首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The development of intensity-modulated radiotherapy (IMRT) has created a clear need for a dosimeter that can accurately and conveniently measure dose distributions in three dimensions to assure treatment quality. PRESAGE is a new three dimensional (3D) dosimetry material consisting of an optically clear polyurethane matrix, containing a leuco dye that exhibits a radiochromic response when exposed to ionizing radiation. A number of potential advantages accrue over other gel dosimeters, including insensitivity to oxygen, radiation induced light absorption contrast rather than scattering contrast, and a solid texture amenable to machining to a variety of shapes and sizes without the requirement of an external container. In this paper, we introduce an efficient method to investigate the basic properties of a 3D dosimetry material that exhibits an optical dose response. The method is applied here to study the key aspects of the optical dose response of PRESAGE: linearity, dose rate dependency, reproducibility, stability, spectral changes in absorption, and temperature effects. PRESAGE was prepared in 1 x 1 x 4.5 cm3 optical cuvettes for convenience and was irradiated by both photon and electron beams to different doses, dose rates, and energies. Longer PRESAGE columns (2 x 2 x 13 cm3) were formed without an external container, for measurements of photon and high energy electron depth-dose curves. A linear optical scanning technique was used to detect the depth distribution of radiation induced optical density (OD) change along the PRESAGE columns and cuvettes. Measured depth-OD curves were compared with percent depth dose (PDD). Results indicate that PRESAGE has a linear optical response to radiation dose (with a root mean square error of -1%), little dependency on dose rate (-2%), high intrabatch reproducibility (< 2%), and can be stable (-2%) during 2 hours to 2 days post irradiation. Accurate PRESAGE dosimetry requires temperature control within 1 degrees C. Variations in the PRESAGE formulation yield corresponding variations in sensitivity, stability, and density. CT numbers in the range 100-470 were observed. In conclusion, the small volume studies presented here indicate PRESAGE to be a promising, versatile, and practical new dosimetry material with applicability for radiation therapy.  相似文献   

2.
Radiochromic plastic and gel materials have recently emerged which can yield 3D dose information over clinical volumes in high resolution. These dosimeters can provide a much more comprehensive verification of complex radiation therapy treatments than can be achieved by conventional planar and point dosimeters. To achieve full clinical potential, these dosimeters require a fast and accurate read-out technology. Broad-beam optical-computed tomography (optical-CT) systems have shown promise, but can be sensitive to stray light artifacts originating in the imaging chain. In this work we present and evaluate a method to correct for stray light artifacts by deconvolving a measured, spatially invariant, point spread function (PSF). The correction was developed for the DLOS (Duke large field-of-view optical-CT scanner) in conjunction with radiochromic PRESAGE? dosimeters. The PSF was constructed from a series of acquisitions of projection images of various sized apertures placed in the optical imaging chain. Images were acquired with a range of exposure times, and for a range of aperture sizes (0.2-11 mm). The PSF is investigated under a variety of conditions, and found to be robust and spatially invariant, key factors enabling the viability of the deconvolution approach. The spatial invariance and robustness of the PSF are facilitated by telecentric imaging, which produces a collimated light beam and removes stray light originating upstream of the imaging lens. The telecentric capability of the DLOS therefore represents a significant advantage, both in keeping stray light levels to a minimum and enabling viability of an accurate PSF deconvolution method to correct for the residual. The performance of the correction method was evaluated on projection images containing known optical-density variations, and also on known 3D dose distributions. The method is shown to accurately account for stray light on small field dosimetry with corrections up to 3% in magnitude shown here although corrections of >10% have been observed in extreme cases. The dominant source of stray light was found to be within the imaging lens. Correcting for stray light extended the dynamic range of the system from ~30 to ~60 dB. The correction should be used when measurements need to be accurate within 3%.  相似文献   

3.
Guo P  Adamovics J  Oldham M 《Medical physics》2006,33(10):3962-3972
There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE) and a commercial optical computed tomography (CT) scanning system (OCTOPUS). PRESAGE is a transparent material with compelling properties for dosimetry, including insensitivity of the dose response to atmospheric exposure, a solid texture negating the need for an external container (reducing edge effects), and amenability to accurate optical CT scanning due to radiochromic optical contrast as opposed to light-scattering contrast. An evaluation of the performance and viability of the PRESAGE/OCTOPUS, combination for routine clinical 3D dosimetry is presented. The performance of the two components (scanner and dosimeter) was investigated separately prior to full system test. The optical CT scanner has a spatial resolution of < or = 1 mm, geometric accuracy within 1 mm, and high reconstruction linearity (with a R2 value of 0.9979 and a standard error of estimation of approximately 1%) relative to independent measurement. The overall performance of the PRESAGE/OCTOPUS system was evaluated with respect to a simple known 3D dose distribution, by comparison with GAFCHROMIC EBT film and the calculated dose from a commissioned planning system. The "measured" dose distribution in a cylindrical PRESAGE dosimeter (16 cm diameter and 11 cm height) was determined by optical-CT, using a filtered backprojection reconstruction algorithm. A three-way Gamma map comparison (4% dose difference and 4 mm distance to agreement), between the PRESAGE, EBT and calculated dose distributions, showed full agreement in measurable region of PRESAGE dosimeter (approximately 90% of radius). The EBT and PRESAGE distributions agreed more closely with each other than with the calculated plan, consistent with penumbral blurring in the planning data which was acquired with an ion chamber. In summary, our results support the conclusion that the PRESAGE optical-CT combination represents a significant step forward in 3D dosimetry, and provides a robust, clinically effective and viable high-resolution relative 3D dosimetry system for radiation therapy.  相似文献   

4.
Complex dose delivery techniques like intensity-modulated radiation therapy (IMRT) require dose measurement in three dimensions for comprehensive validation. Previously, we demonstrated the feasibility of the "PRESAGE/optical-computed tomography (CT)" system for the three-dimensional verification of simple open beam dose distributions where the planning system was known to be accurate. The present work extends this effort and presents the first application of the PRESAGE/optical-CT system for the verification of a complex IMRT distribution. A highly modulated 11 field IMRT plan was delivered to a cylindrical PRESAGE dosimeter (16 cm in diameter and 11 cm in height), and the dose distribution was readout using a commercial scanning-laser optical-CT scanner. Comparisons were made with independent GAFCHROMIC EBT film measurements, and the calculated dose distribution from a commissioned treatment planning system (ECLIPSE). Isodose plots, dose profiles, gamma maps, and dose-volume histograms were used to evaluate the agreement. The isodose plots and dose profiles from the PRESAGE/optical-CT system were in excellent agreement with both the EBT measurements and the ECLIPSE calculation at all points except within 3 mm of the outer edge of the dosimeter where an edge artifact occurred. Excluding this 3 mm rim, gamma map comparisons show that all three distributions mutually agreed to within a 3% (dose difference) and 3 mm (distance-to-agreement) criteria. A 96% gamma pass ratio was obtained between the PRESAGE and ECLIPSE distributions over the entire volume excluding this rim. In conclusion, for the complex IMRT plan studied, and in the absence of inhomogeneities, the ECLIPSE dose calculation was found to agree with both independent measurements, to within 3%, 3 mm gamma criteria.  相似文献   

5.
Accurate reporting of personal dose is required by regulation for hospital personnel that work with radioactive material. Pocket dosimeters are commonly used for monitoring this personal dose. We show that operating a cell phone in the vicinity of a pocket dosimeter can introduce large and erroneous readings of the dosimeter. This note reports a systematic study of this electromagnetic interference. We found that simple practical measures are enough to mitigate this problem, such as increasing the distance between the cell phone and the dosimeter or shielding the dosimeter, while maintaining its sensitivity to ionizing radiation, by placing it inside a common anti-static bag.  相似文献   

6.
The performance of a next-generation optical computed tomography scanner (OCTOPUS-5X) is characterized in the context of three-dimensional gel dosimetry. Large-volume (2.2 L), muscle-equivalent, radiation-sensitive polymer gel dosimeters (BANG-3) were used. Improvements in scanner design leading to shorter acquisition times are discussed. The spatial resolution, detectable absorbance range, and reproducibility are assessed. An efficient method for calibrating gel dosimeters using the depth-dose relationship is applied, with photon- and electron-based deliveries yielding equivalent results. A procedure involving a preirradiation scan was used to reduce the edge artifacts in reconstructed images, thereby increasing the useful cross-sectional area of the dosimeter by nearly a factor of 2. Dose distributions derived from optical density measurements using the calibration coefficient show good agreement with the treatment planning system simulations and radiographic film measurements. The feasibility of use for motion (four-dimensional) dosimetry is demonstrated on an example comparing dose distributions from static and dynamic delivery of a single-field photon plan. The capability to visualize three-dimensional dose distributions is also illustrated.  相似文献   

7.
Optical computed tomography has now become a well-established method for making empirical measurements of 3D dose distributions in radiotherapy treatment verification. The requirement for effective refractive index matching as part of the scanning process has long been an inconvenience for users, limiting the speed of sample throughput. We propose a new method for reconstructing data that takes explicit account of the refracted path of the light rays and demonstrate theoretically the conditions under which there are sufficient data to create a good reconstruction. Examples of the performance of the algorithm are given. For smoothly varying data, reconstructed images of very high quality are obtained, with RMS deviation of under 1% from the original, provided that the irradiated region lies entirely within a critical radius. For the dosimeter material PRESAGE, this critical value is approximately 0.65 of the sample radius. Regions outside this are not reconstructed successfully, but we argue that there are many cases where this disadvantage is outweighed by the benefits of the technique.  相似文献   

8.
This study introduces a charge coupled device (CCD) area detector based optical-computed tomography (optical-CT) scanner for comprehensive verification of radiation dose distributions recorded in nonscattering radiochromic dosimeters. Defining characteristics include: (i) a very fast scanning time of approximately 5 min to acquire a complete three-dimensional (3D) dataset, (ii) improved image formation through the use of custom telecentric optics, which ensures accurate projection images and minimizes artifacts from scattered and stray-light sources, and (iii) high resolution (potentially 50 microm) isotropic 3D dose readout. The performance of the CCD scanner for 3D dose readout was evaluated by comparison with independent 3D readout from the single laser beam OCTOPUS-scanner for the same PRESAGE dosimeters. The OCTOPUS scanner was considered the "gold standard" technique in light of prior studies demonstrating its accuracy. Additional comparisons were made against calculated dose distributions from the ECLIPSE treatment-planning system. Dose readout for the following treatments were investigated: (i) a single rectangular beam irradiation to investigate small field and very steep dose gradient dosimetry away from edge effects, (ii) a 2-field open beam parallel-opposed irradiation to investigate dosimetry along steep dose gradients, and (iii) a 7-field intensity modulated radiation therapy (IMRT) irradiation to investigate dosimetry for complex treatment delivery involving modulation of fluence and for dosimetry along moderate dose gradients. Dose profiles, dose-difference plots, and gamma maps were employed to evaluate quantitative estimates of agreement between independently measured and calculated dose distributions. Results indicated that dose readout from the CCD scanner was in agreement with independent gold-standard readout from the OCTOPUS-scanner as well as the calculated ECLIPSE dose distribution for all treatments, except in regions within a few millimeters of the edge of the dosimeter, where edge artifact is predominant. Agreement of line profiles was observed, even along steep dose gradients. Dose difference plots indicated that the CCD scanner dose readout differed from the OCTOPUS scanner readout and ECLIPSE calculations by approximately 10% along steep dose gradients and by approximately 5% along moderate dose gradients. Gamma maps (3% dose-difference and 3 mm distance-to-agreement acceptance criteria) revealed agreement, except for regions within 5 mm of the edge of the dosimeter where the edge artifact occurs. In summary, the data demonstrate feasibility of using the fast, high-resolution CCD scanner for comprehensive 3D dosimetry in all applications, except where dose readout is required close to the edges of the dosimeter. Further work is ongoing to reduce this artifact.  相似文献   

9.
Corrections for beam-hardening artifacts in computed tomography can be made by using a model which assumes that water and bone mineral are the only constituents of tissue. With this model, a correction factor for the measured transmission values can be calculated such that the reconstructed attenuation coefficients have values corresponding to a monoenergetic source of known energy. Systematic errors in the uncorrected attenuation coefficients, which may be 5%, can be reduced to less than 1% if corrected transmission values are used.  相似文献   

10.
Polymer gel dosimeters offer a wide range of applications in the three-dimensional verification of complex radiation dose distributions such as in intensity-modulated radiotherapy (IMRT). With the release of polymer gel dosimeters that can be fabricated in normal atmospheric ('normoxic') conditions, the gel manufacturing process has been significantly simplified. Gel dosimeters are calibrated by use of a series of calibration vials irradiated with known doses or by use of a calibration phantom with a known dose distribution. The overall accuracy of the polymer gel dosimeters is determined by different dosimetric properties. In this study, we show the influence of the temperature history during storage of the gel dosimeter on the dose response curve for two gel dosimeters using the monomers acrylamide/N,N'-methylene-bis-acrylamide (nPAG) and methacrylic acid (nMAG) respectively and bis[tetrakis(hydroxymethyl)phosphonium]sulphate (THP) as antioxidant in both gel dosimeters. This study reveals that differences in temperature history after fabrication of normoxic polymer gel dosimeters may compromise the dosimetric accuracy. It was found that the acrylamide based gel dosimeter (nPAG) is less dependent on the post-manufacture temperature history than the methacrylic acid based gel dosimeter (nMAG). The importance of an equal temperature history for the gel dosimeter and calibration vials is emphasized by this study. A reproducibility study has also been performed on the nPAG gel dosimeter when additional efforts are made to control the temperature changes upon cooling.  相似文献   

11.
Recently, novel radiochromic leucodye micelle hydrogel dosimeters were introduced in the literature. In these studies, gel measured electron depth dose profiles were compared with ion chamber depth dose data, from which it was concluded that leucocrystal violet-type dosimeters were independent of dose rate. Similar conclusions were drawn for leucomalachite green-type dosimeters, only after pre-irradiating the samples to a homogeneous radiation dose. However, in our extensive study of the radio-physical properties of leucocrystal violet- and leucomalachite green-type dosimeters, a significant dose rate dependence was found. For a dose rate variation between 50 and 400 cGy min(-1), a maximum difference of 75% was found in optical dose sensitivity for the leucomalachite green-type dosimeter. Furthermore, the measured optical dose sensitivity of the leucomalachite green-type dosimeter was four times lower than the value previously reported in the literature. For the leucocrystal violet-type dosimeter, a maximum difference in optical dose sensitivity of 55% was found between 50 and 400 cGy min(-1). A modified composition of the leucomalachite green-type dosimeter is proposed. This dosimeter is composed of gelatin, sodium dodecyl sulfate, chloroform, trichloroacetic acid and leucomalachite green. The optical dose sensitivity amounted to 4.375 × 10(-5) cm(-1) cGy(-1) (dose rate 400 cGy min(-1)). No energy dependence for photon energies between 6 and 18 MV was found. No temperature dependence during readout was found notwithstanding a temperature dependence during irradiation of 1.90 cGy °C(-1) increase on a total dose of 100 cGy. The novel gel dosimeter formulation exhibits an improved spatial stability (2.45 × 10(-7) cm(2) s(-1) (= 0.088 mm(2) h(-1))) and good water/soft tissue equivalence. Nevertheless, the novel formulation was also found to have a significant, albeit reduced, dose rate dependence, as a maximum difference of 33% was found in optical dose sensitivity when the dose rate varied between 50 and 400 cGy min(-1). By pre-irradiating the novel leucomalachite green-type dosimeter to 500 cGy, the apparent difference in dose response between 200 and 400 cGy min(-1) was eliminated, similar to earlier findings. However, a dose response difference of 38% between 50 and 200 cGy min(-1) was still measured. On the basis of these experimental results it is concluded that the leucodye micelle gel dosimeter is not yet optimal for dose verifications of high precision radiation therapy treatments. This study, however, indicates that the dose rate dependence has a potential for improvement. Future research is necessary to further minimize the dose rate dependence through extensive chemical analysis and optimization of the gel formulation. Some insights into the physicochemical mechanisms were obtained and are discussed in this paper.  相似文献   

12.
Dosimetric measurements in small therapeutic x-ray beam field sizes, such as those used in radiosurgery, that have dimensions comparable to or smaller than the build-up depth, require special care to avoid incorrect interpretation of measurements in regions of high gradients and electronic disequilibrium. These regions occur at the edges of any collimated field, and can extend to the centre of small fields. An inappropriate dosimeter can result in an underestimation, which would lead to an overdose to the patient. We have performed a study of square and circular small field sizes of 6 MV photons using a thermoluminescent dosimeter (TLD), Fricke xylenol gel (FXG) and film dosimeters. PMMA phantoms were employed to measure lateral beam profiles (1 x 1, 3 x 3 and 5 x 5 cm2 for square fields and 1, 2 and 4 cm diameter circular fields), the percentage depth dose, the tissue maximum ratio and the output factor. An ionization chamber (IC) was used for calibration and comparison. Our results demonstrate that high resolution FXG, TLD and film dosimeters agree with each other, and that an ionization chamber, with low lateral resolution, underestimates the absorbed dose. Our results show that, when planning small field radiotherapy, dosimeters with adequate lateral spatial resolution and tissue equivalence are required to provide an accurate basic beam data set to correctly calculate the absorbed dose in regions of electronic disequilibrium.  相似文献   

13.
Polymer gel dosimeters offer a wide range of applications in the three-dimensional verification of complex dose distributions such as in intensity-modulated radiotherapy. One of the major difficulties with polymer gel dosimeters is their sensitivity to oxygen, as oxygen inhibits the radiation-induced polymerization reaction. For several years, oxygen was removed from the gels by bubbling the sol with inert gases for several hours during the gel fabrication. Also, the gel had to be poured in containers with low oxygen permeability and solubility. Recently, it was found that these technical difficulties can easily be solved by adding an antioxidant to the gel. These gels are called 'normoxic' gels as they can be produced under normal atmospheric conditions. In this study several properties of polymer gel dosimeters have been investigated: the dose sensitivity, the temporal and spatial stability of the gel, the sensitivity of the dose response to temperature during irradiation and during MR imaging, the energy dependence and the dose-rate dependence. This study reveals that the normoxic polymer gel dosimeter based on methacrylic acid (nMAG) studied in this work has inferior radiation properties as compared to the polyacrylamide gelatine (PAG) gel dosimeters. It is shown that from the three different gel dosimeters investigated in this study, the nPAG gel dosimeter results in a less sensitive gel dosimeter but with superior radiation properties as compared to the nMAG gel dosimeter. The importance of investigating relevant radiation properties of gel dosimeters apart from the radiation sensitivity-prior to their use for dosimetric validation experiments-is illustrated and emphasized throughout this study. Other combinations of monomer and gelling agent may result in more reliable normoxic polymer gel dosimeters.  相似文献   

14.
The potential of using the optically stimulated luminescence (OSL) technique with aluminium oxide (Al(2)O(3):C) dosimeters for a precise and accurate estimation of absorbed doses delivered by high-energy photon beams was investigated. This study demonstrates the high reproducibility of the OSL measurements and presents a preliminary determination of the depth-dose curve in water for a 6 MV photon beam from a linear accelerator. The uncertainty of a single OSL measurement, estimated from the variance of a large sample of dosimeters irradiated with the same dose, was 0.7%. In the depth-dose curve obtained using the OSL technique, the difference between the measured and expected doses was < or =0.7% for depths between 1.5 and 10 cm, and 1.1% for a depth of 15 cm. The readout procedure includes a normalization of the response of the dosimeter with respect to a reference dose in order to eliminate variations in the dosimeter mass, dosimeter sensitivity, and the reader's sensitivity. This may be relevant for quality assurance programmes, since it simplifies the requirements in terms of personnel training to achieve the precision and accuracy necessary for radiotherapy applications. We concluded that the OSL technique has the potential to be reliably incorporated in quality assurance programmes and dose verification.  相似文献   

15.
A commercial optically stimulated luminescence (OSL) dosimetry system was investigated for in vivo dosimetry in radiation therapy. Dosimetric characteristics of InLight dot dosimeters and a microStar reader (Landauer Inc.) were tested in (60)Co beams. The reading uncertainty of a single dosimeter was 0.6%. The reproducibility of a set of dosimeters after a single irradiation was 1.6%, while in repeated irradiations of the same dosimeters it was found to be 3.5%. When OSL dosimeters were optically bleached between exposures, the reproducibility of repeated measurements improved to 1.0%. Dosimeters were calibrated for the entrance dose measurements and a full set of correction factors was determined. A pilot patient study that followed phantom validation testing included more than 100 measured fields with a mean relative difference of the measured entrance dose from the expected dose of 0.8% and the standard deviation of 2.5%. In conclusion, these results demonstrate that OSL dot dosimeters represent a valid alternative to already established in vivo dosimetry systems.  相似文献   

16.
Oldham M  Kim L 《Medical physics》2004,31(5):1093-1104
There is a clear need for technology that enables accurate, high-resolution, three-dimensional (3D) measurement of intricate dose distributions associated with modern radiation treatments. A potential candidate has emerged in the form of water-equivalent "3D gel dosimetry" utilizing optical-computed-tomography (optical-CT). In a previous paper we presented basic physical characterization of an in-house prototype optical-CT scanning system. The present paper builds on that work by investigating sources of optical artifacts and geometric distortion in optical-CT scanning. Improvements in scanner design are described. Correction strategies were developed to compensate for reflection and refraction, imperfections in the water-bath, signal drift, and other effects. Refraction and reflection were identified as the principal factors causing inaccurate reconstruction of absolute attenuation coefficients. A correction specific to a given flask was developed utilizing prescans of the flask when filled with water-bath fluid, thereby isolating the refractive and reflective components for that flask. Residual artifacts were corrected by fitting a theoretical model to the well-behaved portion of these prescans and extrapolating to regions of lost data, enabling reconstruction of absolute optical-CT attenuation coefficients to within 4% of corresponding spectrophotometer values. Needle phantoms are introduced to quantify geometric distortion under a range of conditions. Radial distortion of reconstructed needle positions was reduced to < 0.3 mm (0.27% of the field of view) through adjustment of the water-bath refractive index. Geometric distortion in polymer gel due to radiation-induced refractive index changes was found to be negligible under the conditions examined. The influence of scattered light on reconstructed attenuation coefficients was investigated by repeat optical-CT scans while varying the aperture of a scatter-rejecting collimator. Significant depression of reconstructed attenuation coefficients was observed, particularly under conditions of poor scatter rejection collimation. The general conclusion is that the first-generation optical-CT technique can be made insensitive to geometrical distortion, but can be susceptible to scatter effects. For accurate reconstruction of absolute attenuation coefficients, correction strategies are essential.  相似文献   

17.
Tomographic images of the optical properties can be reconstructed using inversion algorithms for diffuse optical tomography (DOT); however, changes in the optode coupling that occurs while obtaining an object's measurements may often lead to the presence of artifacts in the reconstructed images. To reduce the number of artifacts induced by optode coupling, previous studies have introduced (unknown) coupling coefficients in reconstruction algorithms, which were found to be effective for continuous wave- and frequency-domain DOT. This study aims to investigate the effects of optode calibration on the reconstructed images of time-domain DOT. Here, coupling coefficients are incorporated into the time-domain DOT algorithm based on a modified generalized pulse spectrum technique. The images of the absorption coefficient are reconstructed in various numerical simulations, phantom experiments, and in vivo experiments of time-domain DOT. As a result, the artifacts resulting from changes in optode coupling are reduced in the reconstructed images of the absorption coefficient, thereby demonstrating that introduction of coupling coefficients is effective in time-domain DOT. Moreover, numerical simulations, phantom experiments, and in vivo studies have validated this algorithm.  相似文献   

18.
The objective of the present study was to explore the use of the TN-1002RD metal-oxide-semiconductor field effect transistor (MOSFET) dosimeter for measuring tissue depth dose at diagnostic photon energies in both homogeneous and heterogeneous tissue-equivalent materials. Three cylindrical phantoms were constructed and utilized as a prelude to more complex measurements within tomographic physical phantoms of pediatric patients. Each cylindrical phantom was constructed as a stack of seven 5-cm-diameter and 1-cm-thick discs of materials radiographically representative of either soft tissue (S), bone (B), or lung tissue (L) at diagnostic photon energies. In addition to a homogeneous phantom of soft tissue (SSSSSSS), two heterogeneous phantoms were constructed: SSBBSSS and SBLLBSS. MOSFET dosimeters were then positioned at the interface of each disc, and the phantoms were then irradiated at 66 kVp and 200 mAs. Measured values of absorbed dose at depth were then compared to predicated values of point tissue dose as determined via Monte Carlo radiation transport modeling. At depths exceeding 2 cm, experimental results matched the computed values of dose with high accuracy regardless of the dosimeter orientation (epoxy bubble facing toward or away from the x-ray beam). Discrepancies were noted, however, between measured and calculated point doses near the surface of the phantom (surface to 2 cm depth) when the dosimeters were oriented with the epoxy bubble facing the x-ray beam. These discrepancies were largely eliminated when the dosimeters were placed with the flat side facing the x-ray beam. It is therefore recommended that the MOSFET dosimeters be oriented with their flat sides facing the beam when they are used at shallow depths or on the surface of either phantoms or patients.  相似文献   

19.
The OneDose Patient Dosimetry System (Sicel Technologies) is a new dosimeter based on metal oxide semiconductor field-effect transistor technology and designed for the in vivo measurement of patient dose during radiotherapy. In vivo dosimetry for total body irradiation (TBI) is challenging due to the extended treatment distance, low dose rates and beam spoilers. Phantom results confirm the suitability of the dosimeter for TBI in terms of inherent build-up, post-irradiation fading, accuracy, reproducibility, linearity and temperature dependence. Directional dependence is significant and should be taken into account. The OneDose dosimeters were also trialed in vivo for two TBI patients and the dose measured compared to conventional dosimeter measurements using an ionization chamber and thermoluminescent dosimeters (TLD), with agreement to within 2.2% and 3.9%, respectively. Phantom and patient results confirm that the OneDose patient dosimetry system is a practical and convenient alternative to TLDs for TBI in vivo dosimetry. For increased confidence in results with this dosimeter, we recommend that two dosimeters be used for each site of interest.  相似文献   

20.
In this work, three new polymer gel dosimeter recipes were investigated that may be more suitable for widespread applications than polyacrylamide gel dosimeters, since the extremely toxic acrylamide has been replaced with the less harmful monomers N-isopropylacrylamide (NIPAM), diacetone acrylamide and N-vinylformamide. The new gel dosimeters studied contained gelatin (5 wt%), monomer (3 wt%), N,N'-methylene-bis-acrylamide crosslinker (3 wt%) and tetrakis (hydroxymethyl) phosphonium chloride antioxidant (10 mM). The NMR response (R2) of the dosimeters was analysed for conditions of varying dose, dose rate, time post-irradiation, and temperature during irradiation and scanning. It was shown that the dose-response behaviour of the NIPAM/Bis gel dosimeter is comparable to that of normoxic polyacrylamide gel (PAGAT) in terms of high dose-sensitivity and low dependence on dose rate and irradiation temperature, within the ranges considered. The dose-response (R2) of NIPAM/Bis appears to be linear over a greater dose range than the PAGAT gel dosimeter. The effects of time post-irradiation (temporal instability) and temperature during NMR scanning on the R2 response were more significant for NIPAM/Bis dosimeters. Diacetone acrylamide and N-vinylformamide gel dosimeters possessed considerably lower dose-sensitivities. The optical dose-response, measured in terms of the attenuation coefficient for each polymer gel dosimeter, showed potential for the use of optical imaging techniques in future studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号