首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transplantation of exogenous stem cells and the activation of endogenous neural stem and progenitor cells (NSPCs) are promising treatments for stroke. These cells can modulate intrinsic responses to ischemic injury and may even integrate directly into damaged neural networks. However, the neuroprotective and neural regenerative effects that can be mediated by these cells are limited and may even be deleterious. Epigenetic reprogramming represents a novel strategy for enhancing the intrinsic potential of the brain to protect and repair itself by modulating pathologic neural gene expression and promoting the recapitulation of seminal neural developmental processes. In fact, recent evidence suggests that emerging epigenetic mechanisms are critical for orchestrating nearly every aspect of neural development and homeostasis, including brain patterning, neural stem cell maintenance, neurogenesis and gliogenesis, neural subtype specification, and synaptic and neural network connectivity and plasticity. In this review, we survey the therapeutic potential of exogenous stem cells and endogenous NSPCs and highlight innovative technological approaches for designing, developing, and delivering epigenetic therapies for targeted reprogramming of endogenous pools of NSPCs, neural cells at risk, and dysfunctional neural networks to rescue and restore neurologic function in the ischemic brain.  相似文献   

2.
Neonatal hypoxic–ischemic insults are a significant cause of pediatric encephalopathy, developmental delays, and spastic cerebral palsy. Although the developing brain’s plasticity allows for remarkable self-repair, severe disruption of normal myelination and cortical development upon neonatal brain injury are likely to generate life-persisting sensory-motor and cognitive deficits in the growing child. Currently, no treatments are available that can address the long-term consequences. Thus, regenerative medicine appears as a promising avenue to help restore normal developmental processes in affected infants. Stem cell therapy has proven effective in promoting functional recovery in animal models of neonatal hypoxic–ischemic injury and therefore represents a hopeful therapy for this unmet medical condition. Neural stem cells derived from pluripotent stem cells or fetal tissues as well as umbilical cord blood and mesenchymal stem cells have all shown initial success in improving functional outcomes. However, much still remains to be understood about how those stem cells can safely be administered to infants and what their repair mechanisms in the brain are. In this review, we discuss updated research into pathophysiological mechanisms of neonatal brain injury, the types of stem cell therapies currently being tested in this context, and the potential mechanisms through which exogenous stem cells might interact with and influence the developing brain.  相似文献   

3.
New strategies for repairing the injured spinal cord: the role of stem cells   总被引:21,自引:0,他引:21  
Thanks to advances in the stem cell biology of the central nervous system, the previously unconceivable regeneration of the damaged spinal cord is approaching reality. A number of potential strategies aim to optimize functional recovery after spinal cord injury. They include minimizing the progression of secondary injury, manipulating the inhibitory environment of the spinal cord, replacing lost tissue with transplanted cells or peripheral nerve grafts, remyelinating denuded axons and maximizing the intrinsic regenerative potential of endogenous progenitor cells. We review the application of stem cell transplantation to the spinal cord, emphasizing the use of embryonic stem cells for remyelinating damaged axons. Recent advancements in neural injury and repair, and the progress towards development of neuroprotective and regenerative interventions are discussed.  相似文献   

4.
Traumatic brain injury (TBI) is the leading cause of death and disability of persons under 45 years old in the United States, affecting over 1.5 million individtials each year. It had been th ought that recovery from such injuries is severely limited due to the inability of the adult bra in to replace damaged neurons. However, recent studies indicate that the mature mammalian central nervous system (CNS) has the potential to replenish damaged neurons by proliferation and neuronal differentiation of adult neural stem/progenitor cells residing in the neurogenic regions in the brain. Furthermore, increasing evidence indicates that these endogenous stem/ progenitor cells may play regenerative and reparative roles in response to CNS injuries or diseases. In support of this notion, heightened levels of cell proliferation and neurogenesis have been ob- served in response to brain trauma or insults suggesting that the brain has the inherent potential to restore populations of damaged or destroyed neurons. This review will discuss the potential functions of adult neurogenesis and recent development of strategies aiming at harnessing this neurogenic capacity in order to repopulate and repair the injured brain.  相似文献   

5.
6.
The last two decades have witnessed a rapid decrease in mortality due to acute cerebral ischemia that paradoxically has led to a rapid increase in the number of patients that survive an acute ischemic stroke with various degrees of disability.Unfortunately,the lack of an effective therapeutic strategy to promote neurological recovery among stroke survivors has led to a rapidly growing population of disabled patients.Thus,understanding the mechanisms of neurorepair in the ischemic brain is a priority with wide scientific,social and economic implications.Cerebral ischemia has a harmful effect on synaptic structure associated with the development of functional impairment.In agreement with these observations,experimental evidence indicates that synaptic repair underlies the recovery of neurological function following an ischemic stroke.Furthermore,it has become evident that synaptic plasticity is crucial not only during development and learning,but also for synaptic repair after an ischemic insult.The plasminogen activating system is assembled by a cascade of enzymes and their inhibitors initially thought to be solely involved in the generation of plasmin.However,recent work has shown that in the brain this system has an important function regulating the development of synaptic plasticity via mechanisms that not always require plasmin generation.Urokinase-type plasminogen activator(uPA)is a serine proteinase and one of the plasminogen activators,that upon binding to its receptor(uPAR)not only catalyzes the conversion of plasminogen into plasmin on the cell surface,but also activates cell signaling pathways that promote cell migration,proliferation and survival.The role of uPA is the brain is not fully understood.However,it has been reported while uPA and uPAR are abundantly found in the developing central nervous system,in the mature brain their expression is restricted to a limited group of cells.Remarkably,following an ischemic injury to the mature brain the expression of uPA and uPAR increases to levels comparable to those observed during development.More specifically,neurons release uPA during the recovery phase from an ischemic injury,and astrocytes,axonal boutons and dendritic spines recruit uPAR to their plasma membrane.Here we will review recent evidence indicating that binding of uPA to uPAR promotes the repair of synapses damaged by an ischemic injury,with the resultant recovery of neurological function.Furthermore,we will discuss data indicating that treatment with recombinant uPA is a potential therapeutic strategy to promote neurological recovery among ischemic stroke survivors.  相似文献   

7.
The potential of neural stem cells to repair stroke-induced brain damage   总被引:1,自引:0,他引:1  
Acute injuries to CNS such as stroke induce neural progenitor proliferation in adult brain which might be an endogenous attempt to self-repair. This process is known to be altered by several exogenous and endogenous modulators including growth factors that could help to reinforce the post-stroke neurogenesis. Increasing the neurogenesis may be a future therapeutic option to decrease the cognitive and behavioral deficits following stroke. In addition, transplantation of various types of stem cells into the injured brain is currently thought to be an exciting option to replace the neurons lost in the post-ischemic brain. These include immortalized stem cell lines, neural progenitors prepared from embryonic and adult animals and mesenchymal stem cells. Using exogenous stem cells in addition to modulating endogenous neurogenesis, we may be able to repair the injured brain after a devastating stroke. This article reviewed the current literature of these two issues.  相似文献   

8.
Several mammalian animal models of traumatic brain injury have been used, mostly rodents. However, reparative mechanisms in mammalian brain are very limited, and newly formed neurons do not survive for long time. The brain of adult zebrafish, a teleost fish widely used as vertebrate model, possesses high regenerative properties after injury due to the presence of numerous stem cells niches. The ventricular lining of the zebrafish dorsal telencephalon is the most studied neuronal stem cell niche because its dorso-lateral zone is considered the equivalent to the hippocampus of mammals which contains one of the two constitutive neurogenic niches of mammals. To mimic TBI, stab wound in the dorso-lateral telencephalon of zebrafish was used in studies devoted to fish regenerative properties. Brain-derived neurotrophic factor, which is known to play key roles in the repair process after traumatic brain lesions, persists around the lesioned area of injured telencephalon of adult zebrafish. These results are extensively compared to reparative processes in rodent brain. Considering the complete repair of the damaged area in fish, it could be tempting to consider brain-derived neurotrophic factor as a factor contributing to create a permissive environment that enables the establishment of new neuronal population in damaged brain.  相似文献   

9.

Purpose of Review

Traumatic brain injury (TBI) is a global public health concern, with limited treatment options available. Despite improving survival rate after TBI, treatment is lacking for brain functional recovery and structural repair in clinic. Recent studies have suggested that the mature brain harbors neural stem cells which have regenerative capacity following brain insults. Much progress has been made in preclinical TBI model studies in understanding the behaviors, functions, and regulatory mechanisms of neural stem cells in the injured brain. Different strategies targeting these cell population have been assessed in TBI models. In parallel, cell transplantation strategy using a wide range of stem cells has been explored for TBI treatment in pre-clinical studies and some in clinical trials. This review summarized strategies which have been explored to enhance endogenous neural stem cell-mediated regeneration and recent development in cell transplantation studies for post-TBI brain repair.

Recent Findings

Thus far, neural regeneration through neural stem cells either by modulating endogenous neural stem cells or by stem cell transplantation has attracted much attention. It is highly speculated that targeting neural stem cells could be a potential strategy to repair and regenerate the injured brain.

Summary

Neuroprotection and neuroregeneration are major aspects for TBI therapeutic development. With technique advancement, it is hoped that stem cell-based therapy targeting neuroregeneration will be able to translate to clinic in not so far future.
  相似文献   

10.
The CNS has the potential to marshal strong reparative mechanisms, including activation of endogenous neurogenesis, after a brain injury such as stroke. However, the response of neural stem/progenitor cells to stroke is poorly understood. Recently, neural stem/progenitor cells have been identified in the cerebral cortex, as well as previously recognized regions such as the subventricular or subgranular zones of the hippocampus, suggesting that a contribution of cortex-derived neural stem/progenitor cells may repair ischemic lesions of the cerebral cortex. In the present study, using a highly reproducible murine model of cortical infarction, we have found nestin-positive cells in the post-stroke cerebral cortex, but not in the non-ischemic cortex. Cells obtained from the ischemic core of the post-stroke cerebral cortex formed neurosphere-like cell clusters expressing nestin; such cells had the capacity for self-renewal and differentiated into electrophysiologically functional neurons, astrocytes and myelin-producing oligodendrocytes. Nestin-positive cells from the stroke-affected cortex migrated into the peri-infarct area and differentiated into glial cells in vivo . Although we could not detect differentiation of nestin-positive cells into neurons in vivo , our current observations indicate that endogenous neural stem/progenitors with the potential to become neurons can develop within post-stroke cerebral cortex.  相似文献   

11.
Adult stem cell therapy in stroke   总被引:31,自引:0,他引:31  
PURPOSE OF REVIEW: Acute cerebral infarction causes irreversible locally restricted loss of the neuronal circuitry and supporting glial cells with consecutive functional deficits and disabilities. The currently available and effective therapy targets fast vessel recanalization accompanied by symptomatic measures. Research activities focusing on stem cells, which represent a promising source for organotypic cell replacement and functional recovery after stroke, have gained momentum in recent years, making regenerative cell-based therapies a much more feasible realistic approach. This review provides an update about preclinical and clinical cell-based studies in stroke focusing on stem cells derived from the adult central nervous and hematopoetic systems. RECENT FINDINGS: Endogenous neural stem cells, which have been shown to reside throughout life in the central nervous system, have the capacity to replace lost neurons in models for numerous disorders, including cerebral ischemia. Considering adult neural stem cell transplantation as a regenerative strategy after stroke, progress has been made in isolating human adult neural stem cells and demonstrating the feasibility of autologous neural stem cell transplantation. An increasing number of studies provide evidence that hematopoietic stem cells, either after stimulation of endogenous stem cell pools or after exogenous hematopoietic stem cell application (transplantation), improve functional outcome after ischemic brain lesions. Various underlying mechanisms such as transdifferentiation into neural lineages, neuroprotection through trophic support, and cell fusion have been deciphered. SUMMARY: Many preclinical studies employing adult stem cell-based strategies hold great promise. For endogenous approaches the correlate of cell replacement underlying functional improvement needs to be demonstrated. Transplantation approaches on the experimental level need further development before clinical application can be considered.  相似文献   

12.
Stroke causes a devastating insult to the brain resulting in severe neurological deficits because of a massive loss of different neurons and glia. In the United States, stroke is the third leading cause of death. Stroke remains a significant clinical unmet condition, with only 3% of the ischemic patient population benefiting from current treatment modalities, such as the use of thrombolytic agents, which are often limited by a narrow therapeutic time window. However, regeneration of the brain after ischemic damage is still active days and even weeks after stroke occurs, which might provide a second window for treatment. Neurorestorative processes like neurogenesis, angiogenesis and synaptic plasticity lead to functional improvement after stroke. Stem cells derived from various tissues have the potential to perform all of the aforementioned processes, thus facilitating functional recovery. Indeed, transplantation of stem cells or their derivatives in animal models of cerebral ischemia can improve function by replacing the lost neurons and glial cells and by mediating remyelination, and modulation of inflammation as confirmed by various studies worldwide. While initially stem cells seemed to work by a 'cell replacement' mechanism, recent research suggests that cell therapy works mostly by providing trophic support to the injured tissue and brain, fostering both neurogenesis and angiogenesis. Moreover, ongoing human trials have encouraged hopes for this new method of restorative therapy after stroke. This review describes up-to-date progress in cell-based therapy for the treatment of stroke. Further, as we discuss here, significant hurdles remain to be addressed before these findings can be responsibly translated to novel therapies. In particular, we need a better understanding of the mechanisms of action of stem cells after transplantation, the therapeutic time window for cell transplantation, the optimal route of cell delivery to the ischemic brain, the most suitable cell types and sources and learn how to control stem cell proliferation, survival, migration, and differentiation in the pathological environment. An integrated approach of cell-based therapy with early-phase clinical trials and continued preclinical work with focus on mechanisms of action is needed.  相似文献   

13.
Stem cell therapy is considered a potential regenerative strategy for patients with neurologic deficits. Studies involving animal models of ischemic stroke have shown that stem cells transplanted into the brain can lead to functional improvement. With current advances in the understanding regarding the effects of introducing stem cells and their mechanisms of action, several clinical trials of stem cell therapy have been conducted in patients with stroke since 2005, including studies using mesenchymal stem cells, bone marrow mononuclear cells, and neural stem/progenitor cells. In addition, several clinical trials of the use of adult stem cells to treat ischemic stroke are ongoing. This review presents the status of our understanding of adult stem cells and results from clinical trials, and introduces ongoing clinical studies of adult stem cell therapy in the field of stroke.  相似文献   

14.
Hypoxic or ischemic stress causes serious brain injury via various pathologic mechanisms including suppressed protein synthesis, neuronal apoptosis, and the release of neurotoxic substances. Many neuroprotective treatments of hypoxic or ischemic brain injury rely on these pathologic mechanisms. The mammalian target of rapamycin (mTOR), an atypical Ser/Thr protein kinase, could be a novel therapeutic target. mTOR plays a critical role in regulating many activities such as protein synthesis, cell growth, and cell death. Furthermore, mTOR could promote angiogenesis, neuronal regeneration, and synaptic plasticity, reduce neuronal apoptosis, and remove neurotoxic substances, which are all closely associated with the repair and survival mechanisms of hypoxic or ischemic brain injury. Although there is currently controversy with regard to regulating the activation of mTOR, the effective neuroprotective functions resulting from mTOR activation have been confirmed by various studies. Considering the potential capability for mTOR in regulating the repair and survival mechanisms of hypoxic or ischemic brain injury, mTOR may be a novel target for neuroprotective treatment.  相似文献   

15.
With an incidence of approximately 350 in 100,000, stroke is the third leading cause of death and a major cause of disability in industrialized countries. At present, although progress has been made in understanding the molecular pathways that lead to ischemic cell death, the current clinical treatments remain poorly effective. There is mounting evidence that inflammation plays an important role in cerebral ischemia. Experimentally and clinically, brain response to ischemic injury is associated with an acute and prolonged inflammatory process characterized by the activation of resident glial cells, production of inflammatory cytokines as well as leukocyte and monocyte infiltration in the brain, events that may contribute to ischemic brain injury and affect brain recovery and plasticity. However, whether the post-ischemic inflammatory response is deleterious or beneficial to brain recovery is presently a matter of debate and controversies. Here, we summarize the current knowledge on the molecular mechanisms underlying post-ischemic neuronal plasticity and the potential role of inflammation in regenerative processes and functional recovery after stroke. Furthermore, because of the dynamic nature of the brain inflammatory response, we highlight the importance of the development of novel experimental approaches such as real-time imaging. Finally, we discuss the novel transgenic reporter mice models that have allowed us to visualize and to analyze the processes such as neuroinflammation and neuronal repair from the ischemic brains of live animals.  相似文献   

16.
Mesenchymal stem cells can be expanded rapidly in vitro and differentiated into multiple mesodermal cell types. In addition, their differentiation into neuron-like cells expressing markers typical for mature neurons has been reported. We isolated human adipose tissue stromal cells (hATSCs) from human liposuction tissues and induced neural differentiation with azacytidine. Following neural induction, hATSCs changed toward neural morphology and displayed expression of MAP2 and GFAP. hATSCs, which were labeled with LacZ adenovirus, were injected into the lateral ventricle of the rat brain. Transplanted cells migrated to various parts of the brain, and ischemic brain injury by middle cerebral artery occlusion (MCAo) increased their migration to the injured cortex. Some of the transplanted cells expressed MAP2 and GFAP. Transplantation of hATSCs improved functional deficits in ischemic brain injury induced by MCAo. Intracerebral grafting of BDNF-transduced hATSCs significantly improved motor recovery of functional deficits in MCAo rats. These data indicate that transplanted hATSCs survive, migrate, and improve functional recovery after stroke and that genetically engineered hATSCs can express biologically active gene products and, therefore, can function as effective vehicles for therapeutic gene transfer to the brain.  相似文献   

17.
卒中是第3位常见的致死原因,给社会和经济带来沉重的负担。针对卒中的治疗多集中在 急性期,而卒中恢复期的治疗尚无有效方法。有关药物治疗或无效或存在不良影响,相应的神经保 护和大脑修复仍然是主要的尚未实现的医疗需求。近年来,大脑保护自身免受伤害性刺激以及修复 内源性修复损伤越来越受关注。其中,对预适应的研究(也被称为诱导耐受性)已产生多种有希望治 疗急性颅脑损伤的方法。一方面,预适应可以识别那些被诱导出的内源性保护或再生机制;另一方面, 对于那些预期会发生缺血性事件的人群(如接受过脑部手术、短暂性脑缺血发作或蛛网膜下腔出血 的患者),预适应可以作为一种治疗手段来诱导出耐受性。  相似文献   

18.
Adult neurogenesis and the ischemic forebrain.   总被引:16,自引:0,他引:16  
The recent identification of endogenous neural stem cells and persistent neuronal production in the adult brain suggests a previously unrecognized capacity for self-repair after brain injury. Neurogenesis not only continues in discrete regions of the adult mammalian brain, but new evidence also suggests that neural progenitors form new neurons that integrate into existing circuitry after certain forms of brain injury in the adult. Experimental stroke in adult rodents and primates increases neurogenesis in the persistent forebrain subventricular and hippocampal dentate gyrus germinative zones. Of greater relevance for regenerative potential, ischemic insults stimulate endogenous neural progenitors to migrate to areas of damage and form neurons in otherwise dormant forebrain regions, such as the neostriatum and hippocampal pyramidal cell layer, of the mature brain. This review summarizes the current understanding of adult neurogenesis and its regulation in vivo, and describes evidence for stroke-induced neurogenesis and neuronal replacement in the adult. Current strategies used to modify endogenous neurogenesis after ischemic brain injury also will be discussed, as well as future research directions with potential for achieving regeneration after stroke and other brain insults.  相似文献   

19.
Neuronal circuits in the adult brain have long been viewed as static and stable. However, research in the past 20 years has shown that specialized regions of the adult brain, which harbor adult neural stem cells, continue to produce new neurons in a wide range of species. Brain plasticity is also observed after injury. Depending on the extent and permissive environment of neurogenic regions, different organisms show great variability in their capacity to replace lost neurons by endogenous neurogenesis. In Zebrafish and Drosophila, the formation of new neurons from progenitor cells in the adult brain was only discovered recently. Here, we compare properties of adult neural stem cells, their niches and regenerative responses from mammals to flies. Current models of brain injury have revealed that specific injury-induced genetic programs and comparison of neuronal fitness are implicated in brain repair. We highlight the potential of these recently implemented models of brain regeneration to identify novel regulators of stem cell activation and regenerative neurogenesis.  相似文献   

20.
Neural stem cells persist in the adult mammalian forebrain and are a potential source of neurons for repair after brain injury. The two main areas of persistent neurogenesis, the subventricular zone (SVZ)-olfactory bulb pathway and hippocampal dentate gyrus, are stimulated by brain insults such as stroke or trauma. Here we focus on the effects of focal cerebral ischemia on SVZ neural progenitor cells in experimental stroke, and the influence of mechanical injury on adult hippocampal neurogenesis in models of traumatic brain injury (TBI). Stroke potently stimulates forebrain SVZ cell proliferation and neurogenesis. SVZ neuroblasts are induced to migrate to the injured striatum, and to a lesser extent to the peri-infarct cortex. Controversy exists as to the types of neurons that are generated in the injured striatum, and whether adult-born neurons contribute to functional restoration remains uncertain. Advances in understanding the regulation of SVZ neurogenesis in general, and stroke-induced neurogenesis in particular, may lead to improved integration and survival of adult-born neurons at sites of injury. Dentate gyrus cell proliferation and neurogenesis similarly increase after experimental TBI. However, pre-existing neuroblasts in the dentate gyrus are vulnerable to traumatic insults, which appear to stimulate neural stem cells in the SGZ to proliferate and replace them, leading to increased numbers of new granule cells. Interventions that stimulate hippocampal neurogenesis appear to improve cognitive recovery after experimental TBI. Transgenic methods to conditionally label or ablate neural stem cells are beginning to further address critical questions regarding underlying mechanisms and functional significance of neurogenesis after stroke or TBI. Future therapies should be aimed at directing appropriate neuronal replacement after ischemic or traumatic injury while suppressing aberrant integration that may contribute to co-morbidities such as epilepsy or cognitive impairment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号