首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Long QT syndrome (LQTS) is a cardiac disorder characterized by syncope, seizures and sudden death; it can be congenital, idiopathic, or iatrogenic. 2. Long QT syndrome is so-named because of the connection observed between the distinctive polymorphic ventricular tachycardia torsade de pointes and prolongation of the QT interval of the electrocardiogram, reflecting abnormally slowed ventricular action potential (AP) repolarization. Acquired LQTS has many similar clinical features to congenital LQTS, but typically affects older individuals and is often associated with specific pharmacological agents. 3. A growing number of drugs associated with QT prolongation and its concomitant risks of arrhythmia and sudden death have been shown to block the 'rapid' cardiac delayed rectifier potassium current (IKr) or cloned channels encoded by the human ether-a-go-go-related gene (HERG; the gene believed to encode native IKr). Because IKr plays an important role in ventricular AP repolarization, its inhibition would be expected to result in prolongation of both the AP and QT interval of the electrocardiogram. 4. The drugs that produce acquired LQTS are structurally heterogeneous, including anti-arrhythmics, such as quinidine, non-sedating antihistamines, such as terfenadine, and psychiatric drugs, such as haloperidol. In addition to heterogeneity in their structure, the electrophysiological characteristics of HERG/IKr inhibition differ between agents. 5. Here, clinical observations are associated with cellular data to correlate acquired LQTS with the IKr/HERG potassium (K+) channel. One strategy for developing improved compounds in those drug classes that are currently associated with LQTS could be to design drug structures that preserve clinical efficacy but are modified to avoid pharmacological interactions with IKr. Until such time, awareness of the QT-prolongation risk of particular agents is important for the clinician.  相似文献   

2.
药物导致的获得性长QT综合征是由药物引起的可逆性的QT间期延长的综合征,其主要机制是药物通过对IKr的阻断作用,导致动作电位3期快速复极延迟,表现为QT间期延长。在临床上,许多结构上无关的药物,包括抗精神病药物均可以导致QT间期的延长。药物导致的获得性长QT综合征容易导致尖端扭转性室性心动过速(TdP),临床上可以通过Tp-e和Tp-e/QT比值、巨大T-U波、QRS缓慢上升支和QT间期短期变异可以预测TdP的风险。治疗获得性长QT综合征,最根本的是识别和停用导致QT间期延长的药物并积极的纠正代谢异常,如低钾血症或低镁血症。大多数TdP的发作是短暂的,并可自行终止。然而,长时间发作会导致血流动力学紊乱,需要立即进行电复律。  相似文献   

3.
Recent developments regarding the underlying genetic and intracardiac ion channel causes of congenital long QT syndrome have shed new light in the area of repolarization disorders and their resultant cardiac arrhythmias. Drug induced or acquired QT prolongation often represents a latent form of congenital long QT syndrome, though the genetic basis of this has not been elucidated in the majority of cases. Understanding this has lead to a new concept of repolarization reserve, a measure of inherent susceptibility to repolarization-mediated arrhythmias. The majority of pharmacologic agents that cause significant QT prolongation have potassium channel blocking characteristics, predominantly affecting the rapidly activating current I(Kr). The list of agents known to affect I(Kr)continues to grow, best monitored through several websites that collate reports of drug-induced QT prolongation and arrhythmias. Discontinuation of the offending agent and supportive care are often all that is necessary when clinical arrhythmias arise.  相似文献   

4.
During the past decade pharmaceutical companies have been faced with the withdrawal of some of their marketed drugs because of rare, yet lethal, postmarketing reports associated with ventricular arrhythmias. The implicated drugs include antiarrhythmics, but also non-cardiac drugs, such as histamine blockers, antipsychotics, and antibiotics. These undesired effects involve prolongation of the QT interval, which may lead to characteristic ventricular tachyarrhythmias, known as torsades de pointes. These clinical symptoms of the acquired long QT syndrome (LQTS) are also found in an inherited form of the disease, called congenital LQTS. Nowadays, a number of environmental (non-genetic) and genetic risk factors for acquired LQTS have been described. Non-genetic factors include female gender, hypokalemia, and other heart diseases. The knowledge of genetic risk factors is emerging rapidly. During the last decade, mutations in several genes encoding ion channels have been shown to cause congenital LQTS. In acquired LQTS, a number of 'silent' mutation carriers in these LQTS genes have been identified, and functional polymorphisms in the same genes have been found that are associated with an increased vulnerability for the disease. Furthermore, there is also evidence that interindividual differences in drug metabolism, caused by functional polymorphisms in drug-metabolizing enzyme genes, may be a risk factor for acquired LQTS, especially if multiple drugs are involved. This review evaluates the current knowledge on these risk factors for acquired LQTS, with an emphasis on the genetic risk factors. It also assesses the potential to develop pharmacogenetic tests that will enable clinicians and pharmaceutical companies to identify at an early stage patients or individuals in the general population who are at risk of acquired LQTS.  相似文献   

5.
ABSTRACT:: Torsade de Pointes (TdP) proarrhythmia is a major complication of therapeutic drugs that block the delayed rectifier current. QT interval prolongation, the principal marker used to screen drugs for proarrhythmia, is both insensitive and nonspecific. Consequently, better screening methods are needed. Drug-induced transmural dispersion of repolarization (TDR) is mechanistically linked to TdP. Therefore, we hypothesized that drug-induced enhancement of TDR is more predictive of proarrhythmia than QT interval. High-resolution transmural optical action potential mapping was performed in canine wedge preparations (n = 19) at baseline and after perfusion with 4 different QT prolonging drugs at clinically relevant concentrations. Two proarrhythmic drugs in patients (bepridil and E4031) were compared with 2 nonproarrhythmic drugs (risperidone and verapamil). Both groups prolonged the QT (all P < 0.02), least with the proarrhythmic drug bepridil, reaffirming that QT is a poor predictor of TdP. In contrast, TDR was enhanced only by proarrhythmic drugs (P < 0.03). Increased TDR was due to a preferential prolongation of midmyocardial cell, relative to epicardial cell, APD, whereas nonproarrhythmic drugs similarly prolonged both cell types. In contrast to QT prolongation, augmentation of TDR was induced by proarrhythmic but not nonproarrhythmic drugs, suggesting TDR is a superior preclinical marker of proarrhythmic risk during drug development.  相似文献   

6.
Pharmacogenetics of cardiac K(+) channels   总被引:4,自引:0,他引:4  
A number of commonly prescribed drugs belonging to various therapeutic classes (antiarrhythmic, antibiotic, antifungal, antihistamine, antipsychotic, prokinetic drugs…) possess, in common, the adverse property to prolong cardiac repolarization [prolonged QT interval duration on surface electrocardiogram (ECG)], exposing patients to a risk of torsade-de-pointes arrhythmias, syncope, and sudden death. Arrhythmias related to drug-induced QT prolongation do not occur in every patient treated with these drugs but most likely occur in a subset of susceptible patients. These patients have a high risk of recurrence of arrhythmias upon exposure to any of the other drugs that broaden the QT interval. It is currently suspected (though not yet proven) that susceptible individuals carry a silent mutation in one of the genes responsible for the congenital long QT syndrome. Indeed, it appears more and more clear that a large proportion of congenital long QT syndrome gene carriers, have a normal QT interval and a normal phenotype and therefore, remain undiagnosed. Therefore, a much larger than previously thought proportion of the general population may be affected by asymptomatic mutations in cardiac ion channel encoding genes. No routine technology is currently available in identifying these patients preventively.  相似文献   

7.
Drug-induced QT interval prolongation is a critical issue in development of new chemical entities, so the pharmaceutical industry needs to evaluate risk as early as possible. Common marmosets have been in the limelight in early-stage development due to their small size, which requires only a small amount of test drug. The purpose of this study was to determine the utility of telemetered common marmosets for predicting drug-induced QT interval prolongation. Telemetry transmitters were implanted in common marmosets (male and female), and QT and RR intervals were measured. The QT interval was corrected for the RR interval by applying Bazett's and Fridericia's correction formulas and individual rate correction. Individual correction showed the least slope for the linear regression of corrected QT (QTc) intervals against RR intervals, indicating that it dissociated changes in heart rate most effectively. With the individual correction method, the QT-prolonging drugs (astemizole, dl-sotalol) showed QTc interval prolongations and the non-QT-prolonging drugs (dl-propranolol, nifedipine) did not show QTc interval prolongations. The plasma concentrations of astemizole and dl-sotalol associated with QTc interval prolongations in common marmosets were similar to those in humans, suggesting that the sensitivity of common marmosets would be appropriate for evaluating risk of drug-induced QT interval prolongation. In conclusion, telemetry studies in common marmosets are useful for predicting clinical QT prolonging potential of drugs in early stage development and require only a small amount of test drug.  相似文献   

8.
Our previous study using the urethane-anesthetized guinea-pig model has shown that an I(Ks) blocker chromanol 293B hardly affects the QT interval itself nor potentiates the I(Kr) blocker-induced QT-interval prolongation. The former is in good accordance with the previous results in the human isolated intact ventricular tissue, but the latter is in sharp contrast with them. In this study, we characterized the ventricular repolarization ability of a newly developed halothane-anesthetized guinea-pig model by using I(Kr) and I(Ks) blockers. Intravenous administration of a selective I(Kr) blocker d-sotalol (3 mg/kg) prolonged the QT interval by +27 ms. On the other hand, intravenous administration of chromanol 293B (1 mg/kg) prolonged the QT interval by +35 ms, and additional administration of the same dose of d-sotalol further prolonged the QT interval by +48 ms. These results suggest that the abundance of the repolarization reserve among the current and previous models may be in the order of the urethane-anesthetized guinea-pig heart>human intact ventricular tissue>halothane-anesthetized guinea-pig heart. Thus, the halothane-anesthetized guinea-pig model may be considered to be more sensitive than the previous models in predicting the QT-interval prolonging effects of new drugs in patients with high risks for the acquired long QT syndrome.  相似文献   

9.
Much attention recently has focused on drugs that prolong the QT interval, potentially leading to fatal cardiac dysrhythmias (e.g., torsade de pointes). We provide a detailed review of the published evidence that supports or does not support an association between drugs and their risk of QT prolongation. The mechanism of drug-induced QT prolongation is reviewed briefly, followed by an extensive evaluation of drugs associated with QT prolongation, torsade de pointes, or both. Drugs associated with QT prolongation are identified as having definite, probable, or proposed associations. The role of the clinician in the prevention and management of QT prolongation, drug-drug interactions that may occur with agents known to affect the QT interval, and the impact of this adverse effect on the regulatory process are addressed.  相似文献   

10.
11.
Torsade de pointes is a rare but potentially fatal ventricular arrhythmia associated with drug-induced delayed repolarization and prolongation of the QT interval. To determine if the arrhythmogenic potential of noncardiac drugs can be assessed in vitro, we evaluated the effects of 12 drugs on the action potential duration (APD) of cardiac Purkinje fibers and compared results with clinical observations. APD changes in canine and porcine fibers were evaluated under physiologic conditions (37 degrees C, [K+]0 = 4 mM) using standard microelectrode techniques. Six of seven drugs associated with QT prolongation or torsade de pointes in man (cisapride, erythromycin, grepafloxacin, moxifloxacin, sertindole, and sotalol) affected concentration-dependent prolongation of the APD in canine fibers during slow stimulation (2-s basic cycle length), attaining greater than 15% prolongation at high concentrations (> or = 10-fold clinically encountered plasma levels). Each of five drugs not linked clinically to QT prolongation and torsade de pointes (azithromycin, enalaprilat, fluoxetine, indomethacin, and pinacidil) failed to attain 15% prolongation, with fluoxetine, indomethacin, and pinacidil abbreviating the APD. Drugs eliciting the greatest prolongation also demonstrated prominent reverse rate-dependent effects. The antihistamine terfenadine (linked to dose-dependent QT prolongation and torsade de pointes clinically) only minimally prolonged the APD in canine and porcine fibers (and exerted no effect on midmyocardial fibers from left ventricular free wall) at supratherapeutic concentrations. On the basis of concentration-dependent APD prolongation and reverse rate-dependent effects, this Purkinje fiber model detects six of seven drugs linked clinically to acquired long QT syndrome and torsade de pointes, and clears each of five drugs not associated with repolarization abnormalities (overall 92% accuracy), validating the utility of this Purkinje fiber model in the preclinical evaluation of QT prolongation and proarrhythmic risk by noncardiac drugs.  相似文献   

12.
《Drug discovery today》2022,27(3):831-837
Drug-induced prolongation of the QT interval is common in a variety of pharmaceutical treatments and can lead to serious clinical outcomes. Although substantial efforts have been made to prevent drug-induced QT interval prolongation, the lack of a centralized data source remains the main obstacle to further study of the underlying mechanism and the development of effective prediction strategies. To fill this gap, we propose a schema for stratifying the risk of marketed QT prolonging drugs based on US Food and Drug Administration (FDA)-approved drug labeling and developed a Drug-Induced QT Prolongation Atlas (DIQTA). Potential application of DIQTA was shown by precision dosing in off-label use and therapeutic strategy optimization, as well as the facilitation of artificial intelligence (AI)-based modeling in predictive toxicity.  相似文献   

13.
As an increasing number of non-cardiac drugs have been reported to cause QT interval prolongation and torsades de pointes (TdP), we extensively studied the utility of atrioventricular (AV) block animals as a model to predict their torsadogenic action in human. The present review highlights such in vivo proarrhythmia models. In the case of the canine model, test substances were administered p.o. at conscious state >4 weeks after the induction of AV block, with subsequent Holter ECG monitoring to evaluate drug effects. Control AV block dogs (no pharmacological treatment) survive for several years without TdP attack. For pharmacologically treated dogs, drugs were identified as high, low or no risk. High-risk drugs induced TdP at 1-3 times the therapeutic dose. Low-risk drugs did not induce TdP at this dose range, but induced it at higher doses. No-risk drugs never induced TdP at any dose tested. Electrophysiological, anatomical histological and biochemical adaptations against persistent bradycardia-induced chronic heart failure were observed in AV block dogs. Recently, we have developed another highly sensitive proarrhythmia model using a chronic AV block cynomolgus monkey, which possesses essentially the same pathophysiological adaptations and drug responses as those demonstrated in the canine model. As a common remodelling process leading to a diminished repolarization reserve may present in patients who experience drug-induced TdP and in the AV block animals, the in vivo proarrhythmia models described in this review may be useful for predicting the risk of pharmacologically induced TdP in humans.  相似文献   

14.
The QT interval in electrocardiogram (ECG) reflects the total duration of ventricular myocardial depolarization and repolarization. It has been well recognized that many condition may cause QT interval prolongation. Unfortunately, numbers of cardiac and non-cardiac drug prolong the QT interval and cause a distinctive polymorphic ventricular tachycardia termed torsade de pointes (TdP). TdP can degenerate into ventricular fibrillation, which leads to sudden cardiac death. Recently various regulatory and clinical bodies of Europe, USA, Canada and Australia have made their focus on the drugs that induce prolongation of QT interval. Committee for Proprietary Medicinal Products (CPMP) of the European Agency issued a document entitled 'Points to Consider: The assessment of the potential for QT interval prolongation by non-cardiovascular medicinal products' [1, 2]. In addition, USFDA adopted the guideline 'Clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for non-anti arrhythmic drugs' [3]. These documents and guidelines are primarily concern with development of novel agents and the new use or new dose of already approved drugs. The scope of this guideline is to study the effect of drugs on QT prolongation and give idea of evaluation of drug's effects on QT prolongation. Today more than 50 available drugs (both old and new) have been identify, which prolong the QT interval [1]. Several drugs have been withdrawn from many countries on this basis but many of these drugs are still available in Indian market and potentially creating life-threatening arrhythmias. This article will focus on recommendation of study on the normal limits of QT interval in Indian population and preparation of the database, which can be helpful in withdrawal of drugs from the market that produces QT prolongation.  相似文献   

15.
抗心律失常药物作用的靶点——HERG K+通道   总被引:2,自引:1,他引:2  
关凤英  杨世杰 《药学学报》2007,42(7):687-691
快速延迟整流钾电流(rapidly activating component of delayed rectifier potassium current,IKr)在心肌动作电位复极化过程中发挥重要作用。HERG基因编码心脏快速延迟整流钾通道的α亚基,HERG基因突变导致遗传性长QT间期综合征(long QT syndrome,LQTS),另外IKr/HERG通道是绝大多数能引起心脏QT间期延长药物的作用靶标,其他一些化学结构不同的药物也可阻断该通道,引起QT间期延长,甚至发展成获得性心律失常。本文从门控机制及功能、HERG通道相关的心律失常、药物与通道相互作用机制、优化通道靶点的策略等四个方面综述IKr/HERG通道在抗心律失常方面的最新研究进展。  相似文献   

16.
Background: Evidence has accrued that several non-cardiac drugs may prolong cardiac repolarisation (hence, the QT interval of the surface electrocardiogram) to such a degree that potentially life-threatening ventricular arrhythmias (e.g. torsades de pointes) may occur, especially in case of overdosage or pharmacokinetic interactions. Discussion: This has fostered discussion on the molecular mechanisms underlying the class-III anti-arrhythmic effect shared by apparently disparate classes of drugs, on the clinical relevance of this side effect and on possible guidelines to be followed by drug companies, ethics committees and regulatory agencies in the risk–benefit assessment of new and licensed drugs. This review provides an update on the different classes of non-cardiac drugs reported to prolong the QT interval (e.g. histamine H1-receptor antagonists, antipsychotics, antidepressants and macrolides), on the possible underlying molecular mechanisms and on the clinical relevance of the QT prolonging effect. Identification and widespread knowledge of risk factors that may precipitate prolongation of the QT interval into life-threatening arrhythmias becomes an important issue. Risk factors include congenital long QT syndrome, clinically significant bradycardia or heart disease, electrolyte imbalance (especially hypokalaemia, hypomagnesaemia), impaired hepatic/renal function and concomitant treatment with other drugs with known potential for pharmacokinetic/pharmacodynamic interactions (e.g. azole antifungals, macrolide antibacterials and class-I or -III anti-arrhythmic agents). Future perspectives for drug research and development are also briefly outlined. Received: 4 October 1999 / Accepted in revised form: 13 January 2000  相似文献   

17.
The long and growing list of non-antiarrhythmic drugs associated with prolongation of the QT interval of the electrocardiogram has generated concern not only for regulatory interventions leading to drug withdrawal, but also for the unjustified view that QT prolongation is usually an intrinsic effect of a whole therapeutic class [e.g. histamine H(1) receptor antagonists (antihistamines)], whereas, in many cases, it is displayed only by some compounds within a given class of non-antiarrhythmic drugs because of an effect on cardiac repolarisation. We provide an overview of the different classes of non-antiarrhythmic drugs reported to prolong the QT interval (e.g. antihistamines, antipsychotics, antidepressants and macrolides) and discusses the clinical relevance of the QT prolonging effect. Drug-induced torsade de pointes are sometimes considered idiosyncratic, totally unpredictable adverse drug reactions, whereas a number of risk factors for their occurrence is now recognised. Widespread knowledge of these risk factors and implementation of a comprehensive list of QT prolonging drugs becomes an important issue. Risk factors include congenital long QT syndrome, clinically significant bradycardia or heart disease, electrolyte imbalance (especially hypokalaemia, hypomagnesaemia, hypocalcaemia), impaired hepatic/renal function, concomitant treatment with other drugs with known potential for pharmacokinetic/pharmacodynamic interactions (e.g. azole antifungals, macrolide antibacterials and class I or III antiarrhythmic agents). This review provides insight into the strategies that should be followed during a drug development program when a drug is suspected to affect the QT interval. The factors limiting the predictive value of preclinical and clinical studies are also outlined. The sensitivity of preclinical tests (i.e. their ability to label as positive those drugs with a real risk of inducing QT pronglation in humans) is sufficiently good, but their specificity (i.e. their ability to label as negative those drugs carrying no risk) is not well established. Verapamil is a notable example of a false positive: it blocks human ether-a-go-go-related (HERG) K(+) channels, but is reported to have little potential to trigger torsade de pointes. Although inhibition of HERG K(+) channels has been proposed as a primary test for screening purposes, it is important to remember that several ion currents are involved in the generation of the cardiac potential and that metabolites must be specifically tested in this in vitro test. At the present state of knowledge, no preclinical model has an absolute predictive value or can be considered as a gold standard. Therefore, the use of several models facilitates decision making and is recommended by most experts in the field.  相似文献   

18.
Human ether-a-go-go-related gene (hERG) potassium channels conduct the rapid component of the delayed rectifier potassium current, IKr, which is crucial for repolarization of cardiac action potentials. Moderate hERG blockade may produce a beneficial class III antiarrhythmic effect. In contrast, a reduction in hERG currents due to either genetic defects or adverse drug effects can lead to hereditary or acquired long QT syndromes characterized by action potential prolongation, lengthening of the QT interval on the surface ECG, and an increased risk for "torsade de pointes" arrhythmias and sudden death. This undesirable side effect of non-antiarrhythmic compounds has prompted the withdrawal of several blockbuster drugs from the market. Studies on mechanisms of hERG channel inhibition provide significant insights into the molecular factors that determine state-, voltage-, and use-dependency of hERG current block. In addition, crucial properties of the high-affinity drug binding site in hERG and its interaction with drug molecules have been identified, providing the basis for more refined approaches in drug design, safety pharmacology and in silico modeling. Recently, mutations in hERG have been shown to cause current increase and hereditary short QT syndrome with a high risk for life-threatening arrhythmias. Finally, the discovery of adrenergic mechanisms of hERG channel regulation as well as the development of strategies to enhance hERG currents and to modify intracellular hERG protein processing may provide novel antiarrhythmic options in repolarization disorders. In conclusion, the increasing understanding of hERG channel function and molecular mechanisms of hERG current regulation could improve prevention and treatment of hERG-associated cardiac repolarization disorders.  相似文献   

19.
The cardiovascular side effects of older antidepressants, such as tricyclic antidepressants, are well established and are known to be linked to their capacity to inhibit cardiac and vascular ion channels. Newer compounds, such as selective serotonin reuptake inhibitors, mirtazapine and venlafaxine, have been reported to have a more benign cardiovascular profile, although they also share antagonistic properties with regard to voltage-dependent ion channels in different tissues. The electrophysiological effects that antidepressants exert on ion channels may affect the cardiac action potential (AP), lengthening both depolarization and repolarization phases, widening the QRS complex, prolonging the QT interval or causing Brugada-like electrocardiogram patterns. Lengthening of the depolarization phase can slow conduction through the His-Purkinje system and myocardium, while slowing repolarization can lead to early after depolarizations and Torsade de Pointes (TdP). In this review, we discuss data from experimental animal models regarding the effects of antidepressants on the cardiac AP, as well as antidepressant-induced QT prolongation in humans and sudden death in patients treated with antidepressants. It appears that although various experimental studies may lead to an understanding of the mechanisms involved in the modulation of cardiac electrical activity, there are significant discrepancies between in vitro data describing the action of antidepressants on the AP, data from clinical trials on QT prolongation by antidepressants and risk of TdP. The role of genetic polymorphisms of potassium-channel-encoding genes in determining the individual risk of cardiac arrhythmias and the limits of QT use as a marker of risk are discussed. Extensive pharmacokinetic and pharmacodynamic studies are required to determine the doses and plasma ranges of each drug that are associated with the greatest risk of arrhythmic complications.  相似文献   

20.
Putative interactions between the Human Ether-a-go-go Related Gene (HERG), QT interval prolongation and Torsades de Pointes (TdP) are now integral components of any discussion on drug safety. HERG encodes for the inwardly rectifying potassium channel (IKr), which is essential to the maintenance of normal cardiac function. HERG channel mutations are responsible for one form of familial long QT syndrome, a potentially deadly inherited cardiac disorder associated with TdP. Moreover, drug-induced (acquired) QT interval prolongation has been associated with an increase in the incidence of sudden unexplained deaths, with HERG inhibition implicated as the underlying cause. Subsequently, a number of non-cardiovascular drugs which induce QT interval prolongation and/or TdP have been withdrawn. However, a definitive link between HERG, QT interval prolongation and arrhythmogenesis has not been established. Nevertheless, this area is subject to ever increasing regulatory scrutiny. Here we review the relationship between HERG, long QT syndrome and TdP, together with a summary of the associated regulatory issues, and developments in pre-clinical screening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号