首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Sodium-dependent glutamate transporters expressed in astroglial cells and neurons are essential for clearance of extracellular glutamate. In the present study, we found elevation of extracellular glutamate concentration associated with concomitant downregulation of glutamate transporters following rat microsphere embolism (ME). A marked increase in extracellular glutamate in the rat striatum was observed by microdialysis immediately after ME induction, and glutamate remained elevated at least 12 h after ischemia. Concomitantly, impairment of high KCl (146 mM)-induced glutamate release was observed in the striatum 12 h after ME. Consistent with the persistent increase in extracellular glutamate, expression of the glutamate transporters EAAC1 and GLT-1 significantly decreased 6 h after insult without a change in GLAST levels. GLT-1 expression was restored to basal levels within 48 h, whereas EAAC1 expression remained decreased up to at least 72 h after ME. Restoration of GLT-1 was associated with increased expression of the astroglial marker GFAP, whereas markedly reduced EACC1 levels were correlated with reduced levels of the neuronal marker MAP2, likely due to loss of vulnerable neurons. Taken together, downregulation of glutamate transporters after ME is associated with dysregulation of basal glutamate concentrations and KCl-induced glutamate release in the brain.  相似文献   

2.
l ‐Glutamate is one of the major excitatory neurotransmitters in the mammalian central nervous system, but recently it has been shown to have a role also in the transduction of sensory input at the periphery, and in particular in the nociceptive pathway. An excess of glutamate is implicated in cases of peripheral neuropathies as well. Conventional therapeutic approaches for treating these diseases have focused on blocking glutamate receptors with small molecules or on reducing its synthesis of the receptors through the inhibition of glutamate carboxypeptidase II (GCPII), the enzyme that generates glutamate. In vivo studies have demonstrated that the pharmacological inhibition of GCPII can either prevent or treat the peripheral nerve changes in both BB/Wor and chemically induced diabetes in rats. In this study, we characterized the expression and distribution of glutamate transporters GLT1, GLAST, EAAC1 and of the enzyme GCPII in the peripheral nervous system of female Wistar rats. Immunoblotting results demonstrated that all glutamate transporters and GCPII are present in dorsal root ganglia (DRG) and the sciatic nerve. Immunofluorescence localization studies revealed that both DRG and sciatic nerves were immunopositive for all glutamate transporters and for GCPII. In DRG, satellite cells were positive for GLT1 and GCPII, whereas sensory neurons were positive for EAAC1. GLAST was localized in both neurons and satellite cells. In the sciatic nerve, GLT1 and GCPII were expressed in the cytoplasm of Schwann cells, whereas GLAST and EAAC1 stained the myelin layer. Our results give for the first time a complete characterization of the glutamate transporter system in the peripheral nervous system. Therefore, they are important both for understanding glutamatergic signalling in the PNS and for establishing new strategies to treat peripheral neuropathies.  相似文献   

3.
4.
Glutamate transporters play a critical role in the maintenance of low extracellular concentrations of glutamate, which prevents the overactivation of post‐synaptic glutamate receptors. Four distinct glutamate transporters, GLAST/EAAT1, GLT‐1/EAAT2, EAAC1/EAAT3 and EAAT4, are distributed in the molecular layer of the cerebellum, especially near glutamatergic synapses in Purkinje cells (PCs). This review summarizes the current knowledge about the differential roles of these transporters at excitatory synapses of PCs. Data come predominantly from electrophysiological experiments in mutant mice that are deficient in each of these transporter genes. GLAST expressed in Bergmann glia contributes to the clearing of the majority of glutamate that floods out of the synaptic cleft immediately after transmitter release from the climbing fibre (CF) and parallel fibre (PF) terminals. It is indispensable to maintain a one‐to‐one relationship in synaptic transmission at the CF synapses by preventing transcellular glutamate spillover. GLT‐1 plays a similar but minor role in the uptake of glutamate as GLAST. Although the loss of neither GLAST nor GLT‐1 affects cerebellar morphology, the deletion of both GLAST and GLT‐1 genes causes the death of the mutant animal and hinders the folium formation of the cerebellum. EAAT4 removes the low concentrations of glutamate that escape from uptake by glial transporters, preventing the transmitter from spilling over into neighbouring synapses. It also regulates the activation of metabotropic glutamate receptor 1 (mGluR1) in perisynaptic regions at PF synapses, which in turn affects mGluR1‐mediated events including slow EPSCs and long‐term depression. No change in synaptic function is detected in mice that are deficient in EAAC1.  相似文献   

5.
The solute carrier family 1 (SLC1) includes five high-affinity glutamate transporters, EAAC1, GLT-1, GLAST, EAAT4 and EAAT5 (SLC1A1, SLC1A2, SLC1A3, SLC1A6, and SLC1A7, respectively) as well as the two neutral amino acid transporters, ASCT1 and ASCT2 (SLC1A4 and ALC1A5, respectively). Although each of these transporters have similar predicted structures, they exhibit distinct functional properties which are variations of a common transport mechanism. The high-affinity glutamate transporters mediate transport of l-Glu, l-Asp and d-Asp, accompanied by the cotransport of 3 Na(+) and 1 H(+), and the countertransport of 1 K(+), whereas ASC transporters mediate Na(+)-dependent exchange of small neutral amino acids such as Ala, Ser, Cys and Thr. The unique coupling of the glutamate transporters allows uphill transport of glutamate into cells against a concentration gradient. This feature plays a crucial role in protecting neurons against glutamate excitotoxicity in the central nervous system. During pathological conditions, such as brain ischemia (e.g. after a stroke), however, glutamate exit can occur due to "reversed glutamate transport", which is caused by a reversal of the electrochemical gradients of the coupling ions. Selective inhibition of the neuronal glutamate transporter EAAC1 (SLC1A1) may be of therapeutic interest to block glutamate release from neurons during ischemia. On the other hand, upregulation of the glial glutamate transporter GLT1 (SLC1A2) may help protect motor neurons in patients with amyotrophic lateral sclerosis (ALS), since loss of function of GLT1 has been associated with the pathogenesis of certain forms of ALS.  相似文献   

6.
Previous data showed that cell surface expression of the glutamate transporters GLT1a and excitatory amino acid carrier 1 (EAAC1), localized in glia and neurons of the CNS, can be regulated by protein kinase C (PKC). Regulation and physiological importance of GLT1b, a splice variant of GLT1a, is not understood. In the present study we used cultured cerebellar granule cells (CGCs) from mice to investigate PKC dependent trafficking of GLT1b in comparison to GLT1a and EAAC1 using immunohistochemistry and subcellular fractionation followed by Western blotting. In neurites of CGCs, GLT1b and EAAC1 were localized to different aggregates of vesicles that were different from vesicle aggregates containing vesicular glutamate transporters. In CGCs cultured with low-potassium medium, stimulation of PKC by phorbol ester enhanced the formation of large varicosities in neurites that exhibited immunoreactivity for GLT1a, GLT1b, and EAAC1. Stimulation of PKC leads to a significant increase of GLT1b and EAAC1 in the plasma membrane whereas GLT1a in the plasma membrane was decreased. Following PKC stimulation, also a significant increase of transporter-mediated glutamate uptake representing sodium dependent glutamate uptake, was observed. Similarly, the fraction of glutamate uptake, that was sensitive to the inhibitor WAY-213613 and represents uptake by GLT1a and GLT1b, was increased after stimulation by PKC. The findings suggest that PKC is similarly involved in regulation of surface trafficking of GLT1b and EAAC1 and that PKC stimulated increase in surface location of GLT1b and EAAC1 in glutamatergic CGCs.  相似文献   

7.
The vertebrate neuromuscular junction (NMJ) is known to be a cholinergic synapse at which acetylcholine (ACh) is released from the presynaptic terminal to act on postsynaptic nicotinic ACh receptors. There is now growing evidence that glutamate, which is the main excitatory transmitter in the CNS and at invertebrate NMJs, may have a signaling function together with ACh also at the vertebrate NMJ. In the CNS, the extracellular concentration of glutamate is kept at a subtoxic level by Na(+)-driven high-affinity glutamate transporters located in plasma membranes of astrocytes and neurons. The glutamate transporters are also pivotal for shaping glutamate receptor responses at synapses. In order to throw further light on the potential role of glutamate as a cotransmitter at the NMJ we used high-resolution immunocytochemical methods to investigate the localization of the plasma membrane glutamate transporters GLAST (glutamate aspartate transporter) and GLT (glutamate transporter 1) in rat and mice NMJ regions. Confocal laser-scanning immunocytochemistry showed that GLT is restricted to the NMJ in rat and mouse skeletal muscle. Lack of labeling signal in knock-out mice confirmed that the immunoreactivity observed at the NMJ was specific for GLT. GLAST was also localized at the NMJ in rat but not detected in mouse NMJ (while abundant in mouse brain). Post-embedding electron microscopic immunocytochemistry and quantitative analyses in rat showed that GLAST and GLT are enriched in the junctional folds of the postsynaptic membrane at the NMJ. GLT was relatively higher in the slow-twitch muscle soleus than in the fast-twitch muscle extensor digitorum longus, whereas GLAST was relatively higher in extensor digitorum longus than in soleus. The findings show--together with previous demonstration of vesicular glutamate, a vesicular glutamate transporter and glutamate receptors--that mammalian NMJs contain the machinery required for synaptic release and action of glutamate. This indicates a signaling role for glutamate at the normal NMJ and provides a basis for the ability of denervated muscle to be reinnervated by glutamatergic axons from the CNS.  相似文献   

8.
Around excitatory synapses in cerebellar Purkinje cells (PCs), GLAST and EAAT4 are expressed as predominant glial and neuronal glutamate transporters, respectively. EAAC1, another subtype of neuronal glutamate transporter, is also expressed in PCs. EAAT4 is co-localized with metabotropic glutamate receptors (mGluRs) at perisynaptic sites in excitatory synapses in PCs, and this neuronal transporter was reported to be involved in the regulation of mGluR activation induced by the stimulation of parallel fibers (PFs). However, it remains to be elucidated whether only EAAT4 is specifically involved in mGluR activation among the glutamate transporters expressed near excitatory synapses in PCs. Here we examined mGluR-mediated excitatory postsynaptic currents (mGluR-EPSCs) evoked by PF stimulation in cerebellar slices of mice deficient in EAAT4, EAAC1, or GLAST. PF-evoked mGluR-EPSCs showed larger amplitude and faster rising kinetics in EAAT4-deficient mice than in the wild-type mice. In contrast, there was no significant difference in either the amplitude or the rising kinetics of mGluR-EPSCs in GLAST- or EAAC1-deficient mice compared to wild-type mice. We conclude that EAAT4 is most closely involved in mGluR activation in PCs among the glutamate transporters.  相似文献   

9.
In normal brain, we previously demonstrated that the exon-9 skipping form of glutamate-aspartate transporter (GLAST; which we refer to as GLAST1b) is expressed by small populations of neurons that appear to be sick or dying and suggested that these cells were subject to inappropriate local glutamate-mediated excitation. To test this hypothesis we examined the expression of GLAST1b in the hypoxic pig brain. In this model glial glutamate transporters such as GLAST and glutamate transporter 1 (GLT-1) are down-regulated in susceptible regions, leading to regional loss of glutamate homeostasis and thus to brain damage. We demonstrate by immunohistochemistry that in those brain regions where astroglial glutamate transporters are lost, GLAST1b expression is induced in populations of neurons and to a lesser extent in some astrocytes. These neurons were also immunolabeled by antibodies against the carboxyl-terminal region of GLAST but did not label with antibodies directed against the amino-terminal region. Our Western blotting data indicate that GLAST1b expressed by neurons lacks the normal GLAST amino-terminal region and may be further cleaved to a smaller approximately 30-kDa fragment. We propose that GLAST1b represents a novel and sensitive marker for the detection of neurons at risk of dying in response to hypoxic and other excitotoxic insults and may have wider applicability in experimental and clinical contexts.  相似文献   

10.
Glutamate is the main excitatory neurotransmitter in the mammalian central nervous system which at high extracellular levels leads to neuronal over-stimulation and subsequent excitotoxic neuronal cell death. Both the termination of glutamatergic neurotransmission and the prevention of neurotoxic extracellular glutamate concentrations are predominantly achieved by the uptake of extracellular glutamate into astroglia through the high-affinity glutamate transporters, excitatory amino acid transporter-2/glutamate transporter-1 (EAAT-2/GLT-1) and EAAT-1/glutamate aspartate transporter (GLAST). Although several injury-induced growth factors such as epidermal growth factor (EGF) and transforming growth factor alpha (TGFalpha) potently stimulate the expression of glutamate transporters in cultured astroglia, GLT-1 and/or GLAST expression temporarily decreases during acute brain injuries eventually contributing to secondary neuronal cell death. We now demonstrate that the stimulatory influences of these injury-regulated growth factors are overridden by endothelins (ETs), a family of peptides also upregulated in the injured brain. Exposure of cultured cortical astroglia to ET-1, ET-2, and ET-3 resulted in a major loss of basal glutamate transporter expression after 72 hours and the complete prevention of the known stimulatory influences of dibutyryl cyclic (dbc)AMP, pituitary adenylate cyclase-activating polypeptide (PACAP), EGF, and TGFalpha on both GLT-1 and GLAST expression. With all ET isoforms, the inhibitory effects were detectable with similar low nanomolar concentrations and persisted in endothelin B-receptor deficient astroglia, suggesting that the inhibitory action is equally induced by endothelin A and B receptors. In astroglial cultures maintained with endothelins alone or in combination with PACAP, the inhibitory action was remarkably long-lasting and was still detectable after 7 days. In apparent contrast, glutamate transporter expression partially recovered between days 5 and 7 in cultures maintained with a combination of ETs and the injury-regulated growth factors EGF or TGFalpha. These findings point to ETs as major mediators of injury-dependent down-regulation of glial glutamate transporters and subsequent glutamate-induced brain damage.  相似文献   

11.
The choroid plexus is a structure within each ventricle of the brain that is composed of fenestrated vessels surrounded by secretory epithelial cells. The epithelial cells are linked by tight junctions to create a permeability barrier. The epithelial cells are derived from neuroectoderm, and are thus defined by some authors as a subtype of macroglia. Glutamate is a tightly regulated substance in the CSF, as it is in the rest of the brain. In the brain macroglia express multiple sodium dependent and independent glutamate transporters and are the main regulators of extracellular glutamate. However, the identities of the transporters in the choroid plexus and their localisations have remained poorly defined. In this study we examined the expression and distribution of multiple splice variants of classical sodium-dependent glutamate transporters, as well as the cystine-glutamate antiporter, and the PDZ protein NHERF1, (which acts as a molecular anchor for proteins such as the glutamate transporter GLAST). We identified three forms of sodium-dependent transporters (GLAST1a, GLAST1c and GLT1b) that are expressed at the apical surface of the epithelial cells, a location that matches the distribution of NHERF1 and the cystine-glutamate antiporter. We propose that this coincident localisation of GLAST1a/GLAST1c/GLT1b and the cystine-glutamate antiporter would permit the cyclical trafficking of glutamate and thus optimise the accumulation of cystine for the formation of glutathione in the choroid plexus.  相似文献   

12.
13.
The excitatory amino acid carrier 1 (EAAC1) is a sodium-dependent glutamate transporter widely found in the mammalian brain and mainly localized in the somatodendritic compartment of neurons. The present study was performed to determine whether EAAC1 is present in the rat nucleus of the solitary tract (NST, a sensory brainstem nucleus involved in visceroception) and to document its subcellular localization. Using fluorescent immunolabeling, peroxidase immunostaining and quantitative immunogold labeling, we showed that both intracellular and plasma membrane-associated pools of EAAC1 transporters existed in dendrites of NST neurons. Although plasma membrane-associated transporters were more concentrated in the vicinity of synapses, no labeling was found at the axon–dendrite interface, suggesting that EAAC1 was not (or barely) expressed in this portion of dendritic membrane. Using computer simulation, we next showed that the ability of EAAC1 to efficiently take up synaptically released glutamate was very low outside the axon–dendrite interface. These data suggest that EAAC1 transporters present on NST dendrites may play a minor role if any in glutamate clearance.  相似文献   

14.
Uptake of the neurotransmitter glutamate is effected primarily by transporters expressed on astrocytes, and downregulation of these transporters leads to seizures and neuronal death. Neurons also express a glutamate transporter, termed excitatory amino acid carrier-1 (EAAC1), but the physiological function of this transporter remains uncertain. Here we report that genetically EAAC1-null (Slc1a1(-/-)) mice have reduced neuronal glutathione levels and, with aging, develop brain atrophy and behavioral changes. EAAC1 can also rapidly transport cysteine, an obligate precursor for neuronal glutathione synthesis. Neurons in the hippocampal slices of EAAC1(-/-) mice were found to have reduced glutathione content, increased oxidant levels and increased susceptibility to oxidant injury. These changes were reversed by treating the EAAC1(-/-) mice with N-acetylcysteine, a membrane-permeable cysteine precursor. These findings suggest that EAAC1 is the primary route for neuronal cysteine uptake and that EAAC1 deficiency thereby leads to impaired neuronal glutathione metabolism, oxidative stress and age-dependent neurodegeneration.  相似文献   

15.
16.
Glaucoma, one of the leading causes of irreversible blindness, is characterized by progressive degeneration of retinal ganglion cells (RGCs) and optic nerves. Although glaucoma is often associated with elevated intraocular pressure, recent studies have shown a relatively high prevalence of normal tension glaucoma (NTG) in glaucoma patient populations. In the mammalian retina, glutamate/aspartate transporter (GLAST) is localized to Müller glial cells, whereas excitatory amino acid carrier 1 (EAAC1) is expressed in neural cells, including RGCs. Since the loss of GLAST or EAAC1 leads to retinal degeneration similar to that seen in NTG, we examined the effects of interleukin-1 (IL-1) on RGC death in GLAST- and EAAC1-deficient mice. IL-1 promoted increased glutamate uptake in Müller cells by suppressing intracellular Na+ accumulation, which is necessary to counteract Na+-glutamate cotransport. The observed trends for the glutamate uptake increase in the wild-type (WT), GLAST- and EAAC1-deficient mice were similar; however, the baseline glutamate uptake and intracellular Na+ concentration in the GLAST-deficient mice were significantly lower than those in the wild-type mice. Consistently, pretreatment with IL-1 exhibited no beneficial effects on glutamate-induced RGC degeneration in the GLAST-deficient mice. In contrast, IL-1 significantly increased glutamate uptake by Müller cells and the number of surviving RGCs in the wild-type and EAAC1-deficient mice. Our findings suggest that the use of IL-1 for enhancing the function of glutamate transporters may be useful for neuroprotection in retinal degenerative disorders including NTG.  相似文献   

17.
18.
Glutamate transporter 1 (GLT1) in glial cells removes glutamate that diffuses from the synaptic cleft into the extracellular space. Previously, we have shown the distribution of glutamatergic neurons in the central nervous system (CNS) of the pigeon. In the present study, we identified cDNA sequence of the pigeon GLT1, and mapped the distribution of the mRNA-expressing cells in CNS to examine whether GLT1 is associated with glutamatergic terminal areas. The cDNA sequence of the pigeon GLT1 consisted of 1889 bp nucleotides and the amino acids showed 97% and 87% identity to the chicken and human GLT1, respectively. In situ hybridization autoradiograms revealed GLT1 mRNA expression in glial cells and produced regional differences of GLT1 mRNA distribution in CNS. GLT1 mRNA was expressed preferentially in the pallium than the subpallium. Moderate expression was seen in the hyperpallium, Field L, mesopallium, and hippocampal formation. In the thalamus, moderate expression was found in the ovoidal nucleus, rotundal nucleus, triangular nucleus, and lateral spiriform nucleus, while the dorsal thalamic nuclei were weak. In the brainstem, the isthmic nuclei, optic tectum, vestibular nuclei, and cochlear nuclei expressed moderately, but the cerebellar cortex showed strong expression. Bergmann glial cells expressed GLT1 mRNA very strongly. The results indicate that cDNA sequence of the pigeon GLT1 is comparable with that of the mammalian GLT1, and a large number of GLT1 mRNA-expressing areas correspond with areas where AMPA-type glutamate receptors are located. Avian GLT1 in glial cells probably maintain microenvironment of glutamate concentration around synapses as in mammalian GLT1.  相似文献   

19.
Cerebellar Purkinje cells represent a group of neurons highly vulnerable to ischemia. Excitotoxicity is thought to be an important pathophysiological mechanism in Purkinje cell death following ischemia. The glutamate transporter is the only mechanism for the removal of glutamate from the extracellular fluid in the brain. Therefore, glutamate transporters are believed to play a critical role in protecting Purkinje cells from ischemia-induced damage. Two distinct glutamate transporters, GLAST and EAAT4, are expressed most abundantly in the cerebellar cortex. GLAST is expressed in Bergmann glia, whereas EAAT4 is concentrated in the perisynaptic regions of Purkinje cell spines. However, the in vivo functional significance of these glial and neuronal glutamate transporters in postischemic Purkinje cell death is largely unknown. To clarify the role of these glutamate transporters in the protection of Purkinje cells after global brain ischemia, we evaluated Purkinje cell loss after cardiac arrest in mice lacking GLAST or EAAT4. We found that Purkinje cells with low EAAT4 expression were selectively lost after cardiac arrest in GLAST mutant mice. This result demonstrates that GLAST plays a role in preventing excitotoxic cerebellar damage after ischemia in concert with EAAT4.  相似文献   

20.
Perturbations of the synaptic handling of glutamate have been implicated in the pathogenesis of brain damage after transient ischemia. Notably, the ischemic episode is associated with an increased extracellular level of glutamate and an impaired metabolism of this amino acid in glial cells. Glutamate uptake is reduced during ischemia due to breakdown of the electrochemical ion gradients across neuronal and glial membranes. We have investigated, in the rat hippocampus, whether an ischemic event additionally causes a reduced expression of the glial glutamate transporter GLT1 (Pines et al. 1992) in the postischemic phase. Quantitative immunoblotting, using antibodies recognizing GLT1, revealed a 20% decrease in the hippocampal contents of the transporter protein, 6 h after an ischemic period lasting 20 min induced by four vessel occlusion. In situ hybridization histochemistry with 35S labelled oligonucleotide probes or digoxigenin labelled riboprobes directed to GLT1 mRNA showed a decreased signal in the hippocampus, particularly in CA1. This reduction was more pronounced at 3 h than at 24 h after the ischemic event. We conclude that the levels of GLT1 mRNA and protein show a modest decrease in the postischemic phase. This could contribute to the delayed neuronal death typically seen in the hippocampal formation after transient ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号