首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
1. The dorsal lateral geniculate nucleus (LGN) of the cat is a major thalamic relay between the retina and several visual cortical areas. These cortical areas in turn project to the superior colliculus (SC). The aim of the present experiment was to determine which LGN layers provide a necessary input to the corticotectal circuit. 2. Individual layers of the LGN were reversibly inactivated by microinjection of cobalt chloride during recording of visual responses in the retinotopically corresponding part of the superior colliculus. 3. For cells driven through the contralateral eye, inactivation of layer A or the medial interlaminar nucleus (MIN) had little effect on visual responsiveness in the superior colliculus. In contrast, inactivation of layer C abolished visual responses at one-quarter of the SC recording sites, reduced responses at another quarter, and left half of the recording sites unaffected. 4. For cells driven through the ipsilateral eye, inactivation of layer C1 or the MIN had no effect. Inactivation of layer A1 uniformly reduced visual responses in the superior colliculus and usually abolished them entirely. 5. These results are compatible with previous work showing that cortical input to the SC originates from Y-cells. They indicate that two of the five Y-cell containing layers (A1 and C) provide major inputs to the corticotectal circuit. The results suggest that layer A1 is functionally allied to layer C as well as to layer A.  相似文献   

2.
Laminar organization of tree shrew dorsal lateral geniculate nucleus   总被引:4,自引:0,他引:4  
This study investigated the organization of the dorsal lateral geniculate nucleus (LGN) of the tree shrew (Tupaia glis) using both microelectrode recording and anatomical techniques. The tree shrew LGN contains approximately 100,000 cells, of which 20% are in layers 2 and 6. These two layers receive input from the ipsilateral eye. The topography of the tree shrew LGN was delineated by taking systematic penetrations through the structure. Examination of the organization of the LGN laminae showed the following: in layer 1 (the lamina next to the optic tract) a mixture of on-center, off-center and on-off center cells was found; the majority of these cells responded transiently to visual stimuli and they had slightly longer conduction latencies than did cells in the other laminae. On-center and off-center cells in laminae 2-6 were sharply segregated: layers 2, 3, and 4 contained off-center cells and layers 5 and 6 contained on-center cells. Most of the cells in laminae 2-6 responded in a sustained manner to visual stimuli. These results suggest that one function of the LGN lamina is to group cells into various classes. Such grouping has now been shown to occur partially or completely for 1) eye of origin, 2) cell types characterized as on-center and off-center, and 3) cell types characterized as producing transient and sustained responses. The nature and degree of laminar specificity, however, varies considerably from species to species.  相似文献   

3.
I Lee  J Kim  C Lee 《The Anatomical record》1999,256(1):29-39
The morphological and laminar characteristics of the dorsal lateral geniculate nucleus (LGN) and medial interlaminar nucleus (MIN) of the domestic dog (Canis familiaris) were studied by three-dimensional computer reconstruction of labeled retinal afferents following intraocular HRP injections. As previously reported, the dog LGN consisted of layers A, A1, C, C1, C2, and C3. Layers A, C, and C2 receive contralateral-eye inputs, and layers A1 and C1 ipsilateral inputs. The dog MIN was found to have four orderly interdigitating layers; layers 1, 2, 3, and 4, medial to lateral. MIN layers 1 and 3 received contralateral inputs, and layers 2 and 4 ipsilateral inputs. Layer 1 had the largest soma of all LGN/MIN layers. LGN layer A was partially separated into medial and lateral subdivisions by a cleft free of somata. The overall three-dimensional shape of the lateral geniculate body was like the letter C, with the convex part of the C directed posteriorly. The relative volume of the MIN was smaller than in the cat; the canine MIN comprised 8.3% of the combined volume of layers A, A1 and the MIN, while that of the cat comprised 14.2% as estimated from Sanderson's map. The volume of all contralateral-eye layers, combining both LGN and MIN, was 31.2 mm(3) (78%), and that for ipsilateral layers was 8.6 mm(3) (22%). The ratio of ipsilateral to contralateral laminar volumes is much lower in the dog than in the cat.  相似文献   

4.
The morphological and laminar characteristics of the dorsal lateral geniculate nucleus (LGN) and medial interlaminar nucleus (MIN) of the domestic dog (Canis familiaris) were studied by three‐dimensional computer reconstruction of labeled retinal afferents following intraocular HRP injections. As previously reported, the dog LGN consisted of layers A, A1, C, C1, C2, and C3. Layers A, C, and C2 receive contralateral‐eye inputs, and layers A1 and C1 ipsilateral inputs. The dog MIN was found to have four orderly interdigitating layers; layers 1, 2, 3, and 4, medial to lateral. MIN layers 1 and 3 received contralateral inputs, and layers 2 and 4 ipsilateral inputs. Layer 1 had the largest soma of all LGN/MIN layers. LGN layer A was partially separated into medial and lateral subdivisions by a cleft free of somata. The overall three‐dimensional shape of the lateral geniculate body was like the letter C, with the convex part of the C directed posteriorly. The relative volume of the MIN was smaller than in the cat; the canine MIN comprised 8.3% of the combined volume of layers A, A1 and the MIN, while that of the cat comprised 14.2% as estimated from Sanderson's map. The volume of all contralateral‐eye layers, combining both LGN and MIN, was 31.2 mm3 (78%), and that for ipsilateral layers was 8.6 mm3 (22%). The ratio of ipsilateral to contralateral laminar volumes is much lower in the dog than in the cat. Anat Rec 256:29–39, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

5.
The purpose of our study was to quantify the magnitude of principal and secondary pathways emanating from the middle suprasylvian (MS) region of visuoparietal cortex and terminating in area 18 of primary visual cortex. These pathways transmit feedback signals from visuoparietal cortex to primary visual cortex. (1) WGA-HRP was injected into area 18 to identify inputs from visual structures. In terms of numbers of neurons, feedback projections to area 18 from MS sulcal cortex (areas PMLS, AMLS and PLLS) comprise 26% of inputs from all visual structures. Of these neurons, between 21% and 34.9% are located in upper layers 2–4 and the dominant numbers are located in deep layers 5 and 6. Areas 17 (11.8%) and 19 (11.2%) provide more modest cortical inputs, and another eight areas provide a combined total of 4.3% of inputs. The sum of neurons in all subcompartments of the lateral geniculate nucleus (LGN) accounts for another 34.8% of the input to area 18, whereas inputs from the lateral division of the lateral-posterior nucleus (LPl) account for the final 11.9%. (2) Injection of tritiated-(3H)-amino acids into MS sulcal cortex revealed substantial direct projections from MS cortex that terminated in all layers of area 18, but with a markedly lower density in layer 4. Projections from MS cortex to both areas 17 and 19 are of similar density and characteristics, whereas those to other cortical targets have very low densities. Quantification also revealed minor-to-modest axon projections to all components of LGN and a massive projection throughout the LP-Pul complex. (3) Superposition of the labeled terminal and cell fields identified secondary, compound feedback pathways from MS cortex to area 18. The largest secondary pathway is massive and it includes the LPl nucleus. Much more modest secondary pathways include areas 17 and 19, and LGN. The relative magnitudes of the secondary pathways suggest that the one through LPl exerts a major influence on area 18, whereas the others exert more modest or minor influences. MS cortex in the contralateral hemisphere also innervates area 18 directly. These data are important for interpreting the impact of deactivating feedback projections from visuoparietal cortex on occipital cortex.Abbreviations A layer A of LGN - A1 layer A1 of LGN - ALLS anterolateral visual area of the lateral suprasylvian sulcus (Palmer et al. 1978) - AMLS anteromedial visual area of the lateral suprasylvian sulcus (Palmer et al. 1978) - Aud auditory cortex of the middle ectosylvian gyrus - CC corpus callosum - Cg cingulate gyrus - Cm magnocellular layers of LGN - Cp parvocellular layers of LGN - LGN dorsal lateral geniculate nucleus - LP lateral posterior nucleus - LPl lateral division of the lateral posterior nucleus - LPm medial division of the lateral posterior nucleus (Graybiel and Berson 1980, Berson and Graybiel 1978; Raczkowski and Rosenquist 1983) - MIN medial interlaminar nucleus subdivision of LGN - MS cortex bounding the middle suprasylvian sulcus (areas AMLS, ALLS, PMLS, and PLLS) - OR optic radiation - PE posterior ectosylvian visual cortex - PLLS posterolateral visual area of the lateral suprasylvian sulcus (Palmer et al. 1978) - PMLS posteromedial visual area of the lateral suprasylvian sulcus (Palmer et al. 1978) - Pul pulvinar nucleus - SVA splenial visual area - V1 primary visual cortex - V2 secondary visual cortex - V3 third visual area - V5/MT fifth visual area/middle temporal area - WGA-HRP wheat germ agglutinin conjugated to horseradish peroxidase - Wing wing of LGN - 7 area 7 - 17 area 17 - 18 area 18 - 19 area 19  相似文献   

6.
1. This study investigated the functional specificity of the lateral geniculate mucleus (LGN) of the rhesus monkey using microelectrode-recording techniques. 2. The parvocellular laminae of the LGN receive input predominantly from medium-conduction-velocity optic tract fibers, while the magnocellular laminae receive fast-conducting axons from the retina. 3. Cells projecting from the parvocellular layers to area 17 have medium-conduction velocities, while those from the magnocellular layers are fast conducting. 4. The majority of cells in the parvocellular layers have a concentric color-opponent receptive-field organization. The receptive fields of magnocellular layers cells are also concentrically organized, but their center-surround organization is independent of wavelength. 5. Responses in the parvocellular layers are more sustained than in the magnocellular layers. 6. Cells in the dorsal pair of parvocellular layers are predominantly on-center. In the ventral pair of parvocellular layers, most cells are off-center. 7. Blue-selective cells are found predominantly in the ventral pair of parvocellular layers. All of these found gave on-responses to blue stimuli.  相似文献   

7.
The gray squirrel (Sciurus carolinensis) is a diurnal highly visual rodent with a cone-rich retina. To determine which features of visual cortex are common to highly visual mammals and which are restricted to non-rodent species, we studied the laminar organization of response properties in primary visual area V1 of isoflurane-anesthetized squirrels using extra-cellular single-unit recording and sinusoidal grating stimuli. Of the responsive cells, 75% were tuned for orientation. Only 10% were directionally selective, almost all in layer 6, a layer receiving direct input from the dorsal lateral geniculate nucleus (LGN). Cone opponency was widespread but almost absent from layer 6. Median optimal spatial frequency tuning was 0.21 cycles/ degrees . Median optimal temporal frequency a high 5.3 Hz. Layer 4 had the highest percentage of simple cells and shortest latency (26 ms). Layers 2/3 had the lowest spontaneous activity and highest temporal frequency tuning. Layer 5 had the broadest spatial frequency tuning and most spontaneous activity. At the layer 4/5 border were sustained cells with high cone opponency. Simple cells, determined by modulation to drifting sinusoidal gratings, responded with shorter latencies, were more selective for orientation and direction, and were tuned to lower spatial frequencies. A comparison with other mammals shows that although the laminar organization of orientation selectivity is variable, the cortical input layers contain more linear cells in most mammals. Nocturnal mammals appear to have more orientation-selective neurons in V1 than diurnal mammals of similar size.  相似文献   

8.
Manger PR  Rosa MG 《Neuroscience》2005,130(2):497-511
We studied thalamic projections to the visual cortex in flying foxes, animals that share neural features believed to resemble those present in the brains of early primates. Neurones labeled by injections of fluorescent tracers in striate and extrastriate cortices were charted relative to the architectural boundaries of thalamic nuclei. Three main findings are reported: First, there are parallel lateral geniculate nucleus (LGN) projections to striate and extrastriate cortices. Second, the pulvinar complex is expansive, and contains multiple subdivisions. Third, across the visual thalamus, the location of cells labeled after visual cortex injections changes systematically, with caudal visual areas receiving their strongest projections from the most lateral thalamic nuclei, and rostral areas receiving strong projections from medial nuclei. We identified three architectural layers in the LGN, and three subdivisions of the pulvinar complex. The outer LGN layer contained the largest cells, and had strong projections to the areas V1, V2 and V3. Neurones in the intermediate LGN layer were intermediate in size, and projected to V1 and, less densely, to V2. The layer nearest to the origin of the optic radiation contained the smallest cells, and projected not only to V1, V2 and V3, but also, weakly, to the occipitotemporal area (OT, which is similar to primate middle temporal area) and the occipitoparietal area (OP, a "third tier" area located near the dorsal midline). V1, V2 and V3 received strong projections from the lateral and intermediate subdivisions of the pulvinar complex, while OP and OT received their main thalamic input from the intermediate and medial subdivisions of the pulvinar complex. These results suggest parallels with the carnivore visual system, and indicate that the restriction of the projections of the large- and intermediate-sized LGN layers to V1, observed in present-day primates, evolved from a more generalized mammalian condition.  相似文献   

9.
The primary visual cortex (V1) receives its driving input from the eyes via the lateral geniculate nucleus (LGN) of the thalamus. The lateral pulvinar nucleus of the thalamus also projects to V1, but this input is not well understood. We manipulated lateral pulvinar neural activity in prosimian primates and assessed the effect on supra-granular layers of V1 that project to higher visual cortex. Reversibly inactivating lateral pulvinar prevented supra-granular V1 neurons from responding to visual stimulation. Reversible, focal excitation of lateral pulvinar receptive fields increased the visual responses in coincident V1 receptive fields fourfold and shifted partially overlapping V1 receptive fields toward the center of excitation. V1 responses to regions surrounding the excited lateral pulvinar receptive fields were suppressed. LGN responses were unaffected by these lateral pulvinar manipulations. Excitation of lateral pulvinar after LGN lesion activated supra-granular layer V1 neurons. Thus, lateral pulvinar is able to powerfully control and gate information outflow from V1.  相似文献   

10.
Summary The proportions and some of the properties of X and Y cells in lateral geniculate nucleus (LGN) of adult cats were measured 14–16 days after monocular paralysis. The paralysis was produced by sectioning cranial nerves III, IV and VI. No difference from normal was observed in the proportions of X and Y cells either in the A layer driven by the paralyzed eye or in the A1 layer driven by the mobile eye. The distribution of latencies to chiasm stimulation and the average visual spatial resolution were within the normal range in both A and A1 layers. These experiments indicate that monocular paralysis in the adult cat does not affect the numbers of X and Y cells in the LGN. However, the averages of cell body size in layers A and A1 contralateral to the immobilized eye were roughly equal, whereas in the normal cat cells in layer A1 are larger than those in layer A.This work was supported by grants from the National Eye Institute: EY 02240 to JMSW, EY 1472 to RS. RS was also supported by a Career Development Award, and EK by an Academic Investigator Award from the Eye Institute  相似文献   

11.
Summary The proportions and receptive field properties of X and Y cells in the A and A1 layers of the lateral geniculate nucleus (LGN) were studied in monocularly deprived cats. Contrary to previous reports, we found that there was no change in the relative number of Y cells in the geniculate layers driven by the deprived eye. There was also no marked change in the spatial resolution of X or Y cells driven from the deprived eye as compared to the cells driven from the normally experienced eye. In these same cats, the visual evoked potential from stimulation of the deprived eye with grating patterns was markedly reduced in amplitude. Furthermore, the cell bodies of the cells in the LGN driven by the deprived eye had shrunk. Therefore, these usual consequences of monocular deprivation are not necessarily associated with a loss of geniculate Y cells.  相似文献   

12.
1. We examined the response properties and geniculate inputs of 35 antidromically identified corticotectal (CT) cells within area 18 of the paralyzed, anesthetized cat. Twenty-three were either standard complex or hypercomplex, 11 were special complex, and 1 was simple. 2. The response properties of CT cells in area 18 were in general quite similar to those examined in a previous study of area 17 CT cells, including similar proportions of standard and special complex CT cells, virtually identical length-response functions, and similar orientation and direction tuning. 3. Area 18 CT cells are rapidly conducting. They are considerably faster than area 17 CT cells. 4. We investigated the composition of thalamic inputs to CT cells by reversibly inactivating a portion of layer A and/or the C layers of the dorsal lateral geniculate nucleus with injections of cobaltous chloride. Blocking layer A strongly attenuated the visual responsiveness of about half of the cells tested. Blocking the C layers alone generally had only moderate effects, but simultaneous blockade of layer A and the C layers demonstrated a substantial C-layer input to many cells. Unlike area 17 in which there is a strong correlation between CT cell class and dependence on layer A, no single receptive-field parameter nor set of parameters was correlated with dependence on layer A. However, cells least affected by simultaneous blockade of layer A and the C layers were special complex, suggesting that, as in area 17, area 18 special complex CT cells integrate more geniculate inputs than standard complex CT cells. 5. We propose that the similarities of response properties of area 17 and area 18 CT cells results from their participation in similar interlaminar columnar circuits and that differences in the patterns of geniculate control reflect differences in the global patterns of geniculate inputs to these two areas.  相似文献   

13.
High-order statistics of neural responses allow one to gain insight into neural function that may not be evident from firing rate alone. In this study, we compared the precision, reliability, and information content of spike trains from X- and Y-cells in the lateral geniculate nucleus (LGN) and layer IV simple cells of area 17 in the cat. To a stochastic, contrast-modulated Gabor patch, layer IV simple cells responded as precisely as their primary inputs, LGN X-cells, but less reliably. LGN Y-cells were more precise and reliable than LGN X-cells. Also, within each LGN cell type, 1) responses to the same stimulus were nearly identical if they shared the same center sign and 2) responses of neurons with the same center sign were nearly identical to the responses of neurons of opposite center sign if the stimulus' contrasts were inverted. These results suggest simple cells receive highly precise and synchronous LGN input, resulting in precise responses. Nonetheless, the response precision of simple cells was greater than expected. Finally, information-theoretic calculations of our cell responses revealed that 1) LGN X-cells encoded information at half the rate of LGN Y-cells but 2.5 times the rate of layer IV simple cells; 2) LGN cells encoded information in their responses using temporal patterns, whereas simple cells did not; and 3) simple cells used more of their information capacity than LGN X-cells. We propose mechanisms that simple cells might use to ensure high precision.  相似文献   

14.
A pathway from the superficial visual layers to the intermediate premotor layers of the superior colliculus has been proposed to mediate visually guided orienting movements. In these experiments, we combined photostimulation using "caged" glutamate with in vitro whole cell patch-clamp recording to demonstrate this pathway in the rat. Photostimulation in the superficial gray and optic layers (SGS and SO, respectively) evoked synaptic responses in intermediate gray layer (SGI) cells. The responses comprised individual excitatory postsynaptic currents (EPSCs) or EPSC clusters. Blockade of these EPSCs by TTX confirmed that they were synaptically mediated. Stimulation within a column (approximately 500 microm diam) extending superficially from the recorded cell evoked the largest and most reliable responses, but off-axis stimuli were effective as well. The EPSCs could be evoked by stimuli 1,000 microm off-axis from the postsynaptic neuron. The dimensions of this wider region (approximately 2 mm diam) corresponded to those of the dendrites of superficial layer wide-field neurons. SGI neurons differed in their input from SGS and SO; neurons in the middle of the intermediate layer (SGIb) were less likely to respond to visual layer photostimulation than were those in sublayers just above and below them. However, focal stimulation within SGIa did evoke responses within SGIb, indicating that SGIb neurons may receive input from the visual layers indirectly. These results demonstrate a columnar pathway that may mediate visually guided orienting movements, but the results also reveal spatial attributes of the pathway which imply that it also plays a more complex role in visuomotor integration.  相似文献   

15.
The spatial weighting functions of both retinal and lateral geniculate nucleus (LGN) X-cell receptive fields have been viewed as the difference of two Gaussians (DOG). We focus on a particular shortcoming of the DOG model, that is, suppression of responses of LGN cells at spatial frequencies above those to which the classical receptive field surround is responsive. By simultaneously recording one of the retinal ganglion cell (RGC) inputs (S-potentials) to an LGN cell, we find that half of this suppression at high spatial frequencies arises from the retinal input and that suppression in LGN cells is greater than that in RGCs, regardless of spatial frequency. We also inactivated the ipsilateral visual cortex and show that one quarter of the suppression at high spatial frequencies arises from corticothalamic feedback. We show that this suppression at high spatial frequencies is colocalized with the classical surround, is not dependent on the relative orientation of the center and surround stimuli, and that the cortical component of this suppression is divisive. We propose that the role of this suppression at high spatial frequencies is to restrict the response to large stimuli composed of high spatial frequencies.  相似文献   

16.
Response properties of cells in the infragranular layers of cortical area 17 of the cat were examined in the absence of input from supragranular layers. Supragranular activity was silenced either reversibly by cooling the surface of cortex or permanently by making a cryogenic lesion of the supragranular layers. Visually driven responses of cells throughout the cortical column were recorded with a linear array of electrodes. Most infragranular layer cells continued to be visually responsive in the absence of supragranular layer input. These cells were similar to normal infragranular layer cells on measures of visual responsiveness, orientation selectivity, and direction selectivity. Special complex, but not standard complex, cells were absent in layer 5 when supragranular layers were destroyed. We found no evidence for a selective effect of removal of supragranular activity on the response properties of cells in layer 6. We propose that the intracolumnar projection from the supragranular layers drives the special complex cells of layer 5, but is not necessary for the visual driving of most other infragranular layer cells. This projection does not impose selectivity for stimulus orientation or direction on the remaining active cells of the infragranular layers.  相似文献   

17.
Summary The responses of neurones in the lateral geniculate nucleus (LGN) were investigated in anaesthetised rhesus monkeys. A new classification for cells in the parvocellular layers (PCL) is proposed, based on their spectral response curve and their response to white stimuli: (A) narrow-band, short wavelength (NS) excited cells, activity suppressed by white stimuli; (B) wide-band, short-wavelength (WS) excited cells, excited by white stimuli; (C) wide-band, long-wavelength (WL) excited cells, (D) narrow-band, long-wavelength (NL) excited cells, activity suppressed by white stimuli; (E) light suppressed (LI) cells, activity suppressed by all wavelengths, usually with some concealed excitatory input at extreme short or long wavelengths. Responses to moving bars and to spots of various diameters (area response curves) were determined for various wavelengths. It was found that the receptive fields from which wavelength-dependent excitatory or suppressive effects could be elicited are concentrically superimposed. The spectral responsiveness of the excitatory inputs to individual cell types corresponds to the absorption curves of single cones (S-, M- or L-cone for NS, WS and WL cells respectively), the spectral distribution of the suppressive mechanisms of all cells was panchromatic and approximately fitted to a sum of all cones. The excitatory input to NL-cells cannot be related to any of the known cone absorption curves, and a simple (L-M) subtraction model is questioned. Neurones in the magnocellular layers (MCL) can be divided into on- and off-centre cells as in the cat's LGN and give qualitatively similar responses over the whole spectrum. In contrast to the tonic responses of PCL cells, MCL cells respond phasically to chromatic and white flashed spots, even with the smallest stimuli. Implications of these findings for colour processing in the LGN are discussed.  相似文献   

18.
1. The visual cortex receives several types of afferents from the lateral geniculate nucleus (LGN) of the thalamus. In the cat, previous work studied the ON/OFF and X/Y distinctions, investigating their convergence and segregation in cortex. Here we pursue the lagged/nonlagged dichotomy as it applies to simple cells in area 17. Lagged and nonlagged cells in the A-layers of the LGN can be distinguished by the timing of their responses to sinusoidally luminance-modulated stimuli. We therefore used similar stimuli in cortex to search for signs of lagged and nonlagged inputs to cortical cells. 2. Line-weighting functions were obtained from 37 simple cells. A bar was presented at a series of positions across the receptive field, with the luminance of the bar modulated sinusoidally at a series of temporal frequencies. First harmonic response amplitude and phase values for each position were plotted as a function of temporal frequency. Linear regression on the phase versus temporal frequency data provided estimates of latency (slope) and absolute phase (intercept) for each receptive-field position tested. These two parameters were previously shown to distinguish between lagged and nonlagged LGN cells. Lagged cells generally have latencies > 100 ms and absolute phase lags; nonlagged cells have latencies < 100 ms and absolute phase leads. With the use of these criteria, we classified responses at discrete positions inside cortical receptive fields as lagged-like and nonlagged-like. 3. Both lagged-like and nonlagged-like responses were observed. The majority of cortical cells had only or nearly only nonlagged-like zones. In 15 of the 37 cells, however, the receptive field consisted of > or = 20% lagged-like zones. For eight of these cells, lagged-like responses predominated. 4. The distribution of latency and absolute phase across the sample of cortical simple cell receptive fields resembled the distribution for LGN cells. The resemblance was especially striking when only cells in or adjacent to geniculate recipient layers were considered. Absolute phase lags were almost uniformly associated with long latencies. Absolute phase leads were generally associated with short latencies, although cortical cells responded with long latencies and absolute phase leads slightly more often than LGN cells. 5. Cells in which a high percentage of lagged-like responses were observed had a restricted laminar localization, with all but two being found in layer 4B or 5A. Cells with predominantly nonlagged-like responses were found in all layers. 6. Lagged-like zones can not be easily explained as a result of stimulating combinations of nonlagged inputs.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Summary The receptive field organization of complex cells was studied by analyzing interaction effects between two stationary flashing light stimuli. One was placed in the most responsive part of the receptive field to produce activity against which effects of the other in different visual field positions could be determined.The receptive field was spatially organized into antagonistic center and flanks just like the fields of simple cells. However, both center and flanks were found within the receptive field area where a single slit evoked discharge. Center and flanks were elongated along the optimal stimulus orientation. The flanks were displaced from the center normal to optimal stimulus orientation.In the center, ON- and OFF-responses were usually about equal in strength and the maximum ON- and OFF-responses occurred in about the same position. This shows that complex cells are activated by input from both ON- and OFF-center cells in the lateral geniculate nucleus (LGN) where the receptive field centers of the LGN cells overlap closely. This explains most of the specific features of complex cells, e.g., the spatially overlapping ON- and OFF-zones, the large response field, the repetitive firing when a slit moves over the receptive field, and the marked non-linear spatial summation.Strong flank suppression occurred with both ON and OFF. The effects were usually stronger on one side of the center. Maximal suppression occurred on the same side with both ON and OFF. This is consistent with the interpretation that complex cells are inhibited by input from both LGN ON- and OFF-center cells with overlapping receptive field centers.A model presuming that complex cells have overlapping but acentric excitatory and inhibitory fields was tested by computer simulation and shown to fit the experimental data. This is the same model as presented for simple cells in the preceding paper (Heggelund 1980), except that the excitatory and inhibitory fields of simple cells have input from either ON- or OFF-center LGN cells, whereas in complex cells they have input from both types.The project was financially supported by the Norwegian Research Council for Science and Humanities  相似文献   

20.
Summary This study analyzes the interactions between two discrete stimuli located in the visual field of the rabbit at the lateral geniculate level. Single unit recordings were carried out simultaneously from the superior colliculus (SC) and lateral geniculate nucleus (LGN) in anesthetized and paralyzed rabbits. A first conditioning stimulus (most often a moving target) was positioned in the receptive field of the collicular cell to ensure activation of the retino-collicular path. A second test stimulus was introduced into the receptive field of the LGN cell. The presentation of this latter stimulus was timed so as to fire the geniculate cell at various delays after the collicular neuron had responded to its own stimulus. The spontaneous firing of each cell was unaffected by the stimulus appropriate to the complementary unit. The conditioning collicular stimulus produced increases or decreases in geniculate responses. This modulation may eventually reduce the direction specificity of a geniculate unit. The fluctuations of the geniculate responses peaked 200 to 300 ms after collicular cells had responded. In a separate series of experiments the influence of the conditioning stimulus on geniculate responses was abolished when the SC was locally inactivated. These results suggest that the well documented colliculo-geniculate system mediates the interactions of several stimuli in the visual field. The outcome of this processing results in a modulation of geniculate responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号