首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Over the past four decades, mitochondrial dysfunction has been a recurring theme in Parkinson's disease (PD) and is hypothesized to play a central role in its disease pathogenesis. Given the instrumental role of mitochondria in cellular energy production, their dysfunction can be detrimental to highly energy-dependent dopaminergic neurons, known to degenerate in PD. Mitochondria harbor multiple copies of their own genomes (mtDNA), encoding critical respiratory chain complexes required for energy production. Consequently, mtDNA has been investigated as a source of mitochondrial dysfunction in PD. As seen in multiple mitochondrial diseases, deleterious mtDNA variation and mtDNA copy number depletion can impede mtDNA protein synthesis, leading to inadequate energy production in affected cells and the onset of a disease phenotype. As such, high burdens of mtDNA defects but also mtDNA depletion, previously identified in the substantia nigra of PD patients, have been suggested to play a role in PD. Genetic variation in nuclear DNA encoding factors required for replicating, transcribing, and translating mtDNA, could underlie these observed mtDNA changes. Herein we examine this possibility and provide an overview of studies that have investigated whether nuclear-encoded genes associated with mtDNA processes may influence PD risk. Overall, pathway-based analysis studies, mice models, and case reports of mitochondrial disease patients manifesting with parkinsonism all implicate genes encoding factors related to mtDNA processes in neurodegeneration and PD. Most notably, cumulative genetic variation in these genes likely contributes to neurodegeneration and PD risk by acting together in common pathways to disrupt mtDNA processes or impair their regulation. © 2021 International Parkinson and Movement Disorder Society © 2021 International Parkinson and Movement Disorder Society  相似文献   

2.
Mitochondrial encephalomyopathies   总被引:4,自引:0,他引:4  
Mitochondrial encephalomyopathies are diseases caused by defective oxidative phosphorylation (OXPHOS), and affect the nervous system and/or skeletal muscle. They have emerged as a major entity among the neurometabolic diseases of childhood with an incidence of 1 in 11,000 children, and also have a high prevalence in adults. The first pathogenic mutation of human mitochondrial DNA (mtDNA) was discovered in 1988. Since then more than 100 mutations of mtDNA have been reported, including point mutations of genes encoding transfer RNA, ribosomal RNA, and proteins, as well as large-scale deletions. The first nuclear-DNA gene mutation causing OXPHOS disease was described in 1995. Mutations in nuclear genes may affect the respiratory chain by various mechanisms. Pathogenic mutations of nuclear-DNA-encoded subunits of complex I and II have been demonstrated as have mutations of respiratory chain assembly proteins. Several nuclear genes associated with mtDNA maintenance have been found to be associated with mitochondrial disorders since mutations in these genes predispose to multiple mtDNA deletions and/or reduced copy number of mtDNA. The genotype-phenotype correlation is not yet entirely clear, but new animal models will enhance our ability to study the pathophysiology of OXPHOS disorders.  相似文献   

3.
The expanding phenotype of mitochondrial myopathy   总被引:2,自引:0,他引:2  
PURPOSE OF REVIEW: Our understanding of mitochondrial diseases (defined restrictively as defects in the mitochondrial respiratory chain) continues to progress apace. In this review we provide an update of information regarding disorders that predominantly or exclusively affect skeletal muscle. RECENT FINDINGS: Most recently described mitochondrial myopathies are due to defects in nuclear DNA, including coenzyme Q10 deficiency, and mutations in genes that control mitochondrial DNA (mtDNA) abundance and structure such as POLG and TK2. Barth syndrome, an X-linked recessive mitochondrial myopathy/cardiopathy, is associated with altered lipid composition of the inner mitochondrial membrane, but a putative secondary impairment of the respiratory chain remains to be documented. Concerning the 'other genome', the role played by mutations in protein encoding genes of mtDNA in causing isolated myopathies has been confirmed. It has also been confirmed that mutations in tRNA genes of mtDNA can cause predominantly myopathic syndromes and - contrary to conventional wisdom - these mutations can be homoplasmic. SUMMARY: Defects in the mitochondrial respiratory chain impair energy production and almost invariably involve skeletal muscle, causing exercise intolerance, myalgia, cramps, or fixed weakness, which often affects extraocular muscles and results in droopy eyelids (ptosis) and progressive external ophthalmoplegia.  相似文献   

4.
Deficiencies in the activity of the components of the mitochondrial respiratory chain can result from mutations in genes encoded in the mitochondrial (mtDNA) or nuclear genomes. Mutations in mtDNA have been identified over the past decade in a wide spectrum of clinical disorders, and attention has now turned to identifying nuclear gene defects. Positional cloning, candidate gene analysis, and functional complementation in patient cell lines have all been used with success. Mutations in gene coding for structural subunits of the respiratory chain complexes appear to be less numerous than defects in genes associated with some aspect of the biogenesis of the respiratory chain. Despite the fact that many of the nuclear disease genes so far identified are ubiquitously expressed, tissue specificity of the biochemical and clinical phenotype is the rule rather than the exception. This selective vulnerability of different cell populations remains unexplained. The majority of patients with a biochemical deficiency in one or the other of the respiratory chain complexes do not yet have a molecular diagnosis.  相似文献   

5.
The brain has the highest mitochondrial energy demand of any organ. Therefore, subtle changes in mitochondrial energy production will preferentially affect the brain. Considerable biochemical evidence has accumulated revealing mitochondrial defects associated with neuropsychiatric diseases. Moreover, the mitochondrial genome encompasses over a thousand nuclear DNA genes plus hundreds to thousands of copies of the maternally inherited mitochondrial DNA (mtDNA). Therefore, partial defects in either the nuclear DNA or mtDNA genes or combinations of the two can be sufficient to cause neuropsychiatric disorders. Inherited and acquired mtDNA mutations have recently been associated with autism spectrum disorder, which parallels previous evidence of mtDNA variation in other neurological diseases. Therefore, mitochondrial dysfunction may be central to the etiology of a wide spectrum of neurological diseases. The mitochondria and the nucleus communicate to coordinate energy production and utilization, providing the potential for therapeutics by manipulating nuclear regulation of mitochondrial gene expression.  相似文献   

6.
Mitochondrial DNA depletion syndrome due to mutations in the RRM2B gene   总被引:3,自引:0,他引:3  
Mitochondrial DNA depletion syndrome (MDS) is characterized by a reduction in mtDNA copy number and has been associated with mutations in eight nuclear genes, including enzymes involved in mitochondrial nucleotide metabolism (POLG, TK2, DGUOK, SUCLA2, SUCLG1, PEO1) and MPV17. Recently, mutations in the RRM2B gene, encoding the p53-controlled ribonucleotide reductase subunit, have been described in seven infants from four families, who presented with various combinations of hypotonia, tubulopathy, seizures, respiratory distress, diarrhea, and lactic acidosis. All children died before 4 months of age. We sequenced the RRM2B gene in three unrelated cases with unexplained severe mtDNA depletion. The first patient developed intractable diarrhea, profound weakness, respiratory distress, and died at 3 months. The other two unrelated patients had a much milder phenotype and are still alive at ages 27 and 36 months. All three patients had lactic acidosis and severe depletion of mtDNA in muscle. Muscle histochemistry showed RRF and COX deficiency. Sequencing the RRM2B gene revealed three missense mutations and two single nucleotide deletions in exons 6, 8, and 9, confirming that RRM2B mutations are important causes of MDS and that the clinical phenotype is heterogeneous and not invariably fatal in infancy.  相似文献   

7.
Amyotrophic lateral sclerosis with ragged-red fibers   总被引:1,自引:0,他引:1  
BACKGROUND: Motor neuron diseases (amyotrophic lateral sclerosis [ALS] and spinal muscular atrophy [SMA]) have been rarely associated with mitochondrial respiratory chain defects. OBJECTIVES: To describe a patient with typical ALS and the finding of ragged-red fibers in muscle biopsy specimens and to review the literature on respiratory chain defects in ALS and SMA. DESIGN: Case report and review of the literature. SETTING: Collaboration between tertiary care academic hospitals. PATIENT: A 65-year-old man with typical ALS. MAIN OUTCOME MEASURES: The patient had 10% ragged-red fibers and 3% cytochrome-c oxidase-negative fibers in muscle biopsy specimens but no biochemical defects of respiratory chain enzymes or alterations of mitochondrial DNA (mtDNA). RESULTS: Amyotrophic lateral sclerosis with ragged-red fibers has been reported in 5 families and is associated with mtDNA mutations in some subjects. Spinal muscular atrophy without mutations in the survival motor neuron gene (SMN; OMIM 600354) has been associated with mtDNA depletion or with mutations in the cytochrome-c oxidase assembly gene (SCO2; OMIM 604377). CONCLUSION: Respiratory chain defects can mimic ALS or SMA and should be considered in the differential diagnosis.  相似文献   

8.
Therapy for mitochondrial diseases is woefully inadequate. However, lack of a cure does not equate with lack of treatment. Palliative therapy is dictated by good medical practice and includes anticonvulsant medication, control of endocrine dysfunction, and surgical procedures. Removal of noxious metabolites is centered on combating lactic acidosis, but extends to other metabolites. Attempts to bypass blocks in the respiratory chain by administration of electron acceptors have not been successful, but this may be amenable to genetic engineering. Administration of metabolites and cofactors is the mainstay of real-life therapy and is especially important in disorders due to primary deficiencies of specific compounds, such as carnitine or coenzyme Q10 (CoQ10). There is increasing interest in the administration of reactive oxygen radicals (ROS) scavengers, both in primary mitochondrial diseases and in neurodegenerative diseases. Gene therapy is a challenge because of polyplasmy and heteroplasmy, but novel experimental approaches are being pursued. One important strategy is to decrease the ratio of mutant to wild-type mitochondrial genomes ("gene shifting") by different means: (1) converting mutated mitochondrial DNA (mtDNA) genes into normal nuclear DNA genes ("allotopic expression"); (2) importing cognate genes from other species ("xenotopic expression"); (3) correcting mtDNA mutations by importing specific restriction endonucleases; (4) selecting for respiratory function; and (5) inducing muscle regeneration. Germline therapy raises ethical problems but is being considered for prevention of maternal transmission of mtDNA mutations. Preventive therapy through genetic counseling and prenatal diagnosis is becoming increasingly important for nuclear DNA-related disorders.  相似文献   

9.
Wong LJ 《Muscle & nerve》2007,36(3):279-293
More than 200 disease-related mitochondrial DNA (mtDNA) point mutations have been reported in the Mitomap (http://www.mitomap.org) database. These mutations can be divided into two groups: mutations affecting mitochondrial protein synthesis, including mutations in tRNA and rRNA genes; and mutations in protein-encoding genes (mRNAs). This review focuses on mutations in mitochondrial genes that encode proteins. These mutations are involved in a broad spectrum of human diseases, including a variety of multisystem disorders as well as more tissue-specific diseases such as isolated myopathy and Leber hereditary optic neuropathy (LHON). Because the mitochondrial genome contains a large number of apparently neutral polymorphisms that have little pathogenic significance, along with secondary homoplasmic mutations that do not have primary disease-causing effect, the pathogenic role of all newly discovered mutations must be rigorously established. A scoring system has been applied to evaluate the pathogenicity of the mutations in mtDNA protein-encoding genes and to review the predominant clinical features and the molecular characteristics of mutations in each mtDNA-encoded respiratory chain complex.  相似文献   

10.
Cytochrome c oxidase (COX) deficiency has been associated with a wide spectrum of clinical features and may be caused by mutations in different genes of both the mitochondrial and the nuclear DNA. In an attempt to correlate the clinical phenotype with the genotype in 16 childhood cases, mtDNA was analysed for deletion, depletion, and mutations in the three genes encoding COX subunits and the 22 tRNA genes. Furthermore, nuclear DNA was analysed for mutations in the SURF1, SCO2, COX10, and COX17 genes and cases with mtDNA depletion were analysed for mutations in the TK2 gene. SURF1-mutations were identified in three out of four cases with Leigh syndrome while a mutation in the mitochondrial tRNA (trp) gene was identified in the fourth. One case with mtDNA depletion had mutations in the TK2 gene. In two cases with leukoencephalopathy, one case with encephalopathy, five cases with fatal infantile myopathy and cardiomyopathy, two cases with benign infantile myopathy, and one case with mtDNA depletion, no mutations were identified. We conclude that COX deficiency in childhood should be suspected in a wide range of clinical settings and although an increasing number of genetic defects have been identified, the underlying mutations remain unclear in the majority of the cases.  相似文献   

11.
Variants in mitochondrial DNA (mtDNA) and nuclear genes encoding mitochondrial proteins in bipolar disorder, depression, or other psychiatric disorders have been studied for decades, since mitochondrial dysfunction was first suggested in the brains of patients with these diseases. Candidate gene association studies initially resulted in findings compatible with the mitochondrial dysfunction hypothesis. Many of those studies, however, were conducted with modest sample sizes (N < 1000), which could cause false positive findings. Furthermore, the DNA samples examined in these studies, including genome-wide association studies, were generally derived from peripheral tissues. One key unanswered question is whether there is an association between mood disorders and somatic mtDNA mutations (deletions and point mutations) in brain regions that accumulate a high amount of mtDNA mutations and/or are involved in the regulation of mood. Two lines of robust evidence supporting the importance of mtDNA mutations in brain tissues for mood disorders have come from clinical observation of mitochondrial disease patients who carry primary mtDNA mutations or accumulate secondary mtDNA mutations due to nuclear mutations and an animal model study. More than half of mitochondrial disease patients have comorbid mood disorders, and mice with neuron-specific accumulation of mtDNA mutations show spontaneous depression-like episodes. In this review, we first summarize the current knowledge of mtDNA and its genetics and discuss what mtDNA analysis tells us about neuropsychiatric disorders based on an example of Parkinson’s disease. We also discuss challenges and future directions beyond mtDNA analysis toward an understanding of the pathophysiology of “idiopathic” mood disorders.  相似文献   

12.
A male infant, born from consanguineous parents, suffered from birth with a progressive neuromuscular disorder characterized by psychomotor delay, hypotonia, muscle weakness and wasting, deep-tendon areflexia and spastic posture. High levels of lactic acid in blood and cerebrospinal fluid suggested a mitochondrial respiratory chain defect. Muscle biopsy revealed raggedred and cytochromec oxidase-negative fibres, lipid accumulation and dystrophic changes. Multiple defects of respiratory complexes were detected in muscle homogenate, but cultured fibroblasts, myoblasts and myotubes were normal. Southern blot analysis showed markedly reduced levels of mitochondrial DNA (mtDNA) in muscle, while lymphocytes, fibroblasts and muscle precursor cells were normal. Neither depletion of mtDNA nor abnormalities of the respiratory complexes were observed in innervated muscle fibres cultured for as long as 4 months. No mutations were observed in two candidate nuclear genes,mtTFA andmtSSB, retro-transcribed, amplified and sequenced from the proband's mRNA. Sequence analysis of the mtDNA D-loop and of the origin of replication of the mtDNA light strand failed to identify potentially pathogenic mutations of these replicative elements in the proband's muscle mtDNA. Our findings indicate that mtDNA depletion is due to a nuclear encoded gene and suggest that the abnormality underlying defective mtDNA propagation must occur after muscle differentiation in vivo.  相似文献   

13.
Mitochondrial encephalomyopathies: an update   总被引:7,自引:0,他引:7  
A genetic classification of the mitochondrial encephalomyopathies includes disorders due to defects of mitochondrial DNA (mtDNA) and disorders due to defects of nuclear DNA (nDNA). Recent progress in mtDNA-related diseases includes: (i) new pathogenic mutations in protein-coding genes, especially those encoding subunits of complex I (ND genes); (ii) the pathogenic nature of homoplasmic mutations, whose expression is regulated by environmental and genetic factors; (iii) increasing interest in the functional and pathophysiological role of haplotypes. Advances in mendelian mitochondrial diseases include: (i) new mutations in genes for complex I subunits; (ii) identification of new mutant ancillary proteins associated with complex IV and complex V deficiencies; (iii) better molecular understanding of disorders due to faulty intergenomic communication, which are associated with multiple mtDNA deletions, mtDNA depletion, or defects of mtDNA translation; (iv) the pathogenic role of alterations of the inner mitochondrial membrane phospholipid components, especially cardiolipin; (v) the emerging importance of defects in mitochondrial motility, fission, or fusion.  相似文献   

14.
Charcot–Marie–Tooth neuropathy type 2A (CMT2A) is associated with heterozygous mutations in the mitochondrial protein mitofusin 2 (Mfn2) that is intimately involved with the outer mitochondrial membrane fusion machinery. The precise consequences of these mutations on oxidative phosphorylation are still a matter of dispute. Here, we investigate the functional effects of MFN2 mutations in skeletal muscle and cultured fibroblasts of four CMT2A patients applying high-resolution respirometry. While maximal activities of respiration of saponin-permeabilized muscle fibers and digitonin-permeabilized fibroblasts were only slightly affected by the MFN2 mutations, the sensitivity of active state oxygen consumption to azide, a cytochrome c oxidase (COX) inhibitor, was increased. The observed dysfunction of the mitochondrial respiratory chain can be explained by a twofold decrease in mitochondrial DNA (mtDNA) copy numbers. The only patient without detectable alterations of respiratory chain in skeletal muscle also had a normal mtDNA copy number. We detected higher levels of mtDNA deletions in CMT2A patients, which were more pronounced in the patient without mtDNA depletion. Detailed analysis of mtDNA deletion breakpoints showed that many deleted molecules were lacking essential parts of mtDNA required for replication. This is in line with the lack of clonal expansion for the majority of observed mtDNA deletions. In contrast to the copy number reduction, deletions are unlikely to contribute to the detected respiratory impairment because of their minor overall amounts in the patients. Taken together, our findings corroborate the hypothesis that MFN2 mutations alter mitochondrial oxidative phosphorylation by affecting mtDNA replication.  相似文献   

15.
We sequenced the mitochondrial genome from a patient with progressive mitochondrial myopathy associated with deafness, sporadic seizures, and histological and biochemical features of mitochondrial respiratory chain dysfunction. Direct sequencing showed a heteroplasmic mutation at nucleotide 12262 in the tRNASer(AGY) gene. RFLP analysis confirmed that 63% of muscle mtDNA harboured the mutation, while it was absent in all the other tissues. The mutation is predicted to influence the functional behaviour of the aminoacyl acceptor stem of the tRNA. Several point mutations on mitochondrial tRNA genes have been reported in patients affected by encephalomyopathies, but between them only four were reported for tRNASer(AGY).  相似文献   

16.
A 12-year-old patient with mitochondrial DNA (mtDNA) depletion syndrome due to TK2 gene mutations has been evaluated serially over the last 10 years. We observed progressive muscle atrophy with selective loss of type 2 muscle fibers and, despite severe depletion of mtDNA, normal activities of respiratory chain (RC) complexes and levels of COX II mitochondrial protein in the remaining muscle fibers. These results indicate that compensatory mechanisms account for the slow progression of the disease. Identification of factors that ameliorate mtDNA depletion may reveal new therapeutic targets for these devastating disorders.  相似文献   

17.
Leigh syndrome is a heterogenous neurologic disease characterized by seizures, developmental delay, muscle weakness, respiratory abnormalities, optic abnormalities, including atrophy and ophthalmoplegia, and progressive cranial nerve degeneration with early onset in infants and children. Diagnosis can be confirmed by characteristic pathologic findings of necrosis in the basal ganglia, thalamus, and brainstem. Severe dysfunction of mitochondrial energy metabolism is generally present and involved in the etiology of this degenerative central nervous system disease. At the molecular level, a number of point mutations have been located in mitochondrial DNA genes, including ATPase6 and tRNA(Lys) genes, and in nuclear genes encoding subunits of oxidative enzymes, such as pyruvate dehydrogenase. Biochemically these mutations are responsible for enzymatic defects in either respiratory complexes (I, IV, or V) or pyruvate dehydrogenase. We describe here the first case of Leigh syndrome with marked depletion of mitochondrial DNA levels in skeletal muscle and abnormal activities in skeletal muscle of mitochondrial respiratory complexes I, III, IV, and V.  相似文献   

18.
White matter involvement has recently been recognized as a common feature in patients with multisystem mitochondrial disorders that may be caused by molecular defects in either the mitochondrial genome or the nuclear genes. It was first realized in classical mitochondrial syndromes associated with mitochondrial DNA (mtDNA) mutations, such as mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS), Leigh's disease, and Kearns-Sayre's syndrome. Deficiencies in respiratory chain complexes I, II, IV, and V often cause Leigh's disease; most of them are due to nuclear defects that may lead to severe early-onset leukoencephalopathies. Defects in a group of nuclear genes involved in the maintenance of mtDNA integrity may also affect the white matter; for example, mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) caused by thymidine phosphorylase deficiency, Navajo neurohepatopathy (NNH) due to MPV17 mutations, and Alpers syndrome due to defects in DNA polymerase gamma (POLG). More recently, leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation (LBSL) has been reported to be caused by autosomal recessive mutations in a mitochondrial aspartyl-tRNA synthetase, DARS2 gene. A patient with leukoencephalopathy and neurologic complications in addition to a multisystem involvement warrants a complete evaluation for mitochondrial disorders. A definite diagnosis may be achieved by molecular analysis of candidate genes based on the biochemical, clinical, and imaging results.  相似文献   

19.
20.
A broad variety of mutations of the mitochondrial DNA or nuclear genes that lead to the impairment of mitochondrial respiratory chain or mitochondrial adenosine triphosphate (ATP) synthesis have been associated with epileptic phenotypes. In addition, there is evidence for impaired mitochondrial function in the seizure focus of patients with temporal lobe epilepsy (TLE) and Ammon’s horn sclerosis (AHS). This implies a direct pathogenic role of mitochondrial dysfunction in the process of epileptogenesis and seizure generation in certain forms of epilepsy. Therefore, mitochondriopathies should be considered as possible cause of severe epilepsies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号