首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
The blood-brain barrier (BBB) is the principal regulator of blood-borne substance entry into the brain parenchyma. Therefore, BBB leakage, which leads to cerebral edema and influx of toxic substances, is common in pathological conditions such as cerebral ischemia, inflammation, trauma, and tumors. The leakage of BBB after ischemia-reperfusion injury has long been considered to be biphasic, although a considerable amount of discrepancies as for the timing of the second opening does exist among the studies. This led us to evaluate systematically and quantitatively the dynamics of BBB leakage in a rat model of 90-min ischemia-reperfusion, using gadolinium-enhanced (small molecule) magnetic resonance imaging and fluorescent dye Evans Blue (large molecule). BBB leakage was assessed at the following time points after reperfusion: 25 min, 2, 4, 6, 12, 18, 24, 36, 48, and 72 h, and 1, 2, 3, 4, and 5 weeks. We observed BBB leakage for both gadolinium and Evans Blue as early as 25 min after reperfusion. Thereafter, BBB remained open for up to 3 weeks for Evans Blue and up to 5 weeks for gadolinium. Our results show that BBB leakage after ischemia-reperfusion injury in the rat is continuous and long-lasting, without any closure up to several weeks. This is the first systematic and extensive study fully demonstrating BBB leakage dynamics following transient brain ischemia and the findings are of major clinical and experimental interest.  相似文献   

2.
The Rho GTPase Rac1 is a multifunctional protein involved in distinct pathways ranging from development to pathology. The aim of the present study was to unravel the contribution of neuronal Rac1 in regulating the response to brain injury induced by permanent focal cerebral ischemia (pMCAO). Our results show that pMCAO significantly increased total Rac1 levels in wild type mice, mainly through rising nuclear Rac1, while a reduction in Rac1 activation was observed. Such changes preceded cell death induced by excitotoxic stress. Pharmacological inhibition of Rac1 in primary neuronal cortical cells prevented the increase in oxidative stress induced after overactivation of glutamate receptors. However, this was not sufficient to prevent the associated neuronal cell death. In contrast, RNAi‐mediated knock down of Rac1 in primary cortical neurons prevented cell death elicited by glutamate excitotoxicity and decreased the activity of NADPH oxidase. To test whether in vivo down regulation of neuronal Rac1 was neuroprotective after pMCAO, we used tamoxifen‐inducible neuron‐specific conditional Rac1‐knockout mice. We observed a significant 50% decrease in brain infarct volume of knockout mice and a concomitant increase in HIF‐1α expression compared to littermate control mice, demonstrating that ablation of Rac1 in neurons is neuroprotective. Transmission electron microscopy performed in the ischemic brain showed that lysosomes in the infarct of Rac1‐ knockout mice were preserved at similar levels to those of non‐infarcted tissue, while littermate mice displayed a decrease in the number of lysosomes, further corroborating the notion that Rac1 ablation in neurons is neuroprotective. Our results demonstrate that Rac1 plays important roles in the ischemic pathological cascade and that modulation of its levels is of therapeutic interest.  相似文献   

3.
目的:研究NLRP3炎性小体在大鼠蛛网膜下腔出血(SAH)早期脑损伤(EBI)过程中对血脑屏障(BBB)的影响.方法:36雄性SD大鼠分为假手术组(sham)、SAH组(SAH)和NLRP3抑制剂MCC950处理组(SAH+MCC950),利用注射自体血液的方法制备SAH大鼠模型,利用尾静脉注射给予SAH大鼠MCC95...  相似文献   

4.
Parkinson's disease is a neurodegenerative disorder that requires treatment by dopaminergic agonists, which may be responsible for central side effects. We hypothesized that the efflux transporter ABCB1/P-glycoprotein played a role in brain disposition of antiparkinsonian drugs and could control central toxicity. We aimed to evaluate antiparkinsonian drugs as ABCB1 substrates and/or inhibitors in rat brain endothelial cells GPNT, in order to predict potential clinical drug-drug interactions. Among the antiparkinsonian drugs tested, levodopa, bromocriptine, pergolide and pramipexole were ABCB1 substrates. However, only bromocriptine could inhibit ABCB1 functionality with an IC(50) of 6.71 microM on Rhodamine 123 uptake and an IC(50) of 1.71 microM on digoxine uptake. Thus, bromocriptine at 100 microM is responsible for an increase of levodopa intracellular transport of about 2.05-fold versus control. Therefore, we can conclude that bromocriptine is a potent drug for medicinal interactions in vitro. Hence, in patients with Parkinson's disease, these results may be considered to optimise treatments individually.  相似文献   

5.
Accumulating laboratory studies have implicated the mobilization of bone marrow (BM)-derived stem cells in brain plasticity and stroke therapy. This mobilization of bone cells to the brain is an essential concept in regenerative medicine. Over the past ten years, mounting data have shown the ability of bone marrow-derived stem cells to mobilize from BM to the peripheral blood (PB) and eventually enter the injured brain. This homing action is exemplified in BM stem cell mobilization following ischemic brain injury. Various BM-derived cells, such as hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs) and very small embryonic-like cells (VSELs) have been demonstrated to exert therapeutic benefits in stroke. Here, we discuss the current status of these BM-derived stem cells in stroke therapy, with emphasis on possible cellular and molecular mechanisms of action that mediate the cells' beneficial effects in the ischemic brain. When possible, we also discuss the relevance of this therapeutic regimen in other central nervous system (CNS) disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号