首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIMS: Our aim was to investigate the effect of the CYP2C8 inhibitor trimethoprim on the pharmacokinetics and pharmacodynamics of the antidiabetic drug repaglinide, and to examine the influence of the former on the metabolism of the latter in vitro. METHODS: In a randomized, double-blind, crossover study with two phases, nine healthy volunteers took 160 mg trimethoprim or placebo orally twice daily for 3 days. On day 3, 1 h after the last dose of trimethoprim or placebo, they ingested a single 0.25 mg dose of repaglinide. Plasma repaglinide and blood glucose concentrations were measured for up to 7 h post-dose. In addition, the effect of trimethoprim on the metabolism of repaglinide by human liver microsomes was investigated. RESULTS: Trimethoprim raised the AUC(0, infinity ) and C(max) of repaglinide by 61% (range, 30-117%; P= 0.0008) and 41% (P = 0.005), respectively, and prolonged the t((1/2)) of repaglinide from 0.9 to 1.1 h (P = 0.001). Trimethoprim had no significant effect on the pharmacokinetics of its aromatic amine metabolite (M1), but decreased the M1 : repaglinide AUC(0, infinity ) ratio by 38% (P = 0.0005). No effect of trimethoprim on the blood glucose-lowering effect of repaglinide was detectable. In vitro, trimethoprim inhibited the metabolism of (220 nm) repaglinide in a concentration-dependent manner. CONCLUSIONS: Trimethoprim raised the plasma concentrations of repaglinide probably by inhibiting its CYP2C8-mediated biotransformation. Although the interaction did not significantly enhance the effect of repaglinide on blood glucose concentration at the drug doses used, the possibility of an increased risk of hypoglycaemia should be considered during concomitant use of trimethoprim and repaglinide in patients with diabetes.  相似文献   

2.

Purpose

To predict the impact of the CYP2C8*3 genotype on rosiglitazone exposure in the absence and presence of trimethoprim.

Methods

Prior in vitro and in vivo information for rosiglitazone and trimethoprim were collated from the literature. Specifically, data on the frequency of the different allelic forms of CYP2C8 and their metabolic activity for rosiglitazone were incorporated into a physiologically-based pharmacokinetic (PBPK) model within the Simcyp Simulator (V11.1) to predict differences in the relative exposure of rosiglitazone according to CYP2C8*3 genotype in a virtual population.

Results

Following multiple doses of 8 mg rosiglitazone, the predicted mean AUC(0–24) was 37 % lower in CYP2C8*3 homozygotes compared with wildtype homozygotes (p?< ?0.001), which was consistent with the 36 % lower value observed in vivo (p?< ?0.001) Kirchheiner et al. (Clin Pharmacol Ther 80:657–667, 2006). Predicted median AUC ratios of rosiglitazone in the presence and absence of trimethoprim ranged from 1.35 to 1.66 for ten virtual trials of subjects with the CYP2C8*1/*1 genotype, which included the observed value of 1.42. In subjects with the CYP2C8*1/*3 genotype, the predicted AUC ratios for all trials were higher than the observed value of 1.18 Kirchheiner et al. (Clin Pharmacol Ther 80:657–667, 2006).

Conclusions

Investigating the drug interactions in individuals with rare allelic forms of drug metabolising enzymes is fraught with many practical problems. Current study demonstrates the utility of prior in vitro metabolism data from such allelic forms to predict the relative exposure of a drug as a function of genotype. However, in vitro inhibition data obtained in one allelic variant (e.g. CYP2C8*1) may not be adequate to predict the in vivo interactions in another allele (e.g. CYP2C8*3), since the inhibitory characteristics of perpetrator might be different in each allelic variant in the same way as that of metabolism of the victim drug by such variants of the enzyme.  相似文献   

3.
Previous in vitro studies have demonstrated that quercetin inhibits CYP2C8, but there are no available data to indicate that quercetin inhibits CYP2C8 in vivo. The effect of long-term use of quercetin on the pharmacokinetics of rosiglitazone was evaluated. After administration of quercetin or matched placebo for 3 weeks in a crossover manner, rosiglitazone 4 mg was administered, and the pharmacokinetics of rosiglitazone and N-desmethylrosiglitazone were determined. For AUCinfinity, AUClast, and Cmax, the geometric mean ratios (90% confidence interval) for (quercetin + rosiglitazone/placebo + rosiglitazone) were 0.98 (0.92, 1.05), 0.99 (0.92, 1.05), and 1.01 (0.88, 1.14), respectively. Metabolic conversion based on the AUC ratio of N-desmethylrosiglitazone/rosiglitazone in the quercetin phase (0.49 +/- 0.17) was similar to that of the placebo phase (0.47 +/- 0.14) (P = .574). Even though the acute interaction that would occur during the first few days of concurrent administration of quercetin cannot be excluded, these results indicate that long-term use of quercetin does not inhibit CYP2C8 activity, and the usage has little possibility of interacting with drugs that are metabolized by CYP2C8, including rosiglitazone.  相似文献   

4.
AIMS: To identify the human cytochrome P450 enzyme(s) involved in the in vitro metabolism of rosiglitazone, a potential oral antidiabetic agent for the treatment of type 2 diabetes-mellitus. Method The specific P450 enzymes involved in the metabolism of rosiglitazone were determined by a combination of three approaches; multiple regression analysis of the rates of metabolism of rosiglitazone in human liver microsomes against selective P450 substrates, the effect of selective chemical inhibitors on rosiglitazone metabolism and the capability of expressed P450 enzymes to mediate the major metabolic routes of rosiglitazone metabolism. Result The major products of metabolism following incubation of rosiglitazone with human liver microsomes were para-hydroxy and N-desmethyl rosiglitazone. The rate of formation varied over 38-fold in the 47 human livers investigated and correlated with paclitaxel 6alpha-hydroxylation (P<0.001). Formation of these metabolites was inhibited significantly (>50%) by 13-cis retinoic acid, a CYP2C8 inhibitor, but not by furafylline, quinidine or ketoconazole. In addition, both metabolites were produced by microsomes derived from a cell line transfected with human CYP2C8 cDNA. There was some evidence for CYP2C9 playing a minor role in the metabolism of rosiglitazone. Sulphaphenazole caused limited inhibition (<30%) of both pathways in human liver microsomes and microsomes from cells transfected with CYP2C9 cDNA were able to mediate the metabolism of rosiglitazone, in particular the N-demethylation pathway, albeit at a much slower rate than CYP2C8. Rosiglitazone caused moderate inhibition of paclitaxel 6alpha-hydroxylase activity (CYP2C8; IC50=18 microm ), weak inhibition of tolbutamide hydroxylase activity (CYP2C9; IC50=50 microm ), but caused no marked inhibition of the other cytochrome P450 activities investigated (CYP1A2, 2A6, 2C9, 2C19, 2D6, 2E1, 3A and 4A). Conclusion CYP2C8 is primarily responsible for the hydroxylation and N-demethylation of rosiglitazone in human liver; with minor contributions from CYP2C9.  相似文献   

5.
AIMS: To investigate the effect of multiple dosing with montelukast, a selective leukotriene-receptor antagonist, on the pharmacokinetics of rosiglitazone, a CYP2C8 substrate, in humans. METHODS: A two-period, randomized crossover study was conducted in 10 healthy subjects. After administration of oral doses of placebo or 10 mg montelukast daily for 6 days, 4 mg rosiglitazone was administered and plasma samples were obtained for 24 h and analyzed for rosiglitazone and N-desmethylrosiglitazone using high-performance liquid chromatography with fluorescence detection. RESULTS: During the montelukast phase, the total area under the time-concentration curve (AUC) and peak plasma concentration of rosiglitazone were 102% (90% CI 98, 107%) and 98% (90% CI 92, 103%) of the corresponding values during the placebo phase, respectively. Multiple dosing with montelukast did not affect the oral clearance of rosiglitazone significantly (90% CI 94, 105%; P = 0.50). The AUC ratio and plasma concentration ratios of N-desmethylrosiglitazone : rosiglitazone were not changed by multiple dosing with montelukast (90% CI 90, 103%; P = 0.14). CONCLUSIONS: Multiple doses of montelukast do not inhibit CYP2C8-mediated rosiglitazone metabolism in vivo despite in vitro findings indicating that montelukast is a selective CYP2C8 inhibitor.  相似文献   

6.
CYP2E1 metabolizes compounds, including clinical drugs, organic solvents, and tobacco-specific carcinogens. Chlorzoxazone (CZN) is a probe drug used to phenotype for CYP2E1 activity. Smokers have increased CZN clearance during smoking compared with nonsmoking periods; however, it is unclear which cigarette smoke component is causing the increased activity. The relationships between in vivo CZN disposition, in vitro CZN metabolism, and hepatic CYP2E1 have not been investigated in a within-animal design. In control-treated monkeys (Cercopithecus aethiops), the in vivo CZN area under the curve extrapolated to infinity (AUC(inf)) was 19.7 +/- 4.5 microg x h/ml, t1/2 was 0.57 +/- 0.07 h, and terminal disposition rate constant calculated from last three to four points on the log-linear end of the concentration versus time curve was 1.2 +/- 0.2 /h. In vitro, the apparent Vmax was 3.48 +/- 0.02 pmol/min/mug microsomal protein, and the Km was 95.4 +/- 1.8 microM. Chronic nicotine treatment increased in vivo CZN disposition, as indicated by a 52% decrease in AUC(inf) (p < 0.01) and 52% decrease in Tmax (p < 0.05) compared with control-treated monkeys. The log metabolic ratios at 0.5, 1, 2, and 4 h significantly negatively correlated with CZN AUC(inf) (p = 0.01-0.0001). Monkey hepatic CYP2E1 levels significantly correlated with both in vivo AUC(inf) (p = 0.03) and in vitro (p = 0.004) CZN metabolism. Together, the data indicated that nicotine induction of in vivo CZN disposition is related to the rates of in vitro CZN metabolism and hepatic microsomal CYP2E1 protein levels. Nicotine is one component in cigarette smoke that can increase in vivo CZN metabolism via induction of hepatic CYP2E1 levels. Thus, nicotine exposure may affect the metabolism of CYP2E1 substrates such as acetaminophen, ethanol, and benzene.  相似文献   

7.
AIMS: To characterize the in vitro and in vivo inhibitory effect of stiripentol, a new anticonvulsant, on the metabolism of carbamazepine and saquinavir, which are substrates of CYP3A4. METHODS: Human liver microsomes and cDNA-expressed CYP enzymes were used for the in vitro experiments. Pharmacokinetic data from epileptic children and healthy adults were used for the carbamazepine and saquinavir in vivo studies, respectively. RESULTS: Carbamazepine biotransformation to its 10,11-epoxide by human liver microsomes (Vmax = 10.3 nmol min(-1) nmol(-1) P450, apparent Km = 362 microm), cDNA-expressed CYP3A4 (Vmax = 1.17 nmol min(-1) nmol(-1) P450, apparent Km = 119 microm) and CYP2C8 (Vmax = 0.669 nmol min(-1) nmol(-1) P450, apparent Km = 757 microm) was inhibited by stiripentol (IC50 14, 5.1, 37 microM and apparent Ki 3.7, 2.5, 35 microm, respectively). Saquinavir biotransformation to its major metabolite M7 by human liver microsomes (Vmax = 5.7 nmol min(-1) nmol(-1) P450, apparent Km = 0.79 microm) was inhibited by stiripentol (IC50 163 microM, apparent Ki 86 microm). In epileptic children treated with carbamazepine and stiripentol, the plasma concentration ratio of carbamazepine epoxide/carbamazepine was decreased by 65%. The in vivo apparent Ki for stiripentol ranged from 10.5 to 41.4 microm. The pharmacokinetics of saquinavir was not modified by stiripentol in healthy adults. The 95% confidence intervals for the difference for Cmax and AUC of saquinavir between the placebo and stiripentol phase were (-39.8, 39.8) and (-33.2, 112), respectively. CONCLUSIONS: These results showed that stiripentol was a weak inhibitor of saquinavir metabolism both in vitro and in vivo. In contrast, stiripentol is a potent inhibitor of carbamazepine 10,11-epoxide formation in vitro and in vivo in epileptic patients.  相似文献   

8.
The current work evaluated the effect of the CYP3A inhibitor ketoconazole on the oral absorption and first-pass metabolism of cyclosporine administered as the SangCyA formulation. Groups of 6 male Sprague-Dawley rats were administered SangCyA (5 and 15 mg/kg) by oral gavage alone and with ketoconazole (30 mg/kg). Blood cyclosporine levels were measured over 6 h, encompassing the cyclosporine absorption window. A significant vehicle effect on SangCyA absorption was observed. Comparing a 15 mg/kg dose, cyclosporine C(max) (mean+/-SD 1.12+/-0.16 microg/ml) and AUC(0-6) (5.34+/-0.71 microg h/ml) were 50% lower when propylene glycol was used as gavage vehicle instead of saline (2.19+/-0.94 microg/ml and 9.52+/-2.52 microg h/ml, respectively). Coefficients-of-variation for these parameters were halved in the propylene glycol vehicle however T(max) was unaffected. Ketoconazole increased cyclosporine C(max) and AUC(0-6) by 50-60%, regardless of the vehicle or the cyclosporine dose, without altering T(max) (2-3 h). The small effect of ketoconazole suggests that CYP3A-mediated intestinal and first-pass hepatic metabolism are minor determinants of cyclosporine oral bioavailability in rats.  相似文献   

9.
AIMS: To examine the potential for alosetron to alter the pharmacokinetics of theophylline by inhibiting its metabolism, as suggested by in vitro and in vivo effects on CYP1A2 activity. METHODS: Ten healthy female volunteers received theophylline 200 mg twice daily alone for 8 days and with alosetron 1 mg twice daily for 15 days in this randomized, placebo-controlled, two-way-crossover study. RESULTS: Alosetron had no significant effect on theophylline plasma concentrations (Cmax approximately 9 microg ml(-1), AUC approximately 90 microg ml(-1) h) or oral formation clearance of three major metabolites produced via CYP1A2: 3-methylxanthine, 1-methylurate and 1,3-dimethylurate (5, 7 and 16 ml min(-1), respectively). Concomitant administration of alosetron and theophylline was well tolerated. CONCLUSIONS: The absence of a clinical drug interaction involving inhibition of theophylline metabolism by alosetron was not predicted by in vitro and in vivo metabolic probe data.  相似文献   

10.
Our objective was to identify the cytochrome P450 (CYP) enzymes that metabolise pioglitazone and to examine the effects of the CYP2C8 inhibitors montelukast, zafirlukast, trimethoprim and gemfibrozil on pioglitazone metabolism in vitro. The effect of different CYP isoform inhibitors on the elimination of a clinically relevant concentration of pioglitazone (1 microM) and the formation of the main primary metabolite M-IV were studied using pooled human liver microsomes. The metabolism of pioglitazone by CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4 and CYP3A5 was investigated using human recombinant CYP isoforms. In particular, the inhibitors of CYP2C8, but also those of CYP3A4, markedly inhibited the elimination of pioglitazone and the formation of M-IV by HLM. Inhibitors selective to other CYP isoforms had a minor effect only. Of the recombinant isoforms, CYP2C8 (20 pmol/ml) metabolised pioglitazone markedly (56% in 60 min.), and also CYP3A4 had a significant effect (37% in 60 min.). Montelukast, zafirlukast, trimethoprim and gemfibrozil inhibited pioglitazone elimination in HLM with IC50 values of 0.51 microM, 1.0 microM, 99 microM and 98 microM, respectively, and the formation of the metabolite M-IV with IC50 values of 0.18 microM, 0.78 microM, 71 microM and 59 microM, respectively. In conclusion, pioglitazone is metabolised mainly by CYP2C8 and to a lesser extent by CYP3A4 in vitro. CYP2C9 is not significantly involved in the elimination of pioglitazone. The effect of different CYP2C8 inhibitors on pioglitazone pharmacokinetics needs to be evaluated also in vivo because, irrespective of their in vitro CYP2C8 inhibitory potency, their pharmacokinetic properties may affect the extent of interaction.  相似文献   

11.
To evaluate the inhibitory effects of trimethoprim and sulfamethoxazole on cytochrome P450 (P450) isoforms, selective marker reactions for CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 were examined in human liver microsomes and recombinant CYP2C8 and CYP2C9. The in vivo drug interactions of trimethoprim and sulfamethoxazole were predicted in vitro using [I]/([I] + K(i)) values. With concentrations ranging from 5 to 100 microM, trimethoprim exhibited a selective inhibitory effect on CYP2C8-mediated paclitaxel 6alpha-hydroxylation in human liver microsomes and recombinant CYP2C8, with apparent IC(50) (K(i)) values of 54 microM (32 microM) and 75 microM, respectively. With concentrations ranging from 50 to 500 microM, sulfamethoxazole was a selective inhibitor of CYP2C9-mediated tolbutamide hydroxylation in human liver microsomes and recombinant CYP2C9, with apparent IC(50) (K(i)) values of 544 microM (271 microM) and 456 microM, respectively. With concentrations higher than 100 microM trimethoprim and 500 microM sulfamethoxazole, both drugs lost their selectivity for the P450 isoforms. Based on estimated total hepatic concentrations (or free plasma concentrations) of the drugs and the scaling model, one would expect in vivo in humans 80% (26%) and 13% (24%) inhibition of the metabolic clearance of CYP2C8 and CYP2C9 substrates by trimethoprim and sulfamethoxazole, respectively. In conclusion, trimethoprim and sulfamethoxazole can be used as selective inhibitors of CYP2C8 and CYP2C9 in in vitro studies. In humans, trimethoprim and sulfamethoxazole may inhibit the activities of CYP2C8 and CYP2C9, respectively.  相似文献   

12.
Single-dose methoxsalen effects on human cytochrome P-450 2A6 activity.   总被引:4,自引:0,他引:4  
Methoxsalen (8-methoxypsoralen) is an effective and selective mechanism-based inhibitor of human hepatic cytochrome P-450 (CYP)2A6 in vitro, and may have utility as a clinical probe for CYP2A6-catalyzed xenobiotic metabolism in humans in vivo. This investigation explored single-dose oral methoxsalen effects on human CYP2A6 activity in vivo, assessed by coumarin 7-hydroxylation. Eleven volunteers received 50 mg of oral coumarin on two occasions in a randomized crossover, 90 min after oral methoxsalen or nothing (controls). Plasma and urine 7-hydroxycoumarin and plasma methoxsalen concentrations were determined by HPLC. Methoxsalen pretreatment diminished area under the curve of plasma 7-hydroxycoumarin versus time by 24% (2.40 +/- 0.48 versus 3.20 +/- 0.55 microg. h. ml(-1); P <.001), and also decreased plasma 7-hydroxycoumarin C(max) (0.80 +/- 0.26 versus 1.4 +/- 0.5 microg/ml; P <.05); however, 7-hydroxycoumarin concentrations were only diminished 0.75 to 2 h after coumarin administration, but not thereafter. Methoxsalen diminished urine 7-hydroxycoumarin excretion in 0- to 1- and 1- to 2-h samples, but not thereafter, and total excretion was unchanged. Considerable individual variability in methoxsalen plasma concentrations was observed. There were significant correlations between the decrease in plasma 7-hydroxycoumarin C(max) and plasma methoxsalen C(max), but not between the decrease in plasma 7-hydroxycoumarin area under the curve and methoxsalen disposition. These results show that single-dose oral methoxsalen, in conventional doses, was a moderately effective inhibitor of human CYP2A6 activity in vivo, however, the duration of inhibition was limited. Interindividual variability in the extent of CYP2A6 inhibition appeared attributable to variability in the absorption and first-pass clearance of methoxsalen. Alternative doses, timing, and/or routes of methoxsalen administration are required for greater, longer, and more reproducible CYP2A6 inhibition than that provided by single-dose methoxsalen.  相似文献   

13.
目的研究人体内细胞色素P450 2C9酶突变等位基因CYP2C9*3对格列本脲和氯诺昔康药代动力学的影响。方法采用PCR-RFLP方法对83名无血源关系的受试者进行CYP2C9*3等位基因的筛查,基因型为CYP2C9*1/*3(n=7)和*1/*1(n=11)的受试者分别参加了格列本脲和氯诺昔康的人体药代动力学试验。采用LC/MS/MS法分别测定受试者口服格列本脲(2.5 mg)和氯诺昔康(8 mg)后不同时刻血浆中格列本脲和氯诺昔康的浓度。结果两组受试者口服格列本脲后,CYP2C9*1/*3组AUC0-∞显著增加,为CYP2C9*1/*1组的1.5倍,CL/F降低了40%;两组受试者口服氯诺昔康后,CYP2C9*1/*3组AUC0-∞亦显著增加,为CYP2C9*1/*1组的2.2倍,CL/F降低了55%。结论CYP2C9酶的突变等位基因CYP2C9*3对格列本脲和氯诺昔康的药代动力学有显著性影响。  相似文献   

14.
Imatinib is a highly selective tyrosine kinase inhibitor, and is used for the treatment of chronic myeloid leukaemia (CML) and gastrointestinal stromal tumours (GISTs) in humans. The aim of this study is to determine the in vitro and in vivo pharmacokinetics of imatinib in dogs and which cytochrome P450 (CYPs) contribute to its metabolism. Imatinib was administered orally or intravenously to dogs and the time of the peak concentration (T(max)) of imatinib was 4-9 h. The mean half-life was 622 +/- 368 min, and the AUC was 1256 +/- 809 microM * min after oral administration. The range of C0 of intravenously injected dogs was 12-24 microM. The half-life and AUC after intravenous injection were 206 +/- 112 min and 1026 +/- 371 microM * min, respectively. Recombinant system of dog CYP3A12 and CYP2C21 showed that CYP3A12 contributed to the metabolism of imatinib. The inhibition of CYP3A-dependent activity using a rat anti-CYP3A antibody or ketoconazole revealed that CYP3A12 plays a major role in the metabolism of imatinib in dog liver microsomes.  相似文献   

15.
To characterize a phase 1 metabolite of mycophenolic acid (MPA) and the human cytochrome P450 isoform(s) (CYP) involved in its formation. MPA metabolites were investigated in blood and urine samples from transplant patients under mycophenolate mofetil therapy (n = 5) as well as with in vitro incubation of MPA with human liver microsomes. The CYP isoforms involved in the oxidative metabolism were investigated in vitro on human liver microsomes with isoform-specific inhibitors as well as in human embryonic kidney cell lines expressing recombinant human CYPs. The analytic methods used were based on LC-MS/MS. A 6-O-desmethyl-MPA (DM-MPA) metabolite and 2 related glucuronides were identified in patients' blood and urine. Human liver microsomes produced DM-MPA with an apparent Km = 0.83 +/- 0.06 mmol/L and Vmax = 5.57 +/- 0.29 pmol/mg/min. The CYP3A inhibitor ketoconazole was found to inhibit DM-MPA formation by 50.3% with respect to the control, and trimethoprim (CYP2C8 inhibitor) reduced it by 30.1%. However, DM-MPA was produced only by the transfected cell lines expressing CYP3A4 and, to a lesser extent, CYP3A5. In vitro, MPA at concentrations above the plasma therapeutic range was found to decrease the metabolism of tacrolimus, suggesting a possible competition for CYP3A. No effect of MPAat therapeutic or higher level was found on cyclosporin metabolism. The phase 1 metabolite of MPA previously known as M-3 was identified as 6-O-desmethyl-MPA and is produced by CYP3A4/5 and probably CYP2C8. MPA might compete with other drugs on CYP3A because of its high therapeutic concentrations, although this was not the case for cyclosporin and to only a small extent for tacrolimus.  相似文献   

16.
Type 2 diabetes mellitus is a complex disease combining defects in insulin secretion and insulin action. New compounds called thiazolidinediones or glitazones have been developed for reducing insulin resistance. After the withdrawal of troglitazone because of liver toxicity, two compounds are currently used in clinical practice, rosiglitazone and pioglitazone. These compounds are generally used in combination with other pharmacological agents. Because they are metabolised via cytochrome P450 (CYP), glitazones are exposed to numerous pharmacokinetic interactions. CYP2C8 and CYP3A4 are the main isoenzymes catalysing biotransformation of pioglitazone (as with troglitazone), whereas rosiglitazone is metabolised by CYP2C9 and CYP2C8. For both rosiglitazone and pioglitazone, the most relevant interactions have been described in healthy volunteers with rifampicin (rifampin), which results in a significant decrease of area under the plasma concentration-time curve [AUC] (54-65% for rosiglitazone, p<0.001; 54% for pioglitazone, p<0.001), and with gemfibrozil, which results in a significant increase of AUC (130% for rosiglitazone, p<0.001; 220-240% for pioglitazone, p<0.001). The relevance of such drug-drug interactions in patients with type 2 diabetes remains to be evaluated. However, in the absence of clinical data, it is prudent to reduce the dosage of each glitazone by half in patients treated with gemfibrozil. Conversely, rosiglitazone and pioglitazone do not seem to significantly affect the pharmacokinetics of other compounds. Although some food components have also been shown to potentially interfere with drugs metabolised with the CYP system, no published study deals specifically with these possible CYP-mediated food-drug interactions with glitazones.  相似文献   

17.
Cytochrome P-450 3A4 and 2C8 are involved in zopiclone metabolism.   总被引:3,自引:0,他引:3  
Zopiclone is a widely prescribed, nonbenzodiazepine hypnotic that is extensively metabolized by the liver in humans. The aim of the present study was to identify the human cytochrome P-450 (CYP) isoforms involved in zopiclone metabolism in vitro. Zopiclone metabolism was studied with different human liver microsomes and a panel of heterologously expressed human CYPs (CYP1A2, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, and 3A4). In human liver microsomes, zopiclone was metabolized into N-desmethyl-zopiclone (ND-Z) and N-oxide-zopiclone (NO-Z) with the following K(m) and V(m) of 78 +/- 5 and 84 +/- 19 microM, 45 +/- 1 and 54 +/- 5 pmol/min/mg for ND-Z and NO-Z generation, respectively. Ketoconazole (CYP3A inhibitor) inhibited approximately 40% of the generation of both metabolites, sulfaphenazole (CYP2C inhibitor) inhibited the formation of ND-Z, whereas alpha-naphtoflavone (CYP1A), quinidine (CYP2D6), and chlorzoxazone (CYP2E1) did not affect zopiclone metabolism. The generation of ND-Z and NO-Z were highly correlated to testosterone 6beta-hydroxylation (CYP3A activity, r = 0.95 and 0.92, respectively; p =.0001), and ND-Z was highly correlated to CYP2C8 activity (paclitaxel 6alpha-hydroxylase; r = 0.76, p =.004). Recombinant CYP2C8 had the highest enzymatic activity toward zopiclone metabolism into both its metabolites, followed by CYP2C9 and 3A4. CYP3A4 is the major enzyme involved in zopiclone metabolism in vitro, and CYP2C8 contributes significantly to ND-Z formation.  相似文献   

18.
To clarify the oxidative metabolism of methadone (R)- and (S)-enantiomers, the depletion of parent (R)- and (S)-methadone and the formation of racemic 2-ethylidene-1,5-dimethyl-3,3-diphe-nylpyrolidine were studied using human liver microsomes and recombinant cytochrome P450 enzymes. Based on studies with isoform-selective chemical inhibitors and expressed enzymes, CYP3A4 was the predominant enzyme involved in the metabolism of (R)-methadone. However, it has different stereoselectivity toward (R)- and (S)-methadone. In recombinant CYP3A4, the metabolic clearance of (R)-methadone was about 4-fold higher than that of (S)-methadone. CYP2C8 is also involved in the metabolism of methadone, but its contribution to the metabolism of (R)-methadone was smaller than that of CYP3A4. But for the metabolism of (S)-methadone, the roles of CYP2C8 and CYP3A4 appeared equal. Although CYP2D6 is involved in the metabolism of (R)- and (S)-methadone, its role was smaller compared with CYP3A4 and CYP2C8. Using clinically relevant concentrations of ketoconazole (1 microM, selective CYP3A4 inhibitor), trimethoprim (100 microM, selective CYP2C8 inhibitor), and paroxetine (5 microM, potent CYP2D6 inhibitor), these inhibitors decreased the hepatic metabolism of (R)-[(S)-]methadone by 69% (47%), 22% (51%), and 41% (77%), respectively. However, inhibition of the metabolism of (R)- and (S)-methadone by paroxetine was due to inhibition not only of CYP2D6, but also CYP3A4 and, to a minor extent, CYP2C8. The present in vitro findings indicated that CYP3A4, CYP2C8, and CYP2D6 are all involved in the stereoselective metabolism of methadone (R)- and (S)-enantiomers. These data suggest that coadministration of inhibitors of CYP3A4 and CYP2C8 may produce clinically significant drug-drug interactions with methadone.  相似文献   

19.
4-Vinylcyclohexene (VCH), an occupational chemical, causes destruction of small preantral follicles (F1) in mice. Previous studies suggested that VCH is bioactivated via cytochromes P450 (CYP450) to the ovotoxic, diepoxide metabolite, VCD. Whereas hepatic CYP450 isoforms 2E1, 2A, and 2B can metabolize VCH, the role of ovarian metabolism is unknown. This study investigated expression of these isoforms in isolated ovarian fractions (F1, 25-100 microm; F2, 100-250 microm; F3, >250 microm; interstitial cells, Int) from B6C3F1 mice dosed daily (15 days; ip) with vehicle, VCH (7.4 mmol/kg/day) or VCD (0.57 mmol/kg/day). Ovaries were removed and either isolated into specific ovarian compartments for mRNA analysis, fixed for immunohistochemistry, or prepared for enzymatic assays. mRNA and protein for all isoforms were expressed/distributed in all ovarian fractions from vehicle-treated mice. In the targeted F1 follicles, VCH or VCD dosing increased (p < 0.05) mRNA encoding CYP2E1 (645 +/- 14% VCH; 582 +/- 16% VCD), CYP2A (689 +/- 8% VCH; 730 +/- 22% VCD), and CYP2B (246 +/- 7% VCH) above control. VCH dosing altered (p < 0.05) mRNA encoding CYP2E1 in nontargeted F3 follicles (168 +/- 7%) and CYP2A in Int (207 +/- 19%) above control. Immunohistochemical analysis revealed the greatest staining intensity for all CYP isoforms in the Int. VCH dosing altered (p < 0.05) staining intensity in Int for CYP2E1 (19 +/- 2.4% below control) and CYP2A (39 +/- 5% above control). Staining intensity for CYP2B was increased (p < 0.05) above control in granulosa cells of small preantral (187 +/- 42%) and antral (63 +/- 8%) follicles. Catalytic assays in ovarian homogenates revealed that CYP2E1 and CYP2B were functional. Only CYP2E1 activity was increased (149 +/- 12% above control; p < 0.05) by VCH dosing. The results demonstrate that mRNA and protein for CYP isoforms known to bioactivate VCH are expressed in the mouse ovary and are modulated by in vivo exposure to VCH and VCD. Interestingly, there is high expression of these isoforms in the Int. Thus, the ovary may contribute to ovotoxicity by promoting bioactivation of VCH to the toxic metabolite, VCD.  相似文献   

20.
BACKGROUND: Torasemide is frequently used for the treatment of hypertension and heart failure. However, the determinants of torasemide pharmacokinetics in patients during steady-state conditions are largely unknown. We therefore explored the impact of genetic polymorphisms of cytochrome P450 (CYP) 2C9 (CYP2C9) and organic anion transporting polypeptide (OATP) 1B1 (SLCO1B1), gender, and the effects of losartan and irbesartan comedication on the interindividual variability of steady-state pharmacokinetics of torasemide. PATIENTS AND METHODS: Twenty-four patients receiving stable medication with torasemide 10 mg once daily and with an indication for additional angiotensin II receptor blocker (ARB) treatment to control hypertension or to treat heart failure were selected. Blood samples were taken before torasemide administration and 0.5, 1, 2, 4, 8, 12 and 24 hours after administration. After this first study period, patients received either irbesartan 150 mg (five female and seven male patients aged 69+/-8 years) or losartan 100 mg (two female and ten male patients aged 61+/-8 years) once daily. After 3 days of ARB medication, eight blood samples were again collected at the timepoints indicated above. The patients' long-term medications, which did not include known CYP2C9 inhibitors, were maintained at a constant dose during the study. All patients were genotyped for CYP2C9 (*1/*1 [n=15]; *1/*2 [n = 4]; *1/*3 [n=5]) as well as for SLCO1B1 (c.521TT [n=13]; c.521TC [n=11]). RESULTS: Factorial ANOVA revealed an independent impact of the CYP2C9 genotype (dose-normalized area under the plasma concentration-time curve during the 24-hour dosing interval at steady state [AUC(24,ss)/D]: *1/*1 375.5+/-151.4 microg x h/L/mg vs *1/*3 548.5+/-271.6 microg x h/L/mg, p=0.001), the SLCO1B1 genotype (AUC(24,ss)/D: TT 352.3+/-114 microg x h/L/mg vs TC 487.6+/-218.4 microg x h/L/mg, p<0.05) and gender (AUC(24,ss)/D: males 359.5+/-72.2 microg x h/L/mg vs females 547.3+/-284 microg x h/L/mg, p<0.01) on disposition of torasemide. Coadministration of irbesartan caused a 13% increase in the AUC(24,ss)/D of torasemide (p=0.002), whereas losartan had no effect. CONCLUSION: This study shows that the CYP2C9*3 and SLCO1B1 c.521TC genotype and female gender are significant and independent predictors of the pharmacokinetics of torasemide. Coadministration of irbesartan yields moderate but significant increases in the torasemide plasma concentration and elimination half-life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号