首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Few studies have demonstrated in vivo alterations of human serotonin and dopamine transporters (SERTS and DATS) during antidepressant treatment. The current study measured these transporter availabilities with [(123)I]beta-CIT single photon emission computed tomography (SPECT) during administration of selective serotonin reuptake inhibitors (SSRIs) or a non-SSRI, bupropion. A total of 17 healthy human subjects were randomly assigned to two different treatment protocols: (1). citalopram (40 mg/day) followed by augmentation with bupropion (100 mg/day) or (2). bupropion (100-200 mg/day) for 16 days. Citalopram significantly inhibited [(123)I]beta-CIT binding to SERT in brainstem (51.4%) and diencephalon (39.4%) after 8 days of administration, which was similarly observed after 16 days. In contrast, citalopram significantly increased striatal DAT binding by 15-17% after 8 and 16 days of administration. Bupropion and its augmentation to citalopram did not have a significant effect on DAT or SERT. In 10 depressed patients who were treated with paroxetine (20 mg/day), a similar increase in DAT and inhibition of SERT were observed during 6 weeks treatment. The results demonstrated the inhibition of SERT by SSRI in human in vivo during the chronic treatment and, unexpectedly, an elevation of DAT. This apparent SSRI-induced modulation of the dopamine system may be associated with the side effects of these agents, including sexual dysfunction.  相似文献   

2.
Both positron emission tomography and single photon emission computed tomography (SPECT) studies suggest that saturation of serotonin transporters (SERT) is present during treatment with therapeutic doses of selective serotonin reuptake inhibitors (SSRIs). Selective serotonin reuptake inhibitors also appear to increase the availability of dopamine transporters (DAT). The current study measured SERT occupancy and modulation of DAT by the serotonin/norepinephrine reuptake inhibitor (SNRI) venlafaxine using [123I]2beta-carbomethoxy-3beta-(4-iodophenyl)-tropane SPECT. Eight healthy subjects were administered open-label venlafaxine extended release capsules (75 mg/d for 4 days followed by 150 mg/d for 5 days). Venlafaxine significantly inhibited [123I]beta-CIT binding to SERT in the brainstem (55.4%) and the diencephalon (54.1%). In contrast, venlafaxine increased [123I]beta-CIT binding to DAT in the striatum (10.1%) after 5 days of administration of 150 mg/d. The displacement of [123I]beta-CIT from brain SERT and the increase in striatal [123I]beta-CIT binding to DAT appear similar to previous work with the SSRI citalopram (40 mg/d). A literature review of SERT occupancy by marketed SSRIs and the SNRI venlafaxine using SPECT ([123I]beta-CIT) or positron emission tomography ([11C](N, N-Dimethyl-2-(2-amino-4-cyanophenylthio)-benzylamine) imaging suggests that therapeutic doses of SNRI are associated with virtual saturation of the serotonin transporter.  相似文献   

3.

Rationale and objective

The aims of this study were to examine the differences between 32 opioid-dependent users treated with a very low dose of methadone or undergoing methadone-free abstinence and 32 controls.

Methods

SPECT analysis using [99mTc] TRODAT-1 to assess striatal dopamine transporter (DAT) availability and [123I] ADAM to assess midbrain serotonin transporter (SERT) availability were performed.

Results

Lower striatal DAT and midbrain SERT availabilities were noted in low-dose methadone users. History of metamphatamine use was associated with the lower striatal DAT. The striatal DAT of methadone-free abstainers was also lower than controls. The midbrain SERT availability tended to be higher in the methadone-free abstainers than the low-dose methadone users. The severity of depressive symptoms was negatively correlated with midbrain SERT availability in the opioid users.

Conclusion

The availability of striatal DAT tended to be, and the availability of midbrain SERT was, lower in the opioid users. History of metamphatamine use may confound the difference in straital DAT between controls and opioid users, as midbrain SERT and depressive symptoms are also associated with opioid use and abstinence.  相似文献   

4.
2beta-Carbomethoxy-3beta-[4'-((Z)-2-iodoethenyl)phenyl]tropane (ZIET) and 2beta-carbomethoxy-3beta-[4'-((Z)-2-bromoethenyl)phenyl]tropane (ZBrET) were synthesized as well as their nortropane congeners ZIENT and ZBrENT. Binding affinities of these compounds were determined in cells transfected to express human SERT, DAT, and NET using [3H]citalopram, [125I]RTI-55, and [3H]nisoxetine, respectively. Both ZIET and ZBrET displayed high affinity for the SERT (Ki = 0.11 and 0.08 nM, respectively).The affinities of ZIET and ZBrET for the DAT were 200 and 38-fold lower, respectively, than for the SERT. [11C]ZIET and [11C]ZBrET were prepared by alkylation of their corresponding nortropanes with [11C]methyl iodide in approximately 30% radiochemical yield (decay-corrected to end of bombardment, EOB). High specific activity [123I]ZIET was synthesized in 33% radiochemical yield (decay-corrected) by treating the 2beta-carbomethoxy-3beta-[4'-((Z)-2-trimethylstannylethenyl)phenyl]tropane (3) with no carrier-added sodium [123I]iodide and hydrogen peroxide in ethanolic HCl. Biodistribution studies in rats indicated that [123I]ZIET enters the brain readily and accumulates in SERT-rich regions. Blocking studies performed in rats demonstrated that [123I]ZIET was selective and specific for SERT-rich regions (e.g. thalamus, brainstem, and striatum). MicroPET brain imaging studies in monkeys demonstrated that [11C]ZIET and [11C]ZBrET uptakes were selectivity localized in the putamen, midbrain, caudate, thalamus, pons, and medulla. Radioactivity in the regions of high SERT density of monkey brain was displaceable with citalopram except in the putamen and caudate. Radioactivity uptake in these DAT-rich regions was significantly displaceable either by preadministration of citalopram followed by injection of RTI-113 (or vice-versa) or by administration of a mixture of DAT and SERT ligands. In conclusion, the high yield, high specific activity, one-step radiolabeling method, high selectivity and favorable kinetics, and the good results obtained with [123I]ZIET in rats support the candidacy of [11C]ZIET for in vivo visualization and quantification of brain SERT.  相似文献   

5.
Extrapyramidal symptoms, such as tardive dyskinesia, often develop in patients on long-term treatment with haloperidol. It has been proposed that these symptoms could be caused by neurotoxic effects of haloperidol metabolites following uptake by monoamine transporters, in an analogous mechanism to the neurotoxic effect of MPP+ (1-methyl-4-phenylpyridinium) metabolised from MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). In this study, the hypothesis was partially investigated by determining the potencies of haloperidol and reduced haloperidol and the corresponding pyridinium and tetrahydropyridine metabolites, compared with MPP+ and MPTP, as inhibitors of the noradrenaline transporter (NAT), dopamine transporter (DAT) and 5-HT transporter (SERT). Two days after COS-7 cells were transiently transfected with the cDNA for the human NAT, DAT or SERT (Lipofectamine method), the cells were incubated with 10 nM [3H]noradrenaline, dopamine or 5-HT, respectively, for 2 min at 37 C, in the absence or presence of various concentrations of the eight compounds or a specific uptake inhibitor (NAT: nisoxetine 1 microM; DAT: GBR 12909 1 microM; SERT: citalopram 10 microM). Specific amine uptake (fmol/ mg protein) was calculated as the difference in uptake in the absence and presence of the specific uptake inhibitor. Ki values were calculated for the eight compounds for inhibition of NAT, DAT and SERT. Haloperidol, its five metabolites and MPP+ and MPTP all inhibited NAT, DAT and SERT. For the pyridinium and tetrahydropyridine metabolites of haloperidol, there were not marked differences between their potencies as inhibitors between each other for NAT or DAT or between NAT and DAT, with all of the Ki values in the range of 5.8-16 microM. However, there were more marked differences for SERT, with all but one of the metabolites showing selectivity for inhibition of SERT relative to NAT and DAT. Haloperidol and reduced haloperidol had similar inhibitory potencies for all three transporters, and were clearly less potent than the other haloperidol metabolites only for inhibition of SERT. The lack of correlation between the inhibitory potencies of the haloperidol metabolites and their structural analogues, MPTP and MPP+, suggests that they are not likely to cause neurotoxicity by a mechanism analogous to that of the latter neurotoxin.  相似文献   

6.
2beta-carbomethoxy-3beta-(3'-((Z)-2-iodoethenyl)phenyl)nortropane (mZIENT, 1) and 2beta-carbomethoxy-3beta-(3'-((Z)-2-bromoethenyl)phenyl)nortropane (mZBrENT, 2) were synthesized and evaluated for binding to the human serotonin, dopamine, and norepinephrine transporters (SERT, DAT, and NET, respectively) using transfected cells. Both 1 and 2 have a high affinity for the SERT (Ki=0.2 nM) and are approximately 160 times more selective for the SERT than the DAT. Compound 2 has a significantly higher affinity for the NET than 1, and this may be a result of the different size and electronegativity of the halogen atoms. MicroPET imaging in nonhuman primates with [11C]1 and [11C]2 demonstrated that both tracers behave similarly in vivo with high uptake being observed in the SERT-rich brain regions and peak uptake being achieved in about 55 min postinjection. Chase studies with citalopram and methylphenidate demonstrated that this uptake is the result of preferential binding to the SERT.  相似文献   

7.
Dopamine transporter knockout (DAT KO) mice display deficits in sensorimotor gating that are manifested by reduced prepulse inhibition (PPI) of the acoustic startle reflex. Since PPI deficits may model some of the cognitive dysfunctions identified in certain neuropsychiatric patients, we have studied the effects of transporter blockers on PPI in wild-type and DAT KO mice. Treatments with High dose psychostimulants that block DAT as well as the norepinephrine (NET) and serotonin (SERT) transporters (60 mg/kg cocaine or methylphenidate) significantly impaired PPI in wild-type mice. By contrast, these treatments significantly ameliorated the PPI deficits observed in untreated DAT KO mice. In studies with more selective transport inhibitors, the selective NET inhibitor nisoxetine (10 or 30 mg/kg) also significantly reversed PPI deficits in DAT KO mice. By contrast, while the SERT inhibitor fluoxetine (30 mg/kg) normalized these PPI deficits in DAT KO mice, citalopram (30 or 100 mg/kg) failed to do so. The 'paradoxical' effects of cocaine and methylphenidate in DAT KO mice are thus likely to be mediated, at least in part by the ability of these drugs to block NET, although serotonin systems may also have some role. Together with recent microdialysis data, these results support the hypothesis that prefrontal cortical NET blockade and consequent enhancement of prefrontal cortical extracellular dopamine mediates the reversal of PPI deficits in DAT KO mice.  相似文献   

8.
Human MDMA (R,S-3,4-methylenedioxymethamphetamine) users display selective cognitive deficits after acute MDMA exposure, frequently attributed to serotonin deficits. We postulated that MDMA will compromise executive function in primates and that an inhibitor of the serotonin transporter (SERT) and the norepinephrine transporter (NET) but not the dopamine (DAT) transporter, will prevent impairment. The potencies of DAT/NET, NET and SERT inhibitors to block transport of [(3)H]MDMA and [(3)H]monoamines were compared in vitro. Subsequently, cynomolgus monkeys (Macaca fasicularis) were trained to stable performance in a reversal learning task. Effects of once-weekly oral or i.m. dose of MDMA (1.5 mg/kg, n = 4) on performance were monitored, alone or after pretreatment with inhibitors of the SERT, DAT or NET (prior to i.m. MDMA). 1) Drug potencies for blocking [(3)H]MDMA or [(3)H]monoamine transport were not consistent; 2) Oral MDMA increased error rates in a cognitive task for up to three days following exposure, whereas intramuscular MDMA prevented subjects from performing the cognitive task on the day of administration, but not on subsequent days; 3) The SERT inhibitor citalopram and the NET inhibitor desipramine, but not the DAT/NET inhibitor methylphenidate, reversed the effects of MDMA on task performance and mandibular movements induced by i.m. MDMA and 4) MDMA altered sleep latency. Oral MDMA impairs executive function in monkeys for several days, a finding of potential relevance to MDMA consumption by humans. Reversal of impaired executive function by a NET inhibitor implicates the NET and norepinephrine in MDMA-induced cognitive impairment and may be relevant to therapeutic strategies.  相似文献   

9.
2beta-Carbomethoxy-3beta-(4'-((Z)-2-iodoethenyl)phenyl)nortropane (ZIENT) (6) and 2beta-carbomethoxy-3beta-(4'-((E)-2-iodoethenyl)phenyl)nortropane (EIENT) (10) were prepared and evaluated in vitro and in vivo for serotonin transporter (SERT) selectivity and specificity. High specific activity [(123)I]ZIENT and [(123)I]EIENT were synthesized in 45% (n = 5) and 42% (n = 4) radiochemical yield (decay-corrected to end of bombardment (EOB)), respectively, by preparation of the precursor carbomethoxy-3beta-(4'-((Z)-2-trimethylstannylethenyl)phenyl)nortropane (7) and 2beta-carbomethoxy-3beta-(4'-((E)-2-tributylstannylethenyl)phenyl)nortropane (9), respectively, followed by treatment with no carrier-added sodium [(123)I]iodide and hydrogen peroxide in ethanolic HCl. Competition binding in cells stably expressing the transfected human SERT, dopamine transporter (DAT), and norepinephrine transporter (NET) using [(3)H]citalopram, [(3)H]WIN 35,428, and [(3)H]nisoxetine, respectively, demonstrated the following order of SERT affinity (K(i) in nM): ZIENT (0.05) > nor-CIT (0.12) > EIENT (1.15) > fluvoxamine (1.46). The affinity of ZIENT and EIENT for DAT was 69 and 1.6-fold lower, respectively, than for SERT. In vivo biodistribution and blocking studies were performed in male rats and demonstrated that the brain uptake of [(123)I]ZIENT was selective and specific for SERT-rich regions (hypothalamus, striatum, pons, and prefrontal cortex). SPECT brain imaging studies in monkeys demonstrated high [(123)I]ZIENT uptake in the diencephalon, which resulted in diencephalon-to-cerebellum ratios of 2.12 at 190 min. [(123)I]ZIENT uptake in the diencephalon achieved transient equilibrium at 157 min. In a displacement experiment of [(123)I]ZIENT in a cynomolgus monkey, radioactivity was reduced by 39% in the diencephalon at 101 min following injection of citalopram. The high specific activity one-step radiolabeling preparation and high selectivity of [(123)I]ZIENT for SERT support its candidacy as a radioligand for mapping brain SERT sites.  相似文献   

10.
Objectives The effect of gender and female menstrual cycle on human striatal dopamine transporters (DATs) was investigated with single-photon emission computed tomography (SPECT) using the ligand 2β-carbomethoxy-3β-(4-[123I]iodophenyl)tropane.Methods Ten female subjects aged 18–40 years (25.3±7.3 years) were scanned twice during the early follicular and the mid-luteal phases to detect any hormone-mediated changes in DAT availability in the striatum or serotonin transporter (SERT) availability in brainstem–diencephalon. Plasma estradiol and progesterone levels were obtained at the time of SPECT and confirmed the expected increases from the follicular to the luteal phases. Finally, in a post hoc analysis of a previously published healthy-subject sample, striatal DAT availability was compared between 70 male and 52 female subjects who ranged in age from 18 to 88 years.Results In the ten menstrual cycle subjects, DAT availability (V3″) in striatum and SERT availability in brainstem–diencephalon did not differ between follicular and luteal phases. Moreover, change in V3″ for striatum or brainstem–diencephalon was uncorrelated with change in plasma estradiol or progesterone from the follicular to the luteal phase. In the larger healthy-subject sample, there was no significant effect of gender or the interaction of age and gender on striatal V3″.Conclusions These findings suggest that in using DAT or SERT ligands in the study of neuropsychiatric disorders, matching of female subjects according to a menstrual cycle phase is unnecessary. Although the present investigation did not confirm previous reports of gender differences in striatal DAT availability, controlling for gender in such studies still seems advisable.  相似文献   

11.
In our effort to develop a pharmacotherapy for the treatment of cocaine addiction, we embarked on synthesizing novel molecules targeting the dopamine transporter (DAT) molecule in the brain as DAT has been implicated strongly in the reinforcing effect of cocaine. Our previously developed DAT-selective piperidine analogue, 4-[2-(diphenylmethoxy)ethyl]-1-benzylpiperidine, was the basis for our current structure-activity relationship (SAR) studies exploring the significance of the contribution of the benzhydryl O- and N-atoms in these molecules in interacting with the DAT. Thus, we replaced the benzhydryl O-atom with an N-atom, altered the location of the benzhydryl N-atom to an adjacent position, and in one other occasion converted the benzhydryl O-ether linkage into an oxime-type derivative. Furthermore, we also evaluated the important contribution of the piperidine N-atom to binding by altering its pK(a) value chemically. Novel analogues were tested for potency in inhibiting [3H]WIN 35,428, [3H]citalopram, and [3H]nisoxetine binding at the DAT, serotonin transporter (SERT), and norepinepherine transporter (NET). [3H]DA was used to measure DA reuptake inhibition. The results indicated that the benzhydryl O- and N-atoms are exchangeable for the most part. On the other hand, an enhanced interaction with the SERT was observed when the benzhydryl N-atom moved to an adjacent position (21a; DAT (IC(50)) = 19.7, SERT (IC(50)) = 137 nM, NET (IC(50)) = 1111 nM). In either cases, further alkylation of the N-atom reduced the activity for the transporter. The presence of a powerful electron-withdrawing cyano group in compound 5d expectedly produced the most potent and selective ligand for the DAT (DAT (IC(50)) = 3.7 nM, DAT/SERT = 615). Selected compounds were further analyzed in the dopamine reuptake inhibition assay. Preliminary behavioral assessment of some of the selected compounds in mice indicated that these compounds are much less stimulating when compared with cocaine at comparable doses. In drug-discrimination studies these selected compounds incompletely generalized from the cocaine stimulus in mice trained to discriminate 10 mg/kg cocaine from vehicle.  相似文献   

12.
Background Escitalopram is a dual serotonin reuptake inhibitor (SSRI) approved for the treatment of depression and anxiety disorders. It is the S-enantiomer of citalopram, and is responsible for the serotonin reuptake activity, and thus for its pharmacological effects. Previous studies pointed out that clinically efficacious doses of other SSRIs produce an occupancy of the serotonin reuptake transporter (SERT) of about 80% or more. The novel radioligand [123I]ADAM and single photon emission computer tomography (SPECT) were used to measure midbrain SERT occupancies for different doses of escitalopram and citalopram.Methods Twenty-five healthy subjects received a single dose of escitalopram [5 mg (n=5), 10 mg (n=5), and 20 mg (n=5)] or citalopram [(10 mg (n=5) and 20 mg (n=5)]. Midbrain SERT binding was measured with [123I]ADAM and SPECT on two study days, once without study drug and once 6 h after single dose administration of the study drug. The ratio of midbrain-cerebellum/cerebellum was the outcome measure (V3”) for specific binding to SERT in midbrain. Subsequently, SERT occupancy levels were calculated using the untreated baseline level for each subject. An E max model was used to describe the relationship between S-citalopram concentrations and SERT occupancy values. Additionally, four subjects received placebo to determine test–retest variability.Results Single doses of 5, 10, or 20 mg escitalopram led to a mean SERT occupancy of 60±6, 64±6, and 75±5%, respectively. SERT occupancies for subjects treated with single doses of 10 and 20 mg citalopram were 65±10 and 70±6%, respectively. A statistically significant difference was found between SERT occupancies after application of 10 and 20 mg escitalopram, but not for 10 and 20 mg citalopram. There was no statistically significant difference between the SERT occupancies of either 10 mg citalopram or 10 mg escitalopram, or between 20 mg citalopram and 20 mg escitalopram. E max was slightly higher after administration of citalopram (84%) than escitalopram (79%). In the test–retest study, a mean SERT “occupancy” of 4% was found after administration of placebo, the intraclass correlation coefficient was 0.92, and the repeatability coefficient was 0.25.Conclusion SPECT and [123I]ADAM were used to investigate SERT occupancies after single doses of escitalopram or citalopram. The test–retest study revealed good reproducibility of SERT quantification. Similar SERT occupancies were found after administration of equal doses (in respect to mg) of escitalopram and citalopram, giving indirect evidence for a fractional blockade of SERT by the inactive R-citalopram.  相似文献   

13.
Following exocytotic release, the biogenic amine neurotransmitters, norepinephrine, dopamine, and serotonin are removed from the synaptic cleft by the respective transporter, NET, DAT, and SERT, located on the plasma membrane and then re-stored into synaptic vesicles by vesicular monoamine transporter, VMAT. The molecular cloning of these transporters revealed that NET, DAT, and SERT are members of a sodium-dependent neurotransmitter transporter gene family, while VMATs arise from proton-dependent transporter gene family. Structural features common to NET, DAT, and SERT reveal a putative 12 transmembrane-spanning domain structure with cytosolic N- and C-terminal regions. Recent evidence suggest the regulation of the functional expression of these transporters via phosphorylation, which include direct phosphorylation of transporter proteins and/or of associated proteins that may control transporter function/expression. In addition, the substrates and inhibitors for these transporters appear capable of regulating transporter cell surface expression, thereby suggesting both activity-dependent and pharmacological regulatory mechanisms for transporter expression. Analyses of the genes provide new insight into their relation to neuronal diseases since NET, DAT and SERT are the molecular targets for many antidepressants as well as drugs of abuse such as cocaine and amphetamine. The availability of cDNAs of these and vesicular transporters has permitted detailed pharmacological studies in heterologous expression systems, and thus would promise the development of novel drugs with diverse chemical structures.  相似文献   

14.
Neuroimaging evidence supporting an association between either dopamine or serotonin and time to relapse of heroin users is limited. In this two-isotope SPECT small sample (N=9) pilot study, the relationship between the availability of serotonin transporter (SERT) and dopamine transporter (DAT) and the relapse of heroin users was investigated. A significant negative association between SERT availability and time to relapse among those who relapsed (N=7) was found.  相似文献   

15.
N, N-dimethyl-2-(2'-amino-4'-hydroxymethylphenylthio)benzylamine (38), substituted on ring A, was reported to display high binding affinity and selectivity to the human brain serotonin transporter (SERT). In an attempt to explore the potential of compounds substituted on ring B of the phenylthiophenyl core structure, three derivatives of 38 were synthesized: N, N-dimethyl-2-(2'-amino-4'-hydroxymethyl-phenylthio)-5-fluorobenzylamine (35), N, N-dimethyl-2-(2'-amino-4'-hydroxymethyl-phenylthio)-5-bromobenzylamine (36), and N, N-dimethyl-2-(2'-amino-4'-hydroxymethyl-phenylthio)-5-iodobenzylamine (37). The in vitro binding studies in cells transfected with human SERT, norepinephrine transporter (NET), and dopamine transporter (DAT) showed that 35, 36, and 37 exhibited high SERT affinity with K is (SERT) = 1.26, 0.29, and 0.31 nM (vs [(3)H]citalopram), respectively. [(11)C]-(35), [(11)C]-(36), and [(11)C]-( 37) were prepared by methylation of their monomethyl precursors 16, 17, and 18, with [(11)C]iodomethane in 28, 11, and 14% radiochemical yields, respectively. The microPET images of [(11)C]-(35), [(11)C]-(36), and [(11)C]-(37) showed high uptake in the monkey brain regions rich in SERT with peak midbrain to cerebellum ratios of 3.41, 3.24, and 3.00 at 85 min post-injection, respectively. In vivo bindings of [(11)C]-(35), [(11)C]-(36), and [(11)C]-(37) were shown to be specific to the SERT as displacement with citalopram (a potent SERT ligand) reduced radioactivity in SERT-rich regions to the cerebellum level. These results suggest that [(11)C]-(35), [(11)C]-(36), and [(11)C]-(37) could be potential agents for mapping human SERT by PET and radiolabeling 37 with iodine-123, which could afford the first SPECT SERT imaging agent exhibiting fast kinetics.  相似文献   

16.
Cocaine conditioned place preference (CPP) is intact in dopamine transporter (DAT) knockout (KO) mice and enhanced in serotonin transporter (SERT) KO mice. However, cocaine CPP is eliminated in double-KO mice with no DAT and either no or one SERT gene copy. To help determine mechanisms underlying these effects, we now report examination of baselines and drug-induced changes of extracellular dopamine (DAex) and serotonin (5-HT(ex)) levels in microdialysates from nucleus accumbens (NAc), caudate putamen (CPu), and prefrontal cortex (PFc) of wild-type, homozygous DAT- or SERT-KO and heterozygous or homozygous DAT/SERT double-KO mice, which are differentially rewarded by cocaine. Cocaine fails to increase DAex in NAc of DAT-KO mice. By contrast, systemic cocaine enhances DAex in both CPu and PFc of DAT-KO mice though local cocaine fails to affect DAex in CPu. Adding SERT to DAT deletion attenuates the cocaine-induced DAex increases found in CPu, but not those found in PFc. The selective SERT blocker fluoxetine increases DAex in CPu of DAT-KO mice, while cocaine and the selective DAT blocker GBR12909 increase 5-HT(ex) in CPu of SERT-KO mice. These data provide evidence that (a) cocaine increases DAex in PFc independently of DAT and that (b), in the absence of SERT, CPu levels of 5-HT(ex) can be increased by blocking DAT. Cocaine-induced alterations in CPu DA levels in DAT-, SERT-, and DAT/SERT double-KO mice appear to provide better correlations with cocaine CPP than cocaine-induced DA level alterations in NAc or PFc.  相似文献   

17.
3,4-Methylendioxymethamphetamine (MDMA) has both stimulatory and hallucinogenic properties which make its psychoactive effects unique and different from those of typical psychostimulant and hallucinogenic agents. The present study investigated the effects of MDMA on extracellular dopamine (DA(ex)) and serotonin (5-HT(ex)) levels in the striatum and prefrontal cortex (PFC) using in vivo microdialysis techniques in mice lacking DA transporters (DAT) and/or 5-HT transporters (SERT). subcutaneous injection of MDMA (3, 10 mg/kg) significantly increased striatal DA(ex) in wild-type mice, SERT knockout mice, and DAT knockout mice, but not in DAT/SERT double-knockout mice. The MDMA-induced increase in striatal DA(ex) in SERT knockout mice was significantly less than in wildtype mice. In the PFC, MDMA dose-dependently increased DA(ex) levels in wildtype, DAT knockout, SERT knockout and DAT/SERT double-knockout mice to a similar extent. In contrast, MDMA markedly increased 5-HT(ex) in wildtype and DAT knockout mice and slightly increased 5-HT(ex) in SERT-KO and DAT/SERT double-knockout mice. The results confirm that MDMA acts at both DAT and SERT and increases DA(ex) and 5-HT(ex).  相似文献   

18.
A series of N,N-dimethylated and N-monomethylated analogues of N,N-dimethyl-2-(2'-amino-4'-iodophenylthio)benzylamine substituted at the 4'-phenyl position have been prepared and evaluated in vitro for serotonin transporter (SERT) selectivity. Several derivatives were prepared where the 4'-position was either unsubstituted 13 and 33a or substituted with methyl 14a and 33b, ethenyl 14b and 34, ethyl 16 and 35, hydroxymethyl 20 and 41, hydroxyethyl 22, fluoroethyl 23, hydroxypropyl 27, and fluoropropyl 28. Competition binding in cells stably expressing the transfected human SERT, dopamine transporter (DAT), and norepinephrine transporter (NET) using [(3)H]citalopram, [(3)H]WIN 35,428 or [(125)I]RTI-55, and [(3)H]nisoxetine, respectively, demonstrated the following order of SERT affinity (K(i) (nM)): 14a (0.25) > 16 (0.49) > 20 (0.57) > 14b (1.12) > 13 (1.59) > 33b (1.94) = 35 (2.04) > 23 (8.50) = 28 (8.55) > 41 (15.11) > 22 (51) > 33a (83.43) > 27 (92). The K(i) values revealed that most of these derivatives displayed a high affinity for the SERT and a high selectivity over the DAT and NET. Moreover, substitution at the 4'-position of the dimethylated and monomethylated benzylamines differently influenced SERT binding: (i) the dimethylated benzylamines exhibited higher SERT affinity than the monomethylated ones, (ii) alkyl, alkenyl, or hydroxymethyl functions at the 4'-position afford compounds with high SERT affinity, and (iii) omega-hydroxy and fluoro-substituted ethyl and propyl groups at the 4'-position decrease the SERT affinity. From this series, the dimethylated derivatives 13, 14a, 14b, 16, and 20 were radiolabeled with carbon-11 and their log P(7.4) was calculated as a measure of their potential brain penetrance as positron emission tomography SERT imaging agents.  相似文献   

19.
Objectives Previous studies have investigated the occupancy of the serotonin reuptake transporter (SERT) after clinical doses of citalopram and other selective serotonin reuptake inhibitors. In the present study, the occupancies of SERT after multiple doses of escitalopram and citalopram were compared using the radioligand [123I]ADAM and single photon emission computed tomography (SPECT). Methods Fifteen healthy subjects received escitalopram 10 mg/day (n = 6) or citalopram 20 mg/day (n = 9) for a total of 10 days. SERT occupancies in midbrain were determined with SPECT and [123I]ADAM at three different time points: at baseline (no medication) and at 6 and 54 h after last drug intake. Results At 6 h after the last dose, mean SERT occupancies were 81.5 ± 5.4% (mean±SD) for escitalopram and 64.0 ± 12.7% for citalopram (p < 0.01). At 54 h after the last dose, mean SERT occupancies were 63.3 ± 12.1% for escitalopram and 49.0 ± 11.7% for citalopram (p < 0.05). The plasma concentrations of the S-enantiomer were of the same magnitude in both substances. For both drugs, the elimination rate of the S-enantiomer in plasma was markedly higher than the occupancy decline rate in the midbrain. Conclusion The significantly higher occupancy of SERT after multiple doses of escitalopram compared to citalopram indicates an increased inhibition of SERT by escitalopram. The results can also be explained by an attenuating effect of R-citalopram on the occupancy of S-citalopram at the SERT.  相似文献   

20.
A series of 4-[2-[bis(4-fluorophenyl)methoxy]ethyl]-piperidines and 4-[2-[(bisphenyl)methoxy]ethyl]-piperidines with different types of substituents in the phenylpropyl side-chain were synthesized and examined for their ability to bind to the dopamine transporter (DAT), the serotonin transporter (SERT), and the norepinephrine transporter (NET). All of the compounds showed high binding affinities for the DAT in the low to subnanomolar range. Their ability to bind to the SERT and the NET, while maintaining their high affinity for the DAT, could be altered by substitution in positions C2 and C3 of the phenylpropyl side-chain. This approach gave rise to a new set of compounds with selectivity for the DAT, the DAT and the SERT, or the DAT and the NET. Six compounds (7, 9, 11, 12, 14, and 20) with relatively low SERT/DAT ratios were selected for additional study in biogenic amine uptake inhibition assays based on the biogenic amine transporter binding results. Some of the new ligands can serve as pharmacological tools to block DAT or DAT and another transporter simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号