首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acute pneumonias and corneal infections due to Pseudomonas aeruginosa are typically caused by lipopolysaccharide (LPS)-smooth strains. In cystic fibrosis patients, however, LPS-rough strains of P. aeruginosa, which lack O antigen, can survive in the lung and cause chronic infection. It is not clear whether an LPS-rough phenotype affects cytotoxicity related to the type III secretion system (TTSS). We previously reported that interruption of the galU gene in P. aeruginosa results in production of a rough LPS and truncated LPS core. Here we evaluated the role of the galU gene in the pathogenesis of murine lung and eye infections and in cytotoxicity due to the TTSS effector ExoU. We studied galU mutants of strain PAO1, of its cytotoxic variant expressing ExoU from a plasmid, and of the inherently cytotoxic strain PA103. The galU mutants were more serum sensitive than the parental strains but remained cytotoxic in vitro. In a corneal infection model, the galU mutants were significantly attenuated. In an acute pneumonia model, the 50% lethal doses of the galU mutants were higher than those of the corresponding wild-type strains, yet these mutants could cause mortality and severe pneumonia, as judged by histology, even with minimal systemic spread. These findings suggest that the galU gene is required for corneal infection and for efficient systemic spread following lung infection but is not required for infection confined to the lung. Host defenses in the lung appear to be insufficient to control infection with LPS-rough P. aeruginosa when local bacterial levels are high.  相似文献   

2.
Fluoroquinolone resistance and type III secretion system (TTSS) virulence are independently associated in Pseudomonas aeruginosa infections with poor patient outcomes. In the present study, the virulence of fluoroquinolone-susceptible and -resistant isolates of P. aeruginosa was compared, focusing on TTSS virulence. Clinical isolates (n = 45) exhibiting a broad range of susceptibilities to fluoroquinolones, with differing mechanisms of resistance and associated with varying disease sites, were selected for the study. PCR, Southern blot and western immunoblot analyses were performed to determine the presence of TTSS-encoding genes and secretion of gene products. The cytotoxicity of the clinical isolates towards human lung epithelial cells was also determined. Clinical isolates encoding only the exoS cytotoxin gene occurred more frequently than those encoding only exoU (62% vs. 27%; p 0.0007). Compared with exoS(+) isolates, exoU(+) isolates were more likely to be fluoroquinolone-resistant (92% vs. 61%, p 0.05) and to exhibit both a gyrA mutation and the efflux pump over-expressed (EPO) phenotype (91% vs. 59%; p 0.06). Almost all exoU(+) strains secreted ExoU and exhibited increased cytotoxicity compared with ExoS-secreting strains (7% vs. 92.5%, relative to a PA103 reference strain control). These data suggest that exoU(+) and fluoroquinolone resistance may be co-selected traits that result in highly virulent and resistant strains. Adverse outcomes associated with infections caused by fluoroquinolone-resistant strains may, in part, be attributable to this co-association, which warrants further clinical investigation.  相似文献   

3.
Nonvertebrate model hosts represent valuable tools for the study of host-pathogen interactions because they facilitate the identification of bacterial virulence factors and allow the discovery of novel components involved in host innate immune responses. In this report, we determined that the greater wax moth caterpillar Galleria mellonella is a convenient nonmammalian model host for study of the role of the type III secretion system (TTSS) in Pseudomonas aeruginosa pathogenesis. Based on the observation that a mutation in the TTSS pscD gene of P. aeruginosa strain PA14 resulted in a highly attenuated virulence phenotype in G. mellonella, we examined the roles of the four known effector proteins of P. aeruginosa (ExoS, ExoT, ExoU, and ExoY) in wax moth killing. We determined that in P. aeruginosa strain PA14, only ExoT and ExoU play a significant role in G. mellonella killing. Strain PA14 lacks the coding sequence for the ExoS effector protein and does not seem to express ExoY. Moreover, using Delta exoU Delta exoY, Delta exoT Delta exoY, and Delta exoT Delta exoU double mutants, we determined that individual translocation of either ExoT or ExoU is sufficient to obtain nearly wild-type levels of G. mellonella killing. On the other hand, data obtained with a Delta exoT Delta exoU Delta exoY triple mutant and a Delta pscD mutant suggested that additional, as-yet-unidentified P. aeruginosa components of type III secretion are involved in virulence in G. mellonella. A high level of correlation between the results obtained in the G. mellonella model and the results of cytopathology assays performed with a mammalian tissue culture system validated the use of G. mellonella for the study of the P. aeruginosa TTSS.  相似文献   

4.
The type III secretion system (TTSS) of Pseudomonas aeruginosa enables delivery of a number of toxins involved in the disruption of eukaryotic epithelial surfaces. Whilst the ability to secrete ExoS facilitates invasion and internalization, the secretion of ExoU mediates acute cytotoxicity. In order to determine any association with the ability to secrete these toxins with the nature and severity of human infection, the TTSS genotypes and phenotypes of 163 clinical isolates were determined by multiplex PCR and Western blotting. An exoS+/exoU- genotype was associated with chronic infection in patients with cystic fibrosis whilst an exoS-/exoU+ genotype was associated with strains isolated from blood. Secretion of the ExoU protein was more commonly seen in isolates obtained from blood, suggesting this ability may be important in the development of acute invasive infection. Detection of TTSS toxins in clinical material may be useful in targeting antimicrobial therapy or identifying individuals infected with aggressive strains of P. aeruginosa.  相似文献   

5.
The genetic structure of a population of Pseudomonas aeruginosa, isolated from patients with keratitis, endophthalmitis, and contact lens-associated red eye, contact lens storage cases, urine, ear, blood, lungs, wounds, feces, and the environment was determined by multilocus enzyme electrophoresis. The presence and characteristics of virulence factors were determined by restriction fragment length polymorphism analysis with DNA probes for lasA, lasB, aprA, exoS, exoT, exoU, and ctx and by zymography of staphylolysin, elastase, and alkaline protease. These analyses revealed an epidemic population structure of P. aeruginosa, characterized by frequent recombination in which a particular successful clone may increase, predominate for a time, and then disappear as a result of recombination. Epidemic clones were found among isolates from patients with keratitis. They were characterized by high activity of a hitherto-unrecognized size variant of elastase, high alkaline protease activity, and possession of the exoU gene encoding the cytotoxic exoenzyme U. These virulence determinants are not exclusive traits in strains causing keratitis, as strains with other properties may cause keratitis in the presence of predisposing conditions. There were no uniform patterns of characteristics of isolates from other types of infection; however, all strains from urinary tract infections possessed the exoS gene, all strains from environment and feces and the major part of keratitis and wound isolates exhibited high elastase and alkaline protease activity, and all strains from feces showed high staphylolysin activity, indicating that these virulence factors may be important in the pathogenesis of these infectious diseases.  相似文献   

6.
Previous findings indicate that the cystic fibrosis transmembrane conductance regulator (CFTR) is a ligand for Pseudomonas aeruginosa ingestion into respiratory epithelial cells. In experimental murine keratitis, P. aeruginosa enters corneal epithelial cells. We determined the importance of CFTR-mediated uptake of P. aeruginosa by corneal cells in experimental eye infections. Entry of noncytotoxic (exoU) P. aeruginosa into human and rabbit corneal cell cultures was inhibited with monoclonal antibodies and peptides specific to CFTR amino acids 108 to 117. Immunofluorescence microscopy and flow cytometry demonstrated CFTR in the intact murine corneal epithelium, and electron microscopy showed that CFTR binds to P. aeruginosa following corneal cell ingestion. In experimental murine eye infections, multiple additions of 5 nM CFTR peptide 103-117 to inocula of either cytotoxic (exoU+) or noncytotoxic P. aeruginosa resulted in large reductions in bacteria in the eye and markedly lessened eye pathology. Compared with wild-type C57BL/6 mice, heterozygous DeltaF508 Cftr mice infected with P. aeruginosa had an approximately 10-fold reduction in bacterial levels in the eye and consequent reductions in eye pathology. Homozygous DeltaF508 Cftr mice were nearly completely resistant to P. aeruginosa corneal infection. CFTR-mediated internalization of P. aeruginosa by buried corneal epithelial cells is critical to the pathogenesis of experimental eye infection, while in the lung, P. aeruginosa uptake by surface epithelial cells enhances P. aeruginosa clearance from this tissue.  相似文献   

7.
Modulation of cytosolic (intracellular) Ca(2+) concentration (Ca(i)) may be an important host response when airway epithelial cells are exposed to Pseudomonas aeruginosa. We measured Ca(i) in Calu-3 cells exposed from the apical or basolateral surface to cytotoxic and noncytotoxic strains of P. aeruginosa. Apical addition of either noncytotoxic strains or cytotoxic strains failed to affect Ca(i) over a 3-h time period, nor were changes observed after basolateral addition of noncytotoxic strains. In contrast, basolateral addition of cytotoxic strains caused a slow increase in Ca(i) from 100 nM to 200 to 400 nM. This increase began after 20 to 50 min and persisted for an additional 30 to 75 min, at which time the cells became nonviable. P. aeruginosa-induced increases in Ca(i) were blocked by the addition of the Ca channel blocker La(3+) to the basolateral but not to the apical chamber. Likewise, replacing the basolateral but not the apical medium with Ca-free solution prevented P. aeruginosa-mediated changes in Ca(i). With isogenic mutants of PA103, we demonstrated that the type III secretion apparatus, the type III-secreted effector ExoU, and type IV pili were necessary for increased Ca(i). We propose that translocation of ExoU through the basolateral surface of polarized airway epithelial cells via the type III secretion apparatus leads to release of Ca stored in the endoplasmic reticulum and activation of Ca channels in the basolateral membranes of epithelial cells.  相似文献   

8.
Prostanoids generated by COX-2 are involved in the regulation of inflammation but their exact role in the innate immune response has not been defined. We investigated whether COX-2 is involved in host defense against Pseudomonas aeruginosa pneumonia. In vitro studies, in a macrophage cell line, showed that cytotoxic strain of P aeruginosa (PA103) induced significant COX-2 protein expression and enzymatic function. In vivo data showed that infection with PA103 increased COX-2 protein production in whole lung tissue compared to mice that were infected with mutant bacteria that lack ExoU (DeltaU) or ExoU and ExoT (DeltaUT). COX-2(-/-) mice had accentuated clearance of cytotoxic P. aeruginosa from the lungs. We further tested the effects of COX-2 products such as prostaglandin E(2) on the function of phagocytic cells. Our studies indicate that prostaglandin E(2) may be involved through interacting with the EP2 receptors in modulating the host response because treatment of macrophages with prostaglandin E(2) suppressed production of reactive oxygen species. Furthermore there was enhanced bacterial clearance in EP2 receptor(-/-) mice compared to the wild-type controls. Thus it is possible that inhibition of COX-2 or EP2 receptors could be an effective adjunctive treatment for severe or resistant P. aeruginosa pneumonia.  相似文献   

9.
Pseudomonas aeruginosa uses a type III secretion system to promote development of severe disease, particularly in patients with impaired immune defenses. While the biochemical and enzymatic functions of ExoU, ExoS, and ExoT, three effector proteins secreted by this system, are well defined, the relative roles of each protein in the pathogenesis of acute infections is not clearly understood. Since ExoU and ExoS are usually not secreted by the same strain, it has been difficult to directly compare the effects of these proteins during infection. In the work described here, several isogenic mutants of a bacterial strain that naturally secretes ExoU, ExoS, and ExoT were generated to carefully evaluate the relative contribution of each effector protein to pathogenesis in a mouse model of acute pneumonia. Measurements of mortality, bacterial persistence in the lung, and dissemination indicated that secretion of ExoU had the greatest impact on virulence while secretion of ExoS had an intermediate effect and ExoT had a minor effect. It is of note that these results conclusively show for the first time that ExoS is a virulence factor. Infection with isogenic mutants secreting wild-type ExoS, ExoS defective in GTPase-activating protein (GAP) activity, or ExoS defective in ADP-ribosyltransferase activity demonstrated that the virulence of ExoS was largely dependent on its ADP-ribosyltransferase activity. The GAP activity of this protein had only a minor effect in vivo. The relative virulence associated with each of these type III effector proteins may have important prognostic implications for patients infected with P. aeruginosa.  相似文献   

10.
The type III secretion system (TTSS) is a specialized cytotoxin-translocating apparatus of gram-negative bacteria which is involved in lung injury, septic shock, and a poor patient outcome. Recent studies have attributed these effects mainly to the ExoU effector protein. However, few studies have focused on the ExoU-independent pathogenicity of the TTSS. For the present study, we compared the pathogenicities of two strains of Pseudomonas aeruginosa in a murine model of acute lung injury. We compared the CHA strain, which has a functional TTSS producing ExoS and ExoT but not ExoU, to an isogenic mutant with an inactivated exsA gene, CHA-D1, which does not express the TTSS at all. Rats challenged with CHA had significantly increased lung injury, as assessed by the wet/dry weight ratio for the lungs and the protein level in bronchoalveolar lavage fluid (BALF) at 12 h, compared to those challenged with CHA-D1. Consistent with these findings, the CHA strain was associated with increased in vitro cytotoxicity on A549 cells, as assessed by the release of lactate dehydrogenase. CHA was also associated at 12 h with a major decrease in polymorphonuclear neutrophils in BALF, with a proinflammatory response, as assessed by the amounts of tumor necrosis factor alpha and interleukin-1beta, and with decreased bacterial clearance from the lungs, ultimately leading to an increased mortality rate. These results demonstrate that the TTSS has a major role in P. aeruginosa pathogenicity independent of the role of ExoU. This report underscores the crucial roles of ExoS and ExoT or other TTSS-related virulence factors in addition to ExoU.  相似文献   

11.
Effect of pyochelin on Pseudomonas cepacia respiratory infections   总被引:5,自引:0,他引:5  
Exogenously supplied pyochelin influenced the virulence of Pseudomonas cepacia pyochelin-negative strains in a chronic pulmonary infection model in rats. Groups of rats were inoculated transtracheally with agar beads containing P. cepacia or P. aeruginosa strains, saturated with either pyochelin or PBS. Supplementation of the inocula with pyochelin had no effect on the number of bacteria recovered from the lungs. The availability of pyochelin, however, increased the degree of pathology observed in lungs infected with pyochelin-negative strains of P. cepacia. The area of pathological involvement in the lung was about 2-fold larger, when pyochelin was present. Inclusion of pyochelin in the inoculum had no effect on the degree of pathology observed in lungs infected with a pyochelin-positive P. aeruginosa strain. Pyochelin was shown to stimulate in vitro growth of P. cepacia, but it had no effect on production of lipase or protease, factors which may be involved in P. cepacia virulence. These studies support our hypothesis that pyochelin may be important for dissemination in P. cepacia infections.  相似文献   

12.
The interaction of over 100 isolates of Pseudomonas aeruginosa representing different genotypes of type III secretion system (TTSS) with RAW 264.7 murine macrophage-like cells and pulmonary microvascular endothelial (PME) cells were studied. The strains were isolated from clinical materials and from stool specimens of healthy carriers and were analyzed by pulsed field gel electrophoresis (PFGE) to characterize their heterogeneity. In order to differentiate TTSS genotypes of P. aeruginosa isolates, the distribution of the following genes: exoU, exoS, pcrV, exoT, and exoY was assessed by multiplex and duplex PCR assays. The cytotoxicity and invasiveness of the P. aeruginosa isolates were determined. P. aeruginosa isolates showed a discrepancy in their ability to induce cytotoxicity and to invade mammalian cells. Up to four phenotypes among the isolates were observed and the most diverse interactions of the isolates were noticed with PME cells. The reduction of the viability of the cells, infected by P. aeruginosa isolates of the same clone, was associated with the ability of these strains to secrete the TTSS effectors: ExoU or ExoS. The results of this study also suggest that healthy people can be the carriers of cytotoxic strains of this dangerous pathogen.  相似文献   

13.
Pseudomonas aeruginosa is a frequent cause of respiratory exacerbations in individuals with cystic fibrosis. An important virulence determinant of this pathogen is its type III protein secretion system. In this study, the type III secretion properties of 435 P. aeruginosa respiratory isolates from 56 chronically infected individuals with cystic fibrosis were investigated. Although it had been previously reported that 75 to 90% of P. aeruginosa isolates from patients with hospital-acquired pneumonia secreted type III proteins, only 12% of isolates from cystic fibrosis patients did so, with nearly all of these isolates secreting ExoS and ExoT but not ExoU. Despite the low overall prevalence of type III protein-secreting isolates, at least one secreting isolate was cultured from one-third of cystic fibrosis patients. Interestingly, the fraction of cystic fibrosis patient isolates capable of secreting type III proteins decreased with duration of infection. Although 90% of isolates from the environment, the presumed reservoir for the majority of P. aeruginosa strains that infect patients with cystic fibrosis, secreted type III proteins, only 49% of isolates from newly infected children, 18% of isolates from chronically infected children, and 4% of isolates from chronically infected adults with cystic fibrosis secreted these proteins. Within individual patients, isolates of clonal origin differed in their secretion phenotypes, indicating that as strains persisted in cystic fibrosis patient airways, their type III protein secretion properties changed. Together, these findings indicate that following infection of cystic fibrosis patient airways, P. aeruginosa strains gradually change from a type III protein secretion-positive phenotype to a secretion-negative phenotype.  相似文献   

14.
Role of Pseudomonas aeruginosa pili in acute pulmonary infection.   总被引:3,自引:1,他引:3       下载免费PDF全文
H Tang  M Kays    A Prince 《Infection and immunity》1995,63(4):1278-1285
The role of piliation in the development and course of acute pulmonary infection was examined using infant BALB/cByJ mice inoculated by intranasal instillation of isogenic Pil+ and Pil- mutants of Pseudomonas aeruginosa PA1244, PAK, and PAO1. The piliated strains caused more cases of pneumonia, bacteremia, and mortality than the nonpiliated strains (chi-square analysis, alpha = 0.001). The piliated strains were more often associated with severe diffuse pneumonias, while the nonpiliated organisms resulted in less severe, focal pneumonias, although these differences did not achieve statistical significance. Purified pilin protein used to inoculate the mice resulted in local inflammatory changes. The nonpiliated strain PA1244-NP was as virulent as the piliated strain PAO1, suggesting that expression of other virulence factors are also important in the development of acute pneumonia. This infant mouse model of pulmonary infection appears to be a useful system for the analysis of P. aeruginosa virulence factors involved in the pathogenesis of pneumonia.  相似文献   

15.
Subinhibitory bismuth-thiols reduce virulence of Pseudomonas aeruginosa   总被引:2,自引:0,他引:2  
Pseudomonas aeruginosa is a common pathogen in mechanically ventilated patients and produces a wide array of virulence factors. Bismuth-thiols (BTs) are active in vitro against all bacterial lung pathogens, including P. aeruginosa. The objective of these studies was to examine the biochemical and morphologic effects of sublethal BT concentrations on P. aeruginosa and to evaluate virulence in cell culture. Bismuth-dimercaprol, at a fraction of the minimal inhibitory concentration, reduced alginate expression by 67% in P. aeruginosa, whereas subinhibitory bismuth-ethanedithiol (BisEDT) reduced alginate by 92% in P. syringae. BisEDT effects on lipopolysaccharide content and type III secreted cytoxins were examined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Subinhibitory BisEDT reduced cell-associated lipopolysaccharide, and inhibited processing of the secreted cytotoxic protein ExoU. BisEDT-induced outer membrane blebbing and aggregation of cytoplasmic material was noted in electron microscopy. Virulence of P. aeruginosa was assessed by adherence to epithelial cells and sensitivity to serum killing. BisEDT inhibited adherence of P. aeruginosa to 16HBE14o- cells by 28% and to a collagen matrix by 53%. BisEDT-treated bacteria were also 100-fold more sensitive to serum bactericidal activity. In summary, low BT concentrations affect P. aeruginosa in a variety of ways, the combination of which may help prevent or resolve respiratory tract infection.  相似文献   

16.
Exotoxin A (P-ExA) is considered to be a major virulence factor of Pseudomonas aeruginosa. Neutrophils, cytokines and nitric oxide (NO) have been implicated as important components of an effective host defence against bacterial respiratory tract infection. To study the role of P-ExA in the pathogenesis of P. aeruginosa pneumonia, C57Bl/6 mice were inoculated intranasally with wild-type PA103 or a mutant P. aeruginosa strain that did not produce P-ExA, PA103-29. P-ExA facilitated the outgrowth of P. aeruginosa in lungs, as reflected by an increasing number of cfu during pneumonia with strain PA103, whereas the number of cfu decreased during pulmonary infection with strain PA103-29. Influx of neutrophils was similar in broncho-alveolar lavage fluids (BALF) during pneumonia with strains PA103 and PA103-29. Lung levels of cytokines (tumor necrosis factor-alpha, interleukin-6) and chemokines (macrophage inflammatory protein-2, KC) were higher in mice inoculated with strain PA103, whereas BALF concentrations of NO were similar in mice treated with strains PA103 and PA103-29. These data suggest that P-ExA impairs host defence during pneumonia caused by P. aeruginosa by a mechanism that does not involve effects on neutrophil influx, cytokines, chemokines or NO formation.  相似文献   

17.
Studies of immunity to Pseudomonas aeruginosa have indicated that a variety of potential immunogens can elicit protection in animal models, utilizing both antibody- and cell-mediated immune effectors for protection. To attempt to optimize delivery of multiple protective antigens and elicit a broad range of immune effectors, we produced an aroA deletion mutant of the P. aeruginosa serogroup O2/O5 strain PAO1, designated PAO1deltaaroA. Previously, we reported that this strain elicits high levels of opsonic antibody directed against many serogroup O2/O5 strains after nasal immunization of mice and rabbits. Here, we assessed the protective efficacy of immunization with PAO1deltaaroA against acute fatal pneumonia in mice. After active immunization, high levels of protection were achieved against an ExoU-expressing cytotoxic variant of the parental strain PAO1 at doses up to 1,000-fold greater than the 50% lethal dose. Significant protection against PAO1 and two of four other serogroup O2/O5 strains was also found, but there was no protection against serogroup-heterologous strains. The serogroup O2/O5 strains not protected against were killed in opsonophagocytic assays as efficiently as the strains with which protection was seen, indicating a lack of correlation of protection and opsonic killing within the serogroup. In passive immunization experiments using challenge with wild-type PAO1 or other noncytotoxic members of the O2/O5 serogroup, there was no protection despite the presence of high levels of opsonic antibody in the mouse sera. However, passive immunization did prevent mortality from pneumonia due to the cytotoxic PAO1 variant at low-challenge doses. These data suggest that a combination of humoral and cellular immunity is required for protection against P. aeruginosa lung infections, that such immunity can be elicited by using aroA deletion mutants, and that a multivalent P. aeruginosa vaccine composed of aroA deletion mutants of multiple serogroups holds significant promise.  相似文献   

18.
A murine corneal scratch model has been used extensively to study various aspects of the pathogenesis of Pseudomonas aeruginosa, a common etiologic agent of corneal infections. This model uses mild inhalation anesthetics which keep the animals immobile for a relatively short time and promote the interaction between the infecting organisms and the corneal wound. Under these circumstances, only a small number of P. aeruginosa isolates delivered at inocula of > 10(7) CFU are infectious. We determined that this model is useful for studying other P. aeruginosa strains given at lower doses if injectable anesthetics are administered prior to infection to keep the animals immobile for 15 to 30 min. Under these conditions, eight clinical isolates of P. aeruginosa tested at doses of 10(8) CFU per eye induced corneal perforation and/or phthisis in C3H/HeN mice. The 50% infective doses of several strains were between 3 x 10(2) and 1 x 10(5) CFU per mouse eye. When this modified anesthetic procedure was used to evaluate the roles of different P. aeruginosa virulence factors in eye infections, pathology was not observed when eyes were inoculated with 10(8) CFU of strains deficient in production of a complete lipopolysaccharide or the RpoN sigma factor. A strain with a point mutation in the fur gene, involved in production of iron-regulated factors, showed decreased virulence, while a mutant deficient in both hemolytic and nonhemolytic phospholipase C was fully virulent. By modifying the anesthesia procedure, the corneal scratch model allows rapid evaluations of the roles of P. aeruginosa virulence factors in corneal infections.  相似文献   

19.
One of the most common pathogens in infection of hydrogel contact lens wearers is Pseudomonas aeruginosa, which can gain access to the eye via contamination of the lens, lens case, and lens care solutions. Only one strain per species is used in current regulatory testing for the marketing of chemical contact lens disinfectants. The aim of this study was to determine whether P. aeruginosa strains vary in their susceptibility to hydrogel contact lens disinfectants. A method for rapidly screening bacterial susceptibility to contact lens disinfectants was developed, based on measurement of the MIC. The susceptibility of 35 P. aeruginosa isolates to two chemical disinfectants was found to vary among strains. MICs ranged from 6.25 to 100% for both disinfectants at 37 degrees C, and a number of strains were not inhibited by a 100% disinfectant concentration in the lens case environment at room temperature (22 degrees C). Resistance to disinfection appeared to be an inherent rather than acquired trait, since some resistant strains had been isolated prior to the introduction of the disinfectants and some susceptible P. aeruginosa strains could not be made more resistant by repeated disinfectant exposure. A number of P. aeruginosa strains which were comparatively more resistant to short-term disinfectant exposure also demonstrated the ability to grow to levels above the initial inoculum in one chemical disinfectant after long-term (24 to 48 h) disinfectant exposure. Resistance was correlated with acute cytotoxic activity toward corneal epithelial cells and with exsA, which encodes a protein that regulates cytotoxicity via a complex type III secretion system. These results suggest that chemical disinfection solutions may select for contamination with cytotoxic strains. Further investigation of the mechanisms and factors responsible for resistance may also lead to strategies for reducing adverse responses to contact lens wear.  相似文献   

20.
A total of 141 independent strains of Pseudomonas aeruginosa with different heterogeneities in the exo gene (exoS, exoT, exoU, and exoY) background were examined for their pathogenic roles. Results indicated that the exoU gene is the major contributor to cytotoxicity in Madin-Darby canine kidney cells but is not related to bacterial colonization in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号