vivo proof of the participation of P2 receptors in inflammatory or proliferative disorders and, in addition, few pharmacological modulators of P2 function were available. During the last two years animal and human studies have produced preliminary but nevertheless compelling evidence in support of an important function of P2 receptors in inflammation and hematological tumors. Importantly, selective blockers of these receptors have been synthesized, thus paving the way to the possible development of P2-targeted anti-inflammatory and anti-tumoral therapies.  相似文献   

5.
It has become increasingly apparent that current antiangiogenic therapy elicits modest effects in clinical settings. In addition, it remains challenging to treat cancer metastasis through antiangiogenic regimes. Rho GTPases are essential for vascular endothelial growth factor (VEGF)-mediated angiogenesis and are involved in tumour cell invasion. This review discusses novel therapeutic strategies that interfere with Rho GTPase signalling and further explores this network as a target for anticancer therapy through interference with tumour angiogenesis and invasion. Recent findings describe the development of innovative Rho GTPase inhibitors. Positive clinical effects of Rho GTPase targeting in combination with conventional anticancer therapy is of increasing interest.  相似文献   

6.
7.
Alpha-melanocyte stimulating hormone (alpha-MSH) and other melanocortin peptides are potent anti-inflammatory agents exhibiting efficacy in many animal models of acute and chronic inflammation. They are derived from a larger precursor molecule known as the POMC prohormone and are produced both centrally and peripherally. They exert their effect by binding to melanocortin receptors, of which five have been cloned and partially characterised. Agonism at these receptors leads to adenylate cyclase activation and subsequent increases in cAMP formation. Two receptors to date have been proposed to mediate the actions of the melanocortin peptides in an inflammatory scenario, the MC1 and 3-R, and here we discuss our findings proposing the MC3-R as a novel therapeutic target. The potential anti-inflammatory role for MC3-R is in its infancy, however, recent studies have shown that melanocortin peptides are effective in mice bearing a non-functional MC1-R (recessive yellow e/e mice). This ability to inhibit cell migration appears to be via inhibition in cytokine and adhesion molecule expression and is due to their abilities to interfere with cell signalling pathways. Identification of endogenous mediators of anti-inflammation, their receptors and the pathologies they are effective in, is of benefit to the medical community, and will hopefully have reduced side effects. We believe that specific small molecule agonists directed at MC3-R could be potential novel therapeutics for inflammatory conditions.  相似文献   

8.
  1. Download : Download high-res image (227KB)
  2. Download : Download full-size image
Highlights► Brain involvement strengthens the notion that glaucoma is a complex neurological disease. ► Brain damage in glaucoma can be the result of a transynaptic diffusion triggered by ganglion cell death. ► In some cases glaucoma may be consequent to a neurodegenerative process initiated in the CNS. ► Advanced neuroimaging will assist in the translation of novel therapeutics into the clinic.  相似文献   

9.
Habitual cannabis use has been shown to affect the human immune system, and recent advances in endocannabinoid research provide a basis for understanding these immunomodulatory effects. Cell-based experiments or in vivo animal testing suggest that regulation of the endocannabinoid circuitry can impact almost every major function associated with the immune system. These studies were assisted by the development of numerous novel molecules that exert their biological effects through the endocannabinoid system. Several of these compounds were tested for their effects on immune function, and the results suggest therapeutic opportunities for a variety of inflammatory diseases such as multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, atherosclerosis, allergic asthma, and autoimmune diabetes through modulation of the endocannabinoid system.  相似文献   

10.
The centrosome plays an essential role in cell cycle progression and cell polarity, organizing the microtubule network in interphase and mitosis. During cell division, the centrosome undergoes a series of structural and functional transitions and forms the two poles of the bipolar mitotic spindle. It is the microtubule cytoskeleton that is reorganized to form the two poles, ensuring accurate separation of the two daughter cells. To achieve this a large number of signalling proteins located at the centrosome, undergo precise time-dependent modulation. Protein kinases such as Aurora A, Polo and Neks, trigger and regulate events such as centrosome duplication, maturation and division. These enzymes are also involved in recruiting other proteins in cell division, thus they are likely to mediate the crosstalk between the cell and the centrosome cycle. In its function of microtubule organization, macromolecular complexes also have an important role. Tubulin polymerization confers the structural backbone to cell division, while other proteins may interact with it and/or mediate its recruitment to the centrosome. The interactions of these components regulate centrosome maturation and microtubule growth, essential mechanisms for cell division. Furthermore, dysregulation of this organelle, both at the level of signalling or as a structural element strongly correlates to aberrant proliferation, and the onset of tumours. Therefore, the centrosome represents an attractive target for anti-cancer therapy. Here we review the most important centrosomal proteins and their therapeutic potential. In addition, we summarize the current strategies of intervention and report the present stage of anti-cancer drug development targeting the centrosome.  相似文献   

11.
Inflammatory responses in all tissue compartments require the emigration of leukocytes from the microvasculature through endothelial cells into the respective microenvironment. Adhesion to endothelial cells is the most crucial step in order to facilitate selective and effective capture of leukocytes. The sequence of adhesions events, e.g. rolling, tethering, and firm adhesion are tightly regulated by a variety of molecules expressed by endothelial cells and leukocytes either constitutively or after induction by mainly inflammatory mediators. In diseases with a prominent inflammatory response such as psoriasis, rheumatoid arthritis, or Crohn's disease, interference with leukocyte adhesion and/or emigration may be of substantial clinical effect. A number of therapeutic approaches by using monoclonal antibodies, designed molecules, and other modulators of adhesion molecule expression have been investigated in clinical trials. This review aims to give an overview about the current knowledge of targeting adhesion molecules as a therapeutic strategy to treat inflammatory diseases.  相似文献   

12.
Interleukin-18 is a member of the interleukin-1 family of cytokines with pro-inflammatory and tumor-suppressive properties. Its ability to potently enhance the production of interferon-γ indicates in particular the crucial function of interleukin-18 as an immunomodulatory molecule. In fact, high levels of interleukin-18 are detected in human diseases associated with immunoactivation including viral or bacterial infections and chronic inflammation. Animal models suggest suppression of interleukin-18 bioactivity as a novel therapeutic concept specifically for the treatment of chronic inflammatory diseases such as rheumatoid arthritis, Crohn's disease, and psoriasis. Here we introduce into the biology of interleukin-18 and review immunopharmacological strategies that aim at reducing interleukin-18 bioactivity in human disease.  相似文献   

13.
Vascular endothelial growth factor (VEGF) and its receptors (VEGFRs) have crucial roles in both physiological and pathological angiogenesis. The VEGF family consists of VEGF-A (generally called VEGF), VEGF-B, VEGF-C, VEGF-D, and placental growth factor (PlGF). These peptides show different affinities for VEGFR subtypes. VEGFR exists as three subtypes, VEGFR-1, VEGFR-2, and VEGFR-3, and is structurally related to platelet-derived growth factor receptors. All subtypes possess seven immunoglobulin-like domains in the extracellular region and a tyrosine kinase domain in the intracellular region. VEGF-A activates VEGFR-1 and VEGFR-2, whereas VEGF-B and PlGF bind to only VEFGR-1. VEGF-C and VEGF-D only bind to VEGFR-3. VEGFR-1 (fms-like tyrosine kinase-1, Flt-1) negatively regulates embryonic vasculogenesis and is involved in tumor angiogenesis via activation of monocytes and macrophages. VEGFR-2 (KDR in humans or Flk-1 in mice) is predominantly responsible for both embryonic vasculogenesis and tumor angiogenesis. In contrast, VEGFR-3 (Flt-4) regulates lymphangiogenesis. Consequently, VEGF-A and VEGFR-2 are currently the main targets for antiangiogenic therapy. Bevacizumab is a humanized monoclonal antibody against VEGF-A, and aflibercept (VEGF-Trap) is a soluble fusion protein of the extracelluar domain of VEGFR-1 and VEGFR-2 and the Fc region of immunoglobulin G (IgG). They neutralize VEGF-A, resulting in prevention of tumor angiogenesis. VEGFR tyrosine kinase inhibitors such as sunitinib and sorafenib are also effective in antiangiogenic tumor therapy by inhibiting VEGFR signaling. Anti-VEGF drugs are a promising therapy for cancer patients.  相似文献   

14.
Angiogenesis: a target for cancer therapy   总被引:4,自引:0,他引:4  
The induction of neoangiogenesis is a critical step already present at the early stages of tumor development and dissemination. The progressive identification of molecules playing a relevant role in neoangiogenesis has fostered the development of a wide variety of new selective agents. Antiangiogenic drugs should be integrated with conventional therapies; however, the design of the best sequence and timing for such combined treatments are still under investigation. In this review will be discussed the signal transduction mechanisms of angiogenic molecules, the development of specific inhibitors and their translation into clinical studies and, finally, the new perspectives in antiangiogenic therapy.  相似文献   

15.
Mitochondria, the cells powerhouses, are essential for maintaining cell life, and they also play a major role in regulating cell death, which occurs upon permeabilization of their membranes. Once mitochondrial membrane permeabilization (MMP) occurs, cells die either by apoptosis or necrosis. Key factors regulating MMP include calcium, the cellular redox status (including levels of reactive oxygen species) and the mobilization and targeting to mitochondria of Bcl-2 family members. Contemporary approaches to targeting mitochondria in cancer therapy use strategies that either modulate the action of Bcl-2 family members at the mitochondrial outer membrane or use specific agents that target the mitochondrial inner membrane and the mitochondrial permeability transition (PT) pore. The aim of this review is to describe the major mechanisms regulating MMP and to discuss, with examples, mitochondrial targeting strategies for potential use in cancer therapy.  相似文献   

16.
Angiogenesis is a process of development and of growth of new capillary blood vessels from pre-existing vessels. When pathological, it contributes to the development of numerous types of tumors, and the formation of metastases. In order to grow, carcinoma need new blood vessels to form so that they can feed themselves. Therefore, nowadays the concept according to which the development of cancer is angiogenesis dependent is generally recognized. This concept makes the control of tumoral angiogenesis one of the promising therapeutic ways in cancerology. The transition from the latent phase to the invasive and metastatic phase of a cancer is linked to what is called the angiogenic switch. It implies complex cellular and molecular interactions between cancerous cells, endothelial cells and the components of the extra-cellular matrix and namely the existence of specific proteins secreted by the tumoral cells able to stimulate the proliferation of capillary endothelial cells. Among them, VEGF, Vascular Endothelial Growth Factor was found in several types of tumors. It has shown a tumoral angiogenic activity in vitro and in vivo, and thus is a privileged target for the control of angiogenesis in an anti-tumoral goal. The role of VEGF in tumoral angiogenesis has been extensively studied. It has been proved to undergo as well autocrine as paracrine stimulation of tumoral angiogenesis. During the last few years, several members of the VEGF family have been described namely the VEGF-A, B, C, D, E and placenta growth factor (PlGF) among which VEGF-A (121 aminoacids) plays a role of prime importance in angiogenesis. VEGF is a 45 kDA glycoprotein, homodimeric, basic, and able to bind heparin. The three-dimensional structure of VEGF has been recently determined, by X-rays diffraction, and NMR spectroscopy. The different forms of the VEGF bind to receptors that exhibit a tyrosine-kinase activity (RTK). The specific action of the VEGF on the endothelial cells is mainly regulated by two types of RTK of the VEGF family, VEGFR1, or Flt-1, and VEGFR2, or KDR/Flk-1. Mutagenesis studies have shown that only a small number of VEGF residues are important and essential for the binding with RTK. Data described to date from the studies of VEGF/RTK interactions agree to the hypothesis that KDR receptor is the main human receptor responsible for the VEGF activity in both physiological and pathological vascular development, and VEGF-KDR signalling pathway has been validated as a priority target for the development of anti- and pro- angiogenic agents. Therefore angiogenesis mediated by VEGF constitutes a new target for anti-cancer therapy which has explored through different ways of intervention aiming at the blocking of the tumoral angiogenesis. The main ones are: -Struggle against the stroma degradation and invasion by the neo-vessels -Inhibition of activated endothelial cells. -Inhibition of angiogenic factors production and of their receptors. -Inhibition of the VEGF signal pathway, by peptides blocking the bond between VEGF and its receptors through the inhibition of intracellular transduction of VEGF signal. In conclusion, this bibliographic study allows to situate works of medicinal chemistry in the context of present knowledge concerning the vascular endothelial growth factor (VEGF) and its role in angiogenesis.  相似文献   

17.
VEGF as a potential target for therapeutic intervention in depression   总被引:2,自引:0,他引:2  
Antidepressants are among the most widely prescribed drugs, however the mechanism underlying their therapeutic efficacy is not known. Neurotrophic factors represent a promising class of targets for antidepressant treatments. We recently characterized a role for vascular endothelial growth factor (VEGF) in cellular and behavioral antidepressant responses. VEGF is a potent mitogen and survival factor for endothelial cells (ECs) and neurons, and modulator of synaptic transmission. Because VEGF has been implicated in a variety of diseases, understanding the molecular and cellular specificity of antidepressant-induced VEGF will be crucial to determine its potential as a therapeutic target in depression.  相似文献   

18.
19.
20.
The brain represents the primary centre for the regulation and control of all our body activities, receiving and interpreting sensory impulses and transmitting information to the periphery. Most importantly, it is also the seat of consciousness, thought, emotion and especially memory, being in fact able to encode, store and recall any information. Memory is really what makes possible so many of our complex cognitive functions, including communication and learning, and surely without memory, life would lose all of its glamour and purpose. Age-associated mental impairment can range in severity from forgetfulness at the border with pathology to dementia, such as in Alzheimer's disease. In recent years, one of the most relevant observations of research on brain aging relates to data indicating that age-related cognitive decline is not only due to neuronal loss, as previously thought; instead, scientists now believe that age-associated functional changes have more to do with the dysfunctions occurring over time. Within this context a prominent role is certainly played by signal transduction cascades which guarantee neuronal cell to elaborate coordinated responses to the multiple signals coming from the outside and to adapt itself to the environmental changes and requests. This review will focus the attention on protein kinase C pathway, with a particular interest on its activation process, and on the role of protein-lipid and protein-protein interactions to selectively localize the cellular responses. Furthermore, information is emerging and will be discussed on the possibility of mRNA stabilization through PKC activation. This review will also approach the issue on how alterations of these molecular cascades may have implications in physiological and pathological brain aging, such as Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号