首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The inability to synthesize heme, a well known metabolic defect of trypanosomatid protozoa, accounts for their growth requirement for heme compounds in vitro. We now extend this finding to a pathogen Leishmania mexicana amazonensis, especially the intracellular replicative stage of amastigotes in the macrophage. We measured the level of heme and its biosynthetic enzymes, aminolevulinate dehydratase and porphobilinogen deaminase in the parasites and in infected and non-infected macrophages of J774G8 line. Succinylacetone was used to inhibit heme biosynthesis. Leishmanias transform and grow only in medium containing either heme (usually supplied as hemin) or protoporphyrin IX (the latter is leishmanicidal at high concentrations). We detected 1.2, 8.5 and 25 pmol mg-1 protein of heme in amastigotes, promastigotes and macrophages, respectively. The activities of porphobilinogen deaminase and aminolevulinate dehydratase in macrophages were 70 and 2400 pmol h-1 mg-1 protein, respectively. Leishmania-infected macrophages gave the same results and leishmanias had negligible activities of these enzymes. Succinylacetone at 10(-9)-10(-3) M had no effect on leishmanias, but dose-dependently inhibited the activity of aminolevulinate dehydratase to a negligible level and lowered that of porphobilinogen deaminase in macrophages, resulting in a maximum of 66% reduction in intracellular heme. Amastigotes grew equally well in succinylacetone-treated and control untreated macrophages. The results suggest that L. m. amazonensis, incapable of heme biosynthesis, acquires heme exogenously from the culture medium, i.e., fetal bovine serum, independent of the heme synthesized by the macrophages.  相似文献   

2.
Dendritic cells (DCs) are of utmost importance in initiating an immune response and may also function as targets for pathogens. The presence of pathogens inside DCs is likely to impair their functions and thus, influence immune responses. In the present report, we evaluated the impact of the presence of Leishmania amazonensis during differentiation and maturation of human monocyte-derived DCs. The presence of live L. amazonensis parasites during DC differentiation led to a significant decrease in CD80 (92%) and CD1a (56%) expression and an increase in CD86 (56%) cell surface expression. Phenotypic changes were accompanied by a lower secretion of IL-6, observed after 6 days of DC differentiation in the presence of L. amazonensis. DCs differentiated in the presence of L. amazonensis were used as APC in an autologous coculture, and lower amounts of IFN-gamma were obtained compared with control DCs differentiated in the absence of parasites. The effect of heat-killed parasites, but not of Leishmania antigen, during DC differentiation and maturation was similar to that observed with viable parasites. During maturation, the presence of live L. amazonensis parasites, but not of soluble Leishmania antigen, led to a decrease in IL-6 and IL-10 production. In this way, we observed that the parasite is able to abrogate full DC differentiation, causing a delay in the immune response and likely, favoring its establishment in human hosts.  相似文献   

3.
Leishmania parasites are able to interfere with host immune responses on many levels, as T cell responses balance, as observed in the murine model of infection. In the present study, we analyzed genes expression in both host and parasite during the progression of infection. Host genes associated to T-lymphocytes responses, MHC classes I and II, as well as parasite enzymes genes, cysteine-proteinases(CP) B and C, were examined in mice along evolution of infection by Leishmania (Leishmania) amazonensis. Murine strains with distinct levels of susceptibility to infection presented different patterns of MHC genes expression: MHC class I genes tend to have higher expression levels in CBA mice, whereas MHC class II genes expression predominates in BALB/c mice. CPB genes expression in the parasites was shown to predominate over CPC in both mice strains tested. Understanding genes expression patterns during infection may lead to new and more efficient treatments for leishmaniasis.  相似文献   

4.
In the present study we investigated the role of platelet-activating factor (PAF) and prostaglandins in experimental Leishmania (Leishmania) amazonensis infection and the relationship between these mediators and nitric oxide (NO) production. Mouse peritoneal macrophages elicited with thioglicolate were infected with leishmania amastigotes, and the infection index determined 48 h later. The course of infection was monitored for 5 weeks in mice infected in the footpad with promastigotes by measuring the footpad swelling and parasite load in regional lymph nodes and spleen. The addition of PAF to C57BL/6 mouse macrophages significantly inhibited parasite growth and induced NO production. Treatment of macrophages with a selective PAF antagonist, WEB2086, increased the infection, indicating that endogenously produced PAF regulates macrophage ability to control leishmania infection. This effect of PAF was abolished by addition of the inhibitor of NO synthesis, L-NAME, to the cultures. The addition of prostaglandin E(2) significantly increased the infection and NO production. Treatment with cyclo-oxygenase inhibitor, indomethacin, reduced the infection and PAF-induced release of NO. Thus, the increased NO production induced by PAF seems to be mediated by prostaglandins. The more-selective inhibitors of cyclo-oxygenase 2, nimesulide and NS-398, had no significant effect. Thus, antileishmanial activity correlates better with the presence of PAF or absence of prostaglandins than with NO production. In vivo treatment with PAF antagonists significantly increased leishmania lesions, as well as the parasite load, in regional lymph nodes and spleens. These findings indicate that PAF is essential for the control of leishmania infection.  相似文献   

5.
6.
Severe acute respiratory syndrome (SARS) is a recently emerged infectious disease caused by a novel coronavirus, but its immunopathological mechanisms have not yet been fully elucidated. We investigated changes in plasma T helper (Th) cell cytokines, inflammatory cytokines and chemokines in 20 patients diagnosed with SARS. Cytokine profile of SARS patients showed marked elevation of Th1 cytokine interferon (IFN)-gamma, inflammatory cytokines interleukin (IL)-1, IL-6 and IL-12 for at least 2 weeks after disease onset, but there was no significant elevation of inflammatory cytokine tumour necrosis factor (TNF)-alpha, anti-inflammatory cytokine IL-10, Th1 cytokine IL-2 and Th2 cytokine IL-4. The chemokine profile demonstrated significant elevation of neutrophil chemokine IL-8, monocyte chemoattractant protein-1 (MCP-1), and Th1 chemokine IFN-gamma-inducible protein-10 (IP-10). Corticosteroid reduced significantly IL-8, MCP-1 and IP-10 concentrations from 5 to 8 days after treatment (all P < 0.001). Together, the elevation of Th1 cytokine IFN-gamma, inflammatory cytokines IL-1, IL-6 and IL-12 and chemokines IL-8, MCP-1 and IP-10 confirmed the activation of Th1 cell-mediated immunity and hyperinnate inflammatory response in SARS through the accumulation of monocytes/macrophages and neutrophils.  相似文献   

7.
On their extravasation from the vascular system into inflamed tissues, leukocytes must maneuver through a complex insoluble network of molecules termed the extracellular matrix (ECM). Leukocytes navigate toward their target sites by adhering to ECM glycoproteins and secreting degradative enzymes, while constantly orienting themselves in response to specific signals in their surroundings. Cytokines and chemokines are key biological mediators that provide such signals for cell navigation. Although the individual effects of various cytokines have been well characterized, it is becoming increasingly evident that the mixture of cytokines encountered in the ECM provides important combinatorial signals that influence cell behavior. Herein, we present an overview of previous and ongoing studies that have examined how leukocytes integrate signals from different combinations of cytokines that they encounter either simultaneously or sequentially within the ECM, to dynamically alter their navigational activities. For example, we describe our findings that tumor necrosis factor (TNF)-alpha acts as an adhesion-strengthening and stop signal for T cells migrating toward stromal cell-derived factor-1alpha, while transforming growth factor-beta down-regulates TNF-alpha-induced matrix metalloproteinase-9 secretion by monocytes. These findings indicate the importance of how one cytokine, such as TNF-alpha, can transmit diverse signals to different subsets of leukocytes, depending on its combination with other cytokines, its concentration, and its time and sequence of exposure. The combinatorial effects of multiple cytokines thus affect leukocytes in a step-by-step manner, whereby cells react to cytokine signals in their immediate vicinity by altering their adhesiveness, directional movement, and remodeling of the ECM.  相似文献   

8.
Proinflammatory cytokines mediate the toxic effect of staphylococcal exotoxins (SE). Chlorogenic acid, a plant polyphenol, inhibited SE-induced T-cell proliferation (by 98%) and production of interleukin 1beta, tumor necrosis factor, interleukin 6, interferon gamma, monocyte chemotactic protein I (MCP-l), macrophage inflammatory protein (MIP)-lalpha, and MIP-lbeta by human peripheral blood mononuclear cells. These data indicate that chlorogenic acid may be therapeutically useful for mitigating the pathogenic effects of SE. Naturally occurring polyphenolic compounds such as chlorogenic acid may serve as a potent anti-inflammatory agent alternative to conventional chemotherapeutics.  相似文献   

9.
Decoy receptors: a strategy to regulate inflammatory cytokines and chemokines   总被引:10,自引:0,他引:10  
The canonical concept of a receptor includes specific ligand recognition, usually with high affinity and specificity, and signaling. Decoy receptors recognize certain inflammatory cytokines with high affinity and specificity, but are structurally incapable of signaling or presenting the agonist to signaling receptor complexes. They act as a molecular trap for the agonist and for signaling receptor components. The interleukin-1 type II receptor (IL-1RII) was the first pure decoy to be identified. Decoy receptors have subsequently been identified for members of the tumor necrosis factor receptor and IL-1R families. Moreover, silent nonsignaling receptors could act as decoys for chemokines. Therefore, the use of decoy receptors is a general strategy to regulate the action of primary pro-inflammatory cytokines and chemokines.  相似文献   

10.
Using microarray technology, we studied the early differential expression of 3,528 genes in human meningothelial cells in response to meningococcal challenge. Thirty-two genes were up-regulated, and four were down-regulated. Those up-regulated included the tumor necrosis factor alpha, interleukin-6 (IL-6), and IL-8 (but not IL-1beta) genes, suggesting that meningeal cells may be a local and early source of these cytokines. Also, a trend in up-regulation of anti-apoptotic genes and down-regulation of pro-apoptotic genes was observed. This is the first evidence that meningothelial cells may mount cytoprotective responses to pathogenic bacteria.  相似文献   

11.
ABSTRACT: Mesial temporal lobe epilepsy (mTLE) is a chronic and often treatment-refractory brain disorder characterized by recurrent seizures originating from the hippocampus. The pathogenic mechanisms underlying mTLE remain largely unknown. Recent clinical and experimental evidence supports a role of various inflammatory mediators in mTLE. Here, we performed protein expression profiling of 40 inflammatory mediators in surgical resection material from mTLE patients with and without hippocampal sclerosis, and autopsy controls using a multiplex bead-based immunoassay. In mTLE patients we identified 21 upregulated inflammatory mediators, including 10 cytokines and 7 chemokines. Many of these upregulated mediators have not previously been implicated in mTLE (for example, CCL22, IL-7 and IL-25). Comparing the three patient groups, two main hippocampal expression patterns could be distinguished, pattern I (for example, IL-10 and IL-25) showing increased expression in mTLE + HS patients compared to mTLE-HS and controls, and pattern II (for example, CCL4 and IL-7) showing increased expression in both mTLE groups compared to controls. Upregulation of a subset of inflammatory mediators (for example, IL-25 and IL-7) could not only be detected in the hippocampus of mTLE patients, but also in the neocortex. Principle component analysis was used to cluster the inflammatory mediators into several components. Follow-up analyses of the identified components revealed that the three patient groups could be discriminated based on their unique expression profiles. Immunocytochemistry showed that IL-25 IR (pattern I) and CCL4 IR (pattern II) were localized in astrocytes and microglia, whereas IL-25 IR was also detected in neurons. Our data shows co-activation of multiple inflammatory mediators in hippocampus and neocortex of mTLE patients, indicating activation of multiple pro- and anti-epileptogenic immune pathways in this disease.  相似文献   

12.
13.
14.
Proinflammatory cytokines mediate the toxic effect of superantigenic staphylococcal exotoxins (SE). A pan-caspase inhibitor suppressed SE-stimulated T-cell proliferation and the production of cytokines and chemokines by human peripheral blood mononuclear cells. These data suggest that caspase inhibitors may represent a novel therapeutic modality for treating SE-induced toxic shock.  相似文献   

15.
Pro-inflammatory cytokines play an important role in both recruitment and activation of leukocytes migrating into tissues in response to invading pathogens. In this study the production of pro-inflammatory cytokines, determined by ELISA assays, and the recruitment of leukocytes into the lungs of BALB/c mice infected with Paracoccidioides brasiliensis conidia were evaluated during the early stages of infection. The results showed that infected mice had a significant increase in leukocytes in the lung during the first 4 days with a peak at day 2 post-challenge; infiltrates were composed mainly of polymorphonuclear neutrophils (PMN). Pro-inflammatory cytokines such as tumour necrosis factor alpha (TNF-alpha), interleukin (IL) 6, IL-1beta and macrophage inflammatory protein (MIP) 2 were produced at elevated levels during the first 4 days post-challenge, but only in pulmonary samples and not in sera. Additionally, during the early stages of infection, overall weight loss was recorded in infected mice. These results suggest that pro-inflammatory cytokines could be responsible for the recruitment of leukocytes into the lung during the early stages of P. brasiliensis infection. In addition, both pro-inflammatory cytokine production and leukocyte recruitment may participate in the control of infection by influencing the organization of the immune response in the host exposed to P. brasiliensis conidia.  相似文献   

16.
Chikungunya virus (CHIKV) has caused large outbreaks worldwide in recent years. Acute-phase CHIKV infection has been reported to cause mild to severe febrile illness, and in some patients, this may be followed by long-lasting polyarthritis. The mainstay of treatment includes nonsteroidal anti-inflammatory drugs and other disease-modifying agents, the use of which is based on the assumption of an immunological interference mechanism in the pathogenesis. The present study has been designed to generate preliminary evidence to test this hypothesis. The levels of 30 cytokines were estimated in serum samples of acute CHIKV-infected patients, fully-recovered patients, patients with chronic CHIKV arthritis, and controls, using a quantitative multiplex bead ELISA. The levels of the proinflammatory cytokines IL-1 and IL-6 were elevated in acute patients, but IFN-γ/β and TNF-α levels remained stable. IL-10, which might have an anti-inflammatory effect, was also elevated, indicating a predominantly anti-inflammatory response in the acute phase of infection. Elevation of MCP-1, IL-6, IL-8, MIP-1α, and MIP-1β was most prominent in the chronic phase. These cytokines and chemokines have been shown to play important roles in other arthritides, including epidemic polyarthritis (EPA) caused by Ross River virus (RRV) and rheumatoid arthritis (RA).The immunopathogenesis of chronic CHIKV arthritis might have similarities to these arthritides. The novel intervention strategies being developed for EPA and RA, such as IL-6 and IL-8 signaling blockade, may also be considered for chronic CHIKV arthritis.  相似文献   

17.
Human renal epithelial cells might play an important role during the allograft rejection by producing chemokines in response to proinflammatory cytokines such as tumor necrosis factor (TNF)‐α and interleukin (IL)‐1β produced by endothelial and epithelial cells early after transplantation. The production of chemokines allows inflammatory cells to be drawn into the kidney graft and therefore plays a critical role in the pathophysiologic processes that lead to the rejection of renal transplant. In this process, two chemokine superfamilies, the CC and the CXC chemokines, are the most important. The CC chemokines target mainly monocytes and T lymphocytes, while most of the CXC chemokines attract neutrophils. We showed in our study that in vitro, in unstimulated cells, basal mRNA expression of CXC chemokines (Groα, Groβ, Groγ, ENA‐78 and GCP‐2, IL‐8) that attract neutrophils was detectable and expression of these genes and chemokine release were increased in TNF‐α‐ and IL‐1β‐induced renal epithelial cells. Most of the CC chemokines [monocyte chemotactic protein‐1 (MCP‐1), macrophage Inflammatory protein 1 beta (MIP‐1β), regulated upon activation, normal T cell expressed and secreted (RANTES) and macrophage inflammatory protein (MIP‐3α)] showed detectable mRNA expression only after stimulation with proinflammatory cytokines and not in control cells. TNF‐α seems to induce preferably the expression of RANTES, MCP‐1, interferon‐inducible protein (IP‐10) and Interferon‐Inducible T‐cell Alpha Chemoattractant (I‐TAC), while IL‐1β induces mainly IL‐8 and epithelial neutrophil‐activating peptide 78 (ENA‐78).  相似文献   

18.
This study investigated the safety and efficacy of ravidasvir (RDV) plus ritonavir-boosted danoprevir (DNVr) and ribavirin (RBV) regimens for treatment-naïve non-cirrhotic patients with hepatitis C virus (HCV) genotype 1b in mainland China. We also gained insight into HCV-host interactions during anti-HCV treatment. 16 patients with HCV and 10 healthy people enrolled the study. Three of 16 patients received 12-weeks' placebo treatment first and served as the placebo controls. All (n = 16) patients received 12-weeks' RDV plus DNVr and RBV treatment. The adverse effects (AEs), viral loads, alanine transaminase, and aspartate aminotransferase were recorded during study. We also performed multianalyte profiling of 48 cytokines/chemokines in 16 patients with HCV and 10 normal controls. Seventy-five percent patients treated with RDV plus DNVr and RBV experienced AEs. No death, treatment-related serious AEs or AEs leading to discontinuation were reported. The serum HCV-RNA levels remained extremely high in 3 placebo controls after treated with placebo. After RDV plus DNVr and RBV treatment, all patients achieved sustained virologic response (SVR) at posttreatment week 12, but 1 patient experienced viral relapse at SVR 24. The cytokine/chemokine expression pattern was markedly altered in patients with HCV as compared with healthy controls. The interferon-inducible protein-10 (IP-10) decreased after anti-HCV treatment, and dramatically increased in one patient with viral relapse. The regimen of RDV and DNVr plus RBV represents a highly safe and effective treatment option for HCV patients in mainland China. The IP-10 has the potential to be an indicator of innate immune viral recognition.  相似文献   

19.
The importance of the interaction between natural killer (NK) cells and dendritic cells (DCs) in the expansion of antiviral and antitumor immune responses is well-documented; however, limited information on DC-NK cell interaction during parasitic infections is available. Given that some Leishmania parasites are known to prevent or suppress DC activation, we developed a DC-NK cell coculture system to examine the role of NK cells in modulating the functions of Leishmania-infected DCs. We found that the addition of freshly isolated, resting NK cells significantly promoted the activation of DCs that were preinfected with Leishmania amazonensis promastigotes and that these activated DCs, in turn, stimulated NK cell activation mostly via cell contact-dependent mechanisms. Notably, L. amazonensis amastigote infection failed to activate DCs, and this lack of DC activation could be partially reversed by the addition of preactivated NK (ANK) cells but not resting NK cells. Moreover, the adoptive transfer of ANK cells into L. amazonensis-infected mice markedly increased DC and T-cell activation and reduced tissue parasite loads at 1 and 3 weeks postinfection. These results suggest differential roles of DC-NK cell cross talk at different stages of Leishmania infection and provide new insight into the interplay of components of the innate immune system during parasitic infection.  相似文献   

20.
BACKGROUND: Increased production of pro-inflammatory mediators is considered central in the manifestation of events leading to irregular uterine bleeding in progestin-only contraceptive users. Evidence suggests that in addition to its antimicrobial property, doxycycline (Dox) acts as an anti-inflammatory agent mainly through the suppression of pro-inflammatory mediators. METHODS: We tested this hypothesis in the endometrial environment using an in vitro model consisting of isolated human endometrial glandular epithelial and stromal cells and a human endometrial surface (HES) epithelial cell line cultured under defined conditions. RESULTS: We found that Dox at doses ranging from 1 to 100 microg/ml had a limited growth-inhibitory effect on these cells, whereas Dox in a dose-dependent manner inhibited the production of tumour necrosis factor-alpha (TNF-alpha). Using multiplex cytokine/chemokine protein analysis to test a broader range of Dox activity, we found that Dox at 25 microg/ml either alone or in the presence of 17beta-estradiol (E2), medroxyprogesterone acetate (MPA) and E2+MPA (10(-8) M) as well as TNF-alpha (25 ng/ml), representing the endometrial environment exposed to contraceptives as well as inflammatory conditions, respectively, altered the production of multiple cytokines and chemokines as compared with untreated controls. These actions of Dox occurred in cell-, ovarian steroid- and cytokine/chemokine-dependent manners. Although Dox reduced the regulatory action of steroids on the production of these cytokines/chemokines, it was less effective on TNF-alpha-treated cells. CONCLUSIONS: The results support the hypothesis that Dox, by modulating the endometrial expression of multiple inflammatory-related cytokines/chemokines in a cell- and cytokine/chemokine-dependent manner, may have a therapeutic potential in patients experiencing irregular uterine bleeding, in particular in progestin-dominant contraceptive users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号