首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adhesion and migration of mammalian cells are of crucial importance in a number of biological events, such as fertilization, embryogenesis, pattern, tissue and organ formation, and in a variety of physiological and pathological processes, including lymphocyte trafficking, leukocyte recruitment, hemostasis, wound healing, tumor angiogenesis and cancer metastasis. All these  相似文献   

2.
Free palmitic acid (PA) is a potential pro-atherogenic stimulus that may aggravate particle-mediated cardiovascular health effects. We hypothesized that the presence of PA can aggravate oxidative stress and endothelial activation induced by multi-walled carbon nanotube (MWCNT) exposure in vitro. We investigated the interaction between direct exposure to MWCNTs and PA on THP-1 monocyte adhesion to human umbilical vein endothelial cells (HUVECs), as well as on indirect exposure in an alveolar–endothelial co-culture model with A549 cells and THP-1-derived macrophages exposed in inserts and the effect measured in the lower chamber on HUVECs and THP-1 cells. The exposure to MWCNTs, including a short (NM400) and long (NM402) type of entangled fibers, was associated with elevated levels of reactive oxygen species as well as a decrease in the intracellular glutathione concentration in HUVEC and A549 monocultures. Both effects were found to be independent of the presence of PA. MWCNT exposure significantly increased THP-1 monocyte adhesion to HUVECs, and co-exposure to PA aggravated the NM400-mediated adhesion but decreased the NM402-mediated adhesion. For the co-cultures, the exposure of A549 cells did not promote THP-1 adhesion to HUVECs in the lower chamber. When THP-1 macrophages were present on the cell culture inserts, there was a modest increase in the adhesion and an increase in interleukin-6 and interleukin-8 levels in the lower chamber whereas no tumor necrosis factor was detected. Overall, this study showed that direct exposure of HUVECs to MWCNTs was associated with oxidative stress and monocyte adhesion and the presence of PA increased the adhesion when exposed to NM400.  相似文献   

3.
Angiogenesis plays a critical role in many physiological and pathological phenomena. A number of anti-angiogenesis drugs have been used in the clinical treatment of diseases such as malignant tumors and macular degeneration. Vascular endothelial growth factor (VEGF), the major pro-angiogenesis factor, is known to stimulate various steps of endothelial angiogenic activity, such as proliferation, migration, and differentiation into vessel-like tubes. In this study, we tested the effects of bp5250 on the angiogenesis of human umbilical endothelial cells (HUVECs). Bp5250 suppressed VEGF-induced endothelial cell proliferation by triggering apoptosis, and reduced endothelial cell migration toward VEGF. Bp5250 also decreased VEGF-stimulated tube formation and rat aortic ring sprouting on Matrigel in a concentration-dependent manner. In the VEGF-activated signaling pathways, bp5250 decreased the phosphorylation of ERK, p38, PI3K-AKT, Src, and FAK and also reduced the activation of the cytoskeleton-associated Rho family, all in a concentration-dependent manner. Bp5250 also attenuated the hypoxia-inducible factor-1α (HIF-1α) and VEGF-stimulated mRNA expression of HUVECs under the hypoxic condition. In vivo, angiogenesis was restrained by a daily intraperitoneal administration of bp5250 in a dose-dependent manner (1–3 mg/kg/d) in the Matrigel plug implantation assay. These results indicate that bp5250 is a potential candidate for developing anti-angiogenic agents.  相似文献   

4.
Nanoparticles can reach the blood and cause inflammation, suggesting that nanoparticles-endothelial cells interactions may be pathogenically relevant. We evaluated the effect of titanium dioxide nanoparticles (TiO?) on proliferation, death, and responses related with inflammatory processes such as monocytic adhesion and expression of adhesion molecules (E- and P-selectins, ICAM-1, VCAM-1, and PECAM-1) and with inflammatory molecules (tissue factor, angiotensin-II, VEGF, and oxidized LDL receptor-1) on human umbilical vein endothelial cells (HUVEC). We also evaluated the production of reactive oxygen species, nitric oxide production, and NF-κB pathway activation. Aggregates of TiO? of 300 nm or smaller and individual nanoparticles internalized into HUVEC inhibited proliferation strongly and induced apoptotic and necrotic death starting at 5 μg/cm2. Besides, TiO? induced activation of HUVEC through an increase in adhesion and in expression of adhesion molecules and other molecules involved with the inflammatory process. These effects were associated with oxidative stress and NF-κB pathway activation. In conclusion, TiO? induced HUVEC activation, inhibition of cell proliferation with increased cell death, and oxidative stress.  相似文献   

5.
目的:研究氧化型低密度脂蛋白(oxLDL)诱导血管和心内膜内皮细胞凋亡.方法:用超速离心法分离健康人血浆低密度脂蛋白(LDL),以CuSO410μmol·L-1氧化.观察oxLDL对培养新生小牛主动脉内皮细胞及心内膜细胞的损伤作用.琼脂糖凝胶电泳和Hoechst33258荧光密度法定性与定量分析DNA降解.结果:oxLDL诱导血管内皮细胞及心内膜细胞典型凋亡形态学改变,DNA降解呈时间和剂量依赖性.环己米特和硫酸葡聚糖对此作用无影响.BHT20μmol·L-1可取消DNA降解.溶血性磷脂酰胆碱50μmol·L-1无诱导凋亡作用.oxLDL诱导的DNA降解可被依他酸取消.结论:oxLDL诱导血管内皮细胞及心内膜细胞凋亡.  相似文献   

6.
Drug induced vasculitides in humans are relatively rare diseases, resembling drug-induced vasculitis in rodents and primary idiopathic vasculitis. Because of their exquisite inflammatory nature, vascular lesions in these conditions release a large amount of bioactive molecules and activate multiple cell types, including endothelial cells, neutrophils, monocytes and T-lymphocytes, all of which might be in principle used as biomarkers of the underlying disease. Although each vasculitis may have specific features, the potential biomarkers released remain largely non-specific, raising the question of whether they represent a useful clinical tool. Low specificity, short half-lives and analytical weaknesses are all issues that must be resolved before such biomarkers can be routinely used as diagnostic tools in vasculitis. Further investigation of biomarkers in animal models may be key to a better understanding of their potential usefulness (graphical abstract figure).  相似文献   

7.

Aim:

To investigate the ability of ox-LDL to induce ossification of endothelial progenitor cells (EPCs) in vitro and explored whether oxidative stress, especially hypoxia inducible factor-1α (HIF-1α) and reactive oxygen species (ROS), participate in the ossific process.

Methods:

Rat bone marrow-derived endothelial progenitor cells (BMEPCs) were cultured in endothelial growth medium supplemented with VEGF (40 ng/mL) and bFGF (10 ng/mL). The cells were treated with oxidized low-density lipoprotein (ox-LDL, 5 μg/mL) and/or β-glycerophosphate (β-GP, 10 mmol/L). Calcium content and Von Kossa staining were used as the measures of calcium deposition. Ossific gene expression was determined using RT-PCR. The expression of osteocalcin (OCN) was detected with immunofluorescence. Alkaline phosphatase (ALP) activity was analyzed using colorimetric assay. Intercellular reactive oxygen species (ROS) were measured with flow cytometry.

Results:

BMEPCs exhibited a spindle-like shape. The percentage of cells that expressed the cell markers of EPCs CD34, CD133 and kinase insert domain-containing receptor (KDR) were 46.2%±5.8%, 23.5%±4.0% and 74.3%±8.8%, respectively. Among the total cells, 78.3%±4.2% were stained with endothelial-specific fluorescence. Treatment of BMEPCs with ox-LDL significantly promoted calcium deposition, which was further significantly enhanced by co-treatment with β-GP. The same treatments significantly increased the gene expression of core-binding factor a-1 (cbfa-1) and OCN, while decreased the gene expression of osteoprotegerin (OPG). The treatments also significantly enhanced the activity of ALP, but did not affect the number of OCN+ cells. Furthermore, the treatments significantly increased ROS and activated the hypoxia inducible factor-1α (HIF-1α). In all these effects, ox-LDL acted synergistically with β-GP.

Conclusion:

Ox-LDL and β-GP synergistically induce ossification of BMEPCs, in which an oxidizing mechanism is involved.  相似文献   

8.
9.
Curcumin (Cur) has various pharmacological activities, including anti-inflammatory, antiapoptotic and anticancer effects. However, there is no report on the effect of Cur on endothelial cell fibrosis. This study was designed to investigate the effect and mechanism of Cur on endothelial cell fibrosis. An endothelial cell fibrosis model was established by using transforming growth factor (TGF) induction. Proliferation assays, qRT-PCR, western blotting and immunostaining were performed to investigate the effects and mechanism of Cur on endothelial cell fibrosis. We found that in human umbilical vein endothelial cells (HUVECs), TGF-β1 treatment significantly decreased the expression of nuclear factor erythroid-2-related factor 2 (NRF-2), dimethylarginine dimethylaminohydrolase-1 (DDAH1), and VE-cadherin, the secretion of cellular nitric oxide (NO) and the activity of nitrous oxide synthase (NOS), while asymmetric dimethylarginine (ADMA) and the release of inflammatory factors were elevated. Immunofluorescence showed decreased CD31 and increased α-smooth muscle actin (α-SMA). Overexpression of NRF-2 significantly attenuated the effects of TGF-β1, while downregulation of DDAH1 potently counteracted the effect of NRF-2. In addition, ADMA treatment resulted in similar results to those of TGF-β1, and Cur significantly attenuated the effect of TGF-β1, accompanied by increased VE-cadherin, DDAH1 and NRF-2 and decreased matrix metalloproteinase-9 (MMP-9) and extracellular regulated protein kinases 1/2 (ERK1/2) phosphorylation. The NRF-2 inhibitor ML385 had the opposite effect as that of Cur. These results demonstrated that Cur inhibits TGF-β1-induced endothelial-to-mesenchymal transition (EndMT) by stimulating DDAH1 expression via the NRF-2 pathway, thus attenuating endothelial cell fibrosis.  相似文献   

10.
《Nanotoxicology》2013,7(9):957-974
Abstract

The objective of our work was to investigate the effects of different types of nanoparticles on endothelial (HUVEC) and monocytic cell functions. We prepared and tested 14 different nanosystems comprising liposomes, lipid nanoparticles, polymer, and iron oxide nanoparticles. Some of the tested nanosystems contained targeting, therapeutic, or contrast agent(s). The effect of particles (0–400 µg/mL) on endothelial-monocytic cell interactions in response to TNF-α was investigated using an arterial bifurcation model and dynamic monocyte adhesion assay. Spontaneous HUVEC migration (0–100 µg/mL nanoparticles) and chemotaxis of monocytic cells towards MCP-1 in presence of particles (0–400 µg/mL) were determined using a barrier assay and a modified Boyden chamber assay, respectively. Lipid nanoparticles dose-dependently reduced monocytic cell chemotaxis and adhesion to activated HUVECs. Liposomal nanoparticles had little effect on cell migration, but one formulation induced monocytic cell recruitment by HUVECs under non-uniform shear stress by about 50%. Fucoidan-coated polymer nanoparticles (25–50 µg/mL) inhibited HUVEC migration and monocytic cell chemotaxis, and had a suppressive effect on monocytic cell recruitment under non-uniform shear stress. No significant effects of iron oxide nanoparticles on monocytic cell recruitment were observed except lauric acid and human albumin-coated particles which increased endothelial-monocytic interactions by 60–70%. Some of the iron oxide nanoparticles inhibited HUVEC migration and monocytic cell chemotaxis. These nanoparticle-induced effects are of importance for vascular cell biology and function and must be considered before the potential clinical use of some of the analyzed nanosystems in cardiovascular applications.  相似文献   

11.
12.
Chen L  Zhao Q  Wang XL  You R  Zhang YH  Ji H  Lai YS 《Vascular pharmacology》2011,55(5-6):135-142
Nonsteroidal anti-inflammatory drugs (NSAIDs) are previously found to possess prostaglandin and leukotriene-independent anti-inflammatory effect. The aim of the present study was to investigate the prostaglandin and leukotriene-independent anti-inflammatory effect of an imidazolone COX/5-LOX inhibitor ZLJ-6 and the underlying mechanism. Pretreatment human umbilical vein endothelial cells (HUVECs) with ZLJ-6 (3, 10 and 30μM) concentration-dependently decreased TNF-α-induced monocyte-endothelial interactions in both static and dynamic conditions whereas no effect was found after pretreatment with the COX-2 inhibitor celecoxib (30μM), 5-LOX inhibitor zileuton (30μM) and the combination of them. ZLJ-6 also attenuated expression of E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cytoadhesion molecule-1 (VCAM-1) on TNF-α-induced HUVECs. A further analysis indicated that ZLJ-6 attenuated TNF-α-induced nuclear translocation of NF-κB, IκB phosphorylation, IκB kinase β (IKKβ) activity, and subsequent NF-κB-DNA complex formation, suggesting that NF-κB pathway was involved in TNF-α-induced inflammation. However, ZLJ-6 did not affect TNF-α-induced extracellular signal-regulated kinases (ERK1/2), c-Jun N-terminal kinases (JNK) and p38 phosphorylation. Taken together, our results indicated that ZLJ-6 potently inhibited TNF-α-induced monocyte-endothelial interactions and adhesion molecule (E-selectin, ICAM-1 and VCAM-1) expression and these effects were mediated by NF-κB signaling pathway rather than its primary pharmacological target COX-2 or 5-LOX.  相似文献   

13.

Background and Purpose

In small arteries, small conductance Ca2+-activated K+ channels (SKCa) and intermediate conductance Ca2+-activated K+ channels (IKCa) restricted to the vascular endothelium generate hyperpolarization that underpins the NO- and PGI2-independent, endothelium-derived hyperpolarizing factor response that is the predominate endothelial mechanism for vasodilatation. As neuronal IKCa channels can be negatively regulated by PKA, we investigated whether β-adrenoceptor stimulation, which signals through cAMP/PKA, might influence endothelial cell hyperpolarization and as a result modify the associated vasodilatation.

Experimental Approach

Rat isolated small mesenteric arteries were pressurized to measure vasodilatation and endothelial cell [Ca2+]i, mounted in a wire myograph to measure smooth muscle membrane potential or dispersed into endothelial cell sheets for membrane potential recording.

Key Results

Intraluminal perfusion of β-adrenoceptor agonists inhibited endothelium-dependent dilatation to ACh (1 nM–10 μM) without modifying the associated changes in endothelial cell [Ca2+]i. The inhibitory effect of β-adrenoceptor agonists was mimicked by direct activation of adenylyl cyclase with forskolin, blocked by the β-adrenoceptor antagonists propranolol (non-selective), atenolol (β1) or the PKA inhibitor KT-5720, but remained unaffected by ICI 118 551 (β2) or glibenclamide (ATP-sensitive K+ channels channel blocker). Endothelium-dependent hyperpolarization to ACh was also inhibited by β-adrenoceptor stimulation in both intact arteries and in endothelial cells sheets. Blocking IKCa {with 1 μM 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34)}, but not SKCa (50 nM apamin) channels prevented β-adrenoceptor agonists from suppressing either hyperpolarization or vasodilatation to ACh.

Conclusions and Implications

In resistance arteries, endothelial cell β1-adrenoceptors link to inhibit endothelium-dependent hyperpolarization and the resulting vasodilatation to ACh. This effect appears to reflect inhibition of endothelial IKCa channels and may be one consequence of raised circulating catecholamines.  相似文献   

14.
The effects of particulate matter (PM) on endothelial cells have been evaluated in vitro by exposing isolated endothelial cells to different types of PM. Although some of the findings from these experiments have been corroborated by in vivo studies, an in vitro model that assesses the interaction among different cell types is necessary to achieve more realistic assays. We developed an in vitro model that mimics the alveolar–capillary interface, and we challenged the model using TiO2 nanoparticles (TiO2-NPs). Human umbilical endothelial cells (HUVECs) were cultured on the basolateral side of a membrane and pneumocytes (A549) on the apical side. Confluent co-cultures were exposed on the apical side to 10 μg/cm2 of TiO2-NPs or 10 ng/mL of TNFα for 24 h. Unexposed cultures were used as negative controls. We evaluated monocyte adhesion to HUVECs, adhesion molecule expression, nitric oxide concentration and proinflammatory cytokine release. The TiO2-NPs added to the pneumocytes induced a 3- to 4-fold increase in monocyte adhesion to the HUVECs and significant increases in the expression of adhesion molecules (4-fold for P-selectin at 8 h, and about 8- and 10-fold for E-selectin, ICAM-1, VCAM-1 and PECAM-1 at 24 h). Nitric oxide production also increased significantly (2-fold). These results indicate that exposing pneumocytes to TiO2-NPs causes endothelial cell activation.  相似文献   

15.

Background and Purpose

In the phase III clinical trial, RELAX‐AHF, serelaxin caused rapid and long‐lasting haemodynamic changes. However, the cellular mechanisms involved are unclear in humans.

Experimental Approach

This study examined the effects of serelaxin in co‐cultures of human primary endothelial cells (ECs) and smooth muscle cells (SMCs) on cAMP and cGMP signalling.

Key Results

Stimulation of HUVECs or human coronary artery endothelial cells (HCAECs) with serelaxin, concentration‐dependently increased cGMP accumulation in co‐cultured SMCs to a greater extent than in monocultures of either cell type. This was not observed in human umbilical artery endothelial cells (HUAECs) that do not express the relaxin receptor, RXFP1. Treatment of ECs with l‐NG‐nitro arginine (NOARG; 30 μM, 30 min) inhibited serelaxin‐mediated (30 nM) cGMP accumulation in HUVECs, HCAECs and co‐cultured SMCs. In HCAECs, but not HUVECs, pre‐incubation with indomethacin (30 μM, 30 min) also inhibited cGMP accumulation in SMCs. Pre‐incubation of SMCs with the guanylate cyclase inhibitor ODQ (1 μM, 30 min) had no effect on serelaxin‐mediated (30 nM) cGMP accumulation in HUVECs and HCAECs but inhibited cGMP accumulation in SMCs. Serelaxin stimulation of HCAECs, but not HUVECs, increased cAMP accumulation concentration‐dependently in SMCs. Pre‐incubation of HCAECs with indomethacin, but not l‐NOARG, abolished cAMP accumulation in co‐cultured SMCs, suggesting involvement of prostanoids.

Conclusions and Implications

In co‐cultures, treatment of ECs with serelaxin caused marked cGMP accumulation in SMCs and with HCAEC also cAMP accumulation. Responses involved EC‐derived NO and with HCAEC prostanoid production. Thus, serelaxin differentially modulates vascular tone in different vascular beds.

Abbreviations

AHF
acute heart failure
DEA
diethylamine NONOate
ECs
endothelial cells
HCAEC
human coronary artery endothelial cell
HUAEC
human umbilical artery endothelial cell
HUASMC
human umbilical artery smooth muscle cell
HUVSMC
human umbilical vein smooth muscle cell
l‐NOARG
l‐NG‐nitro arginine
SMCs
smooth muscle cells
  相似文献   

16.
17.
This study was designed to investigate the protective effect of ethyl acetate fraction of Melothria maderaspatana (EAFM) leaf on electrolytes, catecholamines, endothelial nitric oxide synthase (eNOS) and endothelin-1 (ET-1) peptide in uninephrectomized deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Administration of DOCA-salt significantly increased the systolic and diastolic blood pressure and treatment with EAFM significantly lowered the blood pressure. In DOCA-salt rats, the levels of sodium and chloride increased significantly while potassium level decreased and administration of EAFM brought these parameters to normality. The levels of epinephrine and norepinephrine increased significantly in DOCA-salt rats and administration of EAFM significantly decreased these parameters to normality. DOCA-salt hypertensive rats exhibited significantly decreased L: -arginine and nitrite + nitrate levels and administration of EAFM brought these parameters to normality. DOA-salt hypertensive rats showed down-regulation of eNOS and up-regulation of ET-1 protein expressions in heart and kidney, and treatment with EAFM prevented down-regulation of eNOS and significantly down-regulated the ET-1 protein expressions. In conclusion, EAFM provides good blood pressure control by enhancing potassium and decreasing sodium levels, decreasing levels of epinephrine and norepinephrine, and preventing down-regulation of eNOS and significantly down-regulating ET-1 protein expression.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号