首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GABA (γ‐aminobutyric acid)ergic neurons in the spinal dorsal horn have been reported to be divided into distinctive populations, with different cotransmitters and neuropeptides. In this study, we examined the colocalization of enkephalin (ENK) mRNA with GABA in the spinal dorsal horn using the glutamic acid decarboxylase (GAD)67‐green fluorescence protein (GFP) knock‐in mouse. Our approach was to perform in situ hybridization histochemistry to detect mRNA for preproenkephalin (PPE, the precursor protein for ENK), combined with immunohistochemistry for GFP to reveal GABAergic neurons. Quantitative analysis indicated that more than 44.4% (2967/6681) of GFP‐immunoreactive neurons showed signals for PPE mRNA in the spinal dorsal horn. While 53.9% (2967/5501) of PPE mRNA‐expressing neurons were immunoreactive for GFP. The double‐labeled neurons were observed throughout the spinal dorsal horn, although they had a preferential localization in superficial layers. The present results provide a detailed morphological evidence that ENK and GABA colocalized in a subpopulation of neurons in the spinal dorsal horn, which are likely to represent local inhibitory dorsal horn interneurons involved in the modulation of pain transmission. Anat Rec, 291:1334–1341, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

2.
Changes in brain-derived neurotrophic factor (BDNF) expression have been implicated in the etiology of psychiatric disorders. To investigate pathological mechanisms elicited by perturbed BDNF signaling, we examined mutant mice with central depletion of BDNF (BDNF2L/2LCk-cre). A severe impairment specific for the serotonin 2A receptor (5-HT2AR) in prefrontal cortex was described previously in these mice. This is of much interest, as 5-HT2ARs have been linked to neuropsychiatric disorders and anxiety-related behavior. Here we further characterized the serotonin receptor alterations triggered by BDNF depletion. 5-HT2A ([3H]-MDL100907) and 5-HT1A ([3H]-WAY100635) receptor autoradiography revealed site-specific alterations in BDNF mutant mice. They exhibited lower 5-HT2A receptor binding in frontal cortex but increased binding in hippocampus. Additionally, 5-HT1A receptor binding was decreased in hippocampus of BDNF mutants, but unchanged in frontal cortex. Molecular analysis indicated corresponding changes in 5-HT2A and 5-HT1A mRNA expression but normal 5-HT2C content in these brain regions in BDNF2L/2LCk-cre mice. We investigated whether the reduction in frontal 5-HT2AR binding was reflected in reduced functional output in two 5-HT2A-receptor mediated behavioral tests, the head-twitch response (HTR) and the ear-scratch response (ESR). BDNF2L/2LCk-cre mutants treated with the 5-HT2A receptor agonist (±)-2,5-dimethoxy-4-iodoamphetamine (DOI) showed a clearly diminished ESR but no differences in HTR compared to wildtypes. These findings illustrate the context-dependent effects of deficient BDNF signaling on the 5-HT receptor system and 5-HT2A-receptor functional output.  相似文献   

3.
Recent studies reported that a recovery of motoneurons after spinal cord transection at the sacrocaudal level may depend on adaptive alterations of the serotonin 2C (5-HT2CR) and 2A (5-HT2CR) receptor function via changes in mRNA editing or protein expression, respectively. It has been suggested that depletion of serotonergic input may drive these adaptations. Here, mRNA editing and/or expression of 5-HT2CR and 5-HT2AR was evaluated in rats that sustained a complete transection at the thoracic (T10) level. While 5-HT2AR mRNA expression was upregulated below the site of spinal cord injury (SCI), no changes in 5-HT2CR mRNA editing or expression were detected. These findings argue against the hypothesis that 5-HT2CR editing is regulated by extracellular serotonin levels. Rather, it appears that the editing process is just one of the ways in which excitability of motor neurons can be restored following SCI. To this end, the influence of excitatory locomotor circuits on motor neurons in the thoracic spinal cord of rats requires further exploration.  相似文献   

4.
Among serotonin (5-HT) receptors, the 5-HT3 receptor is the only ligand-gated ion-channel. Little is known about the interaction between the 5-HT3 receptor and other 5-HT receptors and influence of 5-HT3 chronic activation on other 5-HT receptors and the expression of key genes of 5-HT system. Chronic activation of 5-HT3 receptor with intracerebroventricularly administrated selective agonist 1-(3-chlorophenyl)biguanide hydrochloride (m-CPBG) (14 days, 40 nmol, i.c.v.) produced significant desensitization of 5-HT3 and 5-HT1A receptors. The hypothermic responses produced by acute administration of selective agonist of 5-HT3 receptor (m-CPBG, 40 nmol, i.c.v.) or selective agonist of 5-HT1A receptor (8-hydroxy-2-(di-n-propylamino)tetralin) (8-OH-DPAT, 1 mg/kg, i.p.) was significantly lower in m-CPBG treated mice compared with the mice of control groups. Chronic m-CPBG administration failed to induce any significant change in the 5-HT2A receptor functional activity and in the expression of the gene encoding 5-HT2A receptor. Chronic activation of 5-HT3 receptor produced no considerable effect on the expression on 5-HT3, 5-HT1A, and 5-HT transporter (5-HTT) and tryptophan hydroxylase-2 (TPH-2) genes – the key genes of brain 5-HT system, in the midbrain, frontal cortex and hippocampus. In conclusion, chronic activation of ionotropic 5-HT3 receptor produced significant desensitization of 5-HT3 and postsynaptic 5-HT1A receptors but caused no considerable changes in the expression of key genes of the brain 5-HT system.  相似文献   

5.
6.
7.
Recent evidence suggests that serotonin has pronociceptive actions in the spinal cord when it acts through 5-hydroxytryptamine (5-HT)3 receptors. Cells and axon terminals which are concentrated in the superficial dorsal horn possess this receptor. We performed a series of immunocytochemical studies with an antibody raised against the 5-HT3A subunit in order to address the following questions: 1) Are axons that possess 5-HT3 receptors excitatory? 2) Are 5-HT3 receptors present on terminals of myelinated primary afferents? 3) What is the chemical nature of dorsal horn cells that possess 5-HT3 receptors? 4) Do axons that possess 5-HT3 receptors target lamina I projection cells?Approximately 45% of 5-HT3A immunoreactive boutons were immunoreactive for the vesicular glutamate transporter 2 and almost 80% formed synapse-like associations with GluR2 subunits of the AMPA receptor therefore it is principally glutamatergic axons that possess the receptor. Immunoreactivity was not present on myelinated primary afferent axons labeled with the B-subunit of cholera toxin or those containing the vesicular glutamate transporter 1. Calbindin (which is associated with excitatory interneurons) was found in 44% of 5-HT3A immunoreactive cells but other markers for inhibitory and excitatory cells were not present. Lamina I projection cells that possessed the neurokinin-1 receptor were associated with 5-HT3A axons but the density of contacts on individual neurons varied considerably.The results suggest that 5-HT3 receptors are present principally on terminals of excitatory axons, and at least some of these originate from dorsal horn interneurons. The relationship between lamina I projection cells and axons possessing the 5-HT3 receptor indicates that this receptor has an important role in regulation of ascending nociceptive information.  相似文献   

8.
The dorsal raphe nucleus (DRN) is the origin of the central serotonin [5-hydroxytryptamine (5-HT)] system and plays an important role in the regulation of many physiological functions such as sleep/arousal, food intake and mood. In order to understand the regulatory mechanisms of 5-HT system, characterization of the types of neurons is necessary. We performed electrophysiological recordings in acute slices of glutamate decarboxylase 67–green fluorescent protein knock-in mice. We utilized this mouse to identify visually GABAergic cells. Especially, we examined postsynaptic responses mediated by 5-HT receptors between GABAergic and serotonergic cells in the DRN. Various current responses were elicited by 5-HT and 5-HT1A or 5-HT2A/2C receptor agonists in GABAergic cells. These results suggested that multiple 5-HT receptor subtypes overlap on GABAergic cells, and their combination might control 5-HT cells. Understanding the postsynaptic 5-HT feedback mechanisms may help to elucidate the 5-HT neurotransmitter system and develop novel therapeutic approaches.  相似文献   

9.
10.
The selective agonist of serotonin 5-HT3 receptor 1-(3-chlorophenyl)biguanide hydrochloride (m-CPBG) administered intracerebroventricularly (40, 80 or 160 nmol) produced long-lasting dose-dependent hypothermic response in AKR/2J mice. m-CPBG (160 nmol i.c.v.) induced profound hypothermia (delta t = −4 °C) that lasted up to 7 h. m-CPBG (40 nmol i.c.v.)-induced hypothermia was attenuated by 5-HT3 receptor antagonist ondansetron pretreatment. At the same time, intraperitoneal administration of m-CPBG in a wide range of doses (0.5, 1.0, 5.0 or 10.0 mg/kg) did not affect the body temperature. These findings indicate: (1) the implication of central, rather than peripheral 5-HT3 receptor in the thermoregulation; (2) the inability of m-CPBG to cross blood–brain barrier in mice. The comparison of brain 5-HT3-induced hypothermic reaction in six inbred mouse strains (DBA/2J, CBA/Lac, C57BL/6, BALB/c, ICR, AKR/J) was performed and two highly sensitive to m-CPBG strains (CBA/Lac and C57BL/6) were found. In the same six mouse strains the functional activity of 5-HT1A receptor was studied. The comparison of hypothermic reactions produced by 5-HT1A receptor agonist 8-OH-DPAT (1.0 mg/kg i.p.) and m-CPBG revealed significant correlation between 5-HT3 and 5-HT1A-induced hypothermia in five out of six investigated mouse strains. 5-HT1A receptor antagonist p-MPPI pretreatment (1 mg/kg i.p.) diminished hypothermia produced by centrally administered m-CPBG (40 nmol i.c.v.). The data suggest the cross-talk between 5-HT1A and 5-HT3 receptors in the mechanism of 5-HT-related hypothermia.  相似文献   

11.
Serotonergic 1A (5-HT1A) receptor agonists reduce L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia in Parkinson's disease (PD), though the mechanism(s) and site(s) of action remain unclear. We employed [3H]-WAY 100,635 autoradiographic receptor binding to measure 5-HT1A receptor levels in 4 groups of macaques: normal (vehicle-vehicle); 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned, without exposure to L-DOPA, i.e., untreated parkinsonian (MPTP-vehicle); MPTP-lesioned, receiving a single administration of L-DOPA to alleviate parkinsonism (MPTP-L-DOPA-acute); and MPTP-lesioned, chronically treated with L-DOPA, parkinsonism alleviated but exhibiting dyskinesia (MPTP-L-DOPA-chronic). We demonstrate that 5-HT1A receptor binding decreases (by 10%-20%, p < 0.05) in the external layers, but increases (by 80%-100%, p < 0.05) in the middle layers, of the premotor and motor cortex of all MPTP-lesioned macaques. In the striosomes of the caudate nucleus, 5-HT1A receptor binding increases in MPTP-vehicle macaques (by 50%, p < 0.05), compared with normal macaques. While 5-HT1A receptor binding is low in the matrix of the caudate nucleus in normal macaques, it increases (by 200%, p < 0.05) in MPTP-L-DOPA-chronic macaques. These data suggest that 5-HT1A receptors are involved in the pathophysiology of both parkinsonism and complications of L-DOPA therapy.  相似文献   

12.
Long-term L-3,4-dihydroxyphenylalanine (L-DOPA) treatment in Parkinson's disease (PD) is associated with motor complications such as dyskinesia. There are clear functional interactions between dopaminergic and serotonergic type 2A receptors (5-HT2A)-mediated neurotransmission. Moreover, 5-HT2A receptor antagonists can reduce L-DOPA-induced dyskinesia (LID). We hypothesized that enhanced 5-HT2A-mediated neurotransmission may be involved in the genesis of L-DOPA-induced dyskinesia. Radioligand binding autoradiography, using [3H]-ketanserin, was performed to define 5-HT2A receptor levels in brain tissue from macaques: 6 normal; 5 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned, parkinsonian macaques, without exposure to L-DOPA; 6 MPTP-lesioned, parkinsonian macaques, receiving a single administration of L-DOPA, and exhibiting no dyskinesia; and 6 MPTP-lesioned, parkinsonian, macaques chronically treated with L-DOPA, and exhibiting dyskinesia. 5-HT2A receptor binding was increased in the caudate, putamen, and middle layers of the motor cortex in chronically L-DOPA-treated animals, by 50%, 50%, and 45% respectively, compared with normal macaques. 5-HT2A binding was not significantly altered in parkinsonian, untreated, or parkinsonian, single treatment, nondyskinetic macaques, compared with normal. These data provide an anatomical basis for mechanisms to explain the efficacy of 5-HT2A antagonists against dyskinesia.  相似文献   

13.
Dysfunction in brain serotonin (5-HT) system has been implicated in the psychopathology of anxiety, depression, drug addiction, and schizophrenia. The 5-HT1A receptors play a central role in the control of 5-HTergic neurotransmission. There are some scarce data showing cross-regulation between 5-HT receptors. Here, we investigated whether interaction exists between 5-HT1A receptor and genes encoding key members in brain 5-HT system. Chronic treatment with selective agonist of 5-HT1A receptor 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) (1.0 mg/kg i.p., 14 days) produced considerable decrease in hypothermic response to acute administration of 8-OH-DPAT in CBA/Lac mice indicating desensitization of 5-HT1A receptors. The decrease in 5-HT1A gene expression as well as decrease in the expression of gene encoding key enzyme in 5-HT synthesis, tryptophan hydroxylase-2 (TPH-2) in the midbrain, and the expression of the gene encoding 5-HT2A receptor in the frontal cortex was shown. There were no significant changes in 5-HT transporter mRNA level in the midbrain. Despite considerable decrease in the expression of the genes encoding tryptophan hydroxylase-2, 5-HT1A and 5-HT2A receptors, chronic 8-OH-DPAT treatment failed to produce significant changes in 5-HT1A-linked behavior (intermale aggression, open-field behavior, light-dark box, and pinch-induced catalepsy), suggesting compensatory and adaptive effect of genes suppression. The obtained data on the effect of 8-OH-DPAT-induced desensitization of 5-HT1A receptors on 5-HT1A, 5-HT2A and TPH-2 gene expression demonstrated the role of 5-HT1A receptor as indirect regulator of gene expression. The results provide the first evidence of receptor-key genes interaction in brain 5-HT system and may have profound implications in understanding the functioning of the brain neurotransmitter systems.  相似文献   

14.
 As clearly indicated by our electrophysiological work, GABAergic inhibition plays a powerful role in the pontine nuclei (PN), the major link between cerebral cortex and the cerebellum. Using the technique of in situ hybridization for the mRNA encoding for the γ-aminobutyric acid (GABA)-synthesizing isoenzyme glutamic acid decarboxylase67 (GAD67), we demonstrate here the total absence of potentially GABAergic neurons from the rat PN. This negative finding supports the notion that GABAergic inhibition in the PN of rats, unlike that of higher mammals, is exclusively based on extrapontine GABAergic afferents. Received: 20 August 1998 / Accepted: 29 October 1998  相似文献   

15.
As γ-aminobutyric acid (GABA) is synthesized by two isoforms of glutamic acid decarboxylase (GAD), namely, GAD65 and GAD67, immunohistochemically targeting either isoform of GAD is theoretically useful for identifying GABAergic cell bodies. In practice, targeting GAD67 remains to be a popular choice. However, identifying GABAergic cell bodies with GAD67 immunoreactivity in the hippocampal dentate gyrus, especially in the hilus, is not without pitfalls. In the present study, we compared the characteristics of GAD65 immunoreactivity to GAD67 immunoreactivity in the rat dentate gyrus and examined perikaryal expression of GAD65 in four neurochemically prevalent subgroups of interneurons in the hilus.Experiments were done in normal adult Sprague-Dawley rats and GAD67-GFP knock-in mice. Horizontal hippocampal slices cut from the ventral portion of hippocampi were immunofluorescently stained and scanned using a confocal microscope. Immunoreactivity for both GAD67 and GAD65 was visible throughout the dentate gyrus. Perikaryal GAD67 immunoreactivity was denser but variable in terms of distribution pattern and intensity among cells whereas perikaryal GAD65 immunoreactivity displayed similar distribution pattern and staining intensity. Among different layers of the dentate gyrus, GAD67 immunoreactivity was densest in the hilus despite GAD65 immunoreactivity being more intense in the granule cell layer. Co-localization experiments showed that GAD65, but not GAD67, was expressed in all hilar calretinin (CR)-, neuronal nitric oxide synthase (nNOS)-, parvalbumin (PV)- or somatostatin (SOM)-positive somata. Labeling CR, nNOS, PV, and SOM in sections obtained from GAD67-GFP knock-in mice revealed that a large portion of SOM-positive cells had weak GFP expression. In addition, double labeling of GAD65/GABA and GAD67/GABA showed that nearly all of GABA-immunoreactive cells had perikaryal GAD65 expression whereas more than one-tenth of GABA-immunoreactive cells lacked perikaryal GAD67 immunoreactivity. Inhibition of axonal transport with colchicine dramatically improved perikaryal GAD65 immunoreactivity in GABAergic cells without significant augmentation to be seen in granule cells. Double labeling GAD65 and GAD67 in the sections obtained from colchicine-pretreated animals confirmed that a portion of GAD65-immunoreactive cells had weak or even no GAD67 immunoreactivity.We conclude that for confocal imaging, immunofluorescently labeling GAD65 for identifying GABAergic somata in the hilus of the dentate gyrus has advantages over labeling GAD67 in terms of easier recognition of perikaryal labeling and more consistent expression in GABAergic somata. Inhibition of axonal transport with colchicine further improves perikaryal GAD65 labeling, making GABAergic cells more distinguishable.  相似文献   

16.
In the turkey, exogenous serotonin (5-hydroxytryptamine, 5-HT) increases prolactin (PRL) secretion by acting through the dopaminergic (DAergic) system. In the present study, infusion of the 5-HT2C receptor agonist, (R)(−)-DOI hydrochloride (DOI), into the third ventricle stimulates PRL secretion, whereas the 5-HT1A receptor agonist, (+/−)-8-OH-DPAT hydrobromide (DPAT), inhibits PRL secretion. Using the immediate-early gene, c-fos, as an indicator of neuronal activity, in situ hybridization histochemistry showed preferential c-fos co-localization within tyrosine hydroxylase immunoreactive neurons (the rate limiting enzyme in DA synthesis) in the areas of the nucleus preopticus medialis (POM) and the nucleus premammillaris (PMM), in response to DPAT and DOI, respectively. To clarify the involvement of 5-HT1A and 5-HT2C receptors in PRL regulation, their mRNA expression was determined on hypothalamic tissue sections from birds in different reproductive stages. A significant difference in 5-HT1A receptor was observed, with the POM of hypoprolactinemic short day and photorefractory birds showing the highest expression. 5-HT2C receptors mRNA did not change during the reproductive cycle. The data presented support the notion that DA neurons in the PMM and POM mediate the stimulatory and inhibitory effects of 5-HT, respectively, on PRL secretion and the 5-HTergic system can both stimulate and inhibit PRL secretion.  相似文献   

17.
Electrophysiological and behavioral studies showed that spinal 5-HT3 receptors are involved in the regulation of pain sensitivity in rats. Intrathecal administration of the 5-HT3 receptor antagonist tropine (200 g) produced allodynia, reduced the threshold, decreased the latency, and increased the number of spikes in the late component of the nociceptive flexion reflex. Intrathecal administration of 5-HT3 receptor agonist quipazine (200 mg) abolished nociceptive flexion reflex and alleviated spinal pain syndrome produced by impairment of GABAergic inhibition in the lumbar spinal segments. Our results indicate that spinal 5-HT3 receptors are involved in the modulation of pain sensitivity: activation of these receptors inhibits nociceptive reactions, while blockade of 5-HT3 receptors potentiates the nociceptive response via modulation of excitability of GABAergic interneurons.  相似文献   

18.
5-Hydroxytryptamine type 3 (5-HT3) receptor is modulated by general anesthetics and regarded as a possible site of anesthetic adverse action. Although two amino acids located in transmembrane (TM) 2 and TM3 of LGICs were reported as critical for allosteric modulation by anesthetics and alcohols, other residues could regulate anesthetic modulation. Earlier studies identified the role of glutamate 129 and phenylalanine 130 in the non-TM extracellular region in the agonist binding and coupling in the 5-HT3A receptor. We investigated whether these non-TM amino acids are involved in desflurane and propofol modulation of the 5-HT3A receptor in mutant 5-HT3A receptors (mutants) expressed in Xenopus laevis oocytes. E129D and F130Y mutants were functionally expressed but E129Y and F130S mutants were not gated by serotonin. The wild type and F130Y mutants demonstrated positive modulation by desflurane at 6 and 12 vol.%. In contrast, E129D mutants were inhibited by desflurane in a concentration dependent manner. Propofol (1–100 μM) demonstrated depression of the currents in all receptors examined. These findings suggest the role of non-TM residues in the extracellular domain in the anesthetic modulation of the 5-HT3A receptor.  相似文献   

19.
Serotonin modulates the activity of the hypothalamic–pituitary–adrenal (HPA) axis particularly via the serotonin-1A receptor (5-HT1A). Therefore, the rationale of this positron emission tomography (PET) study was to investigate the influence of the 5-HT1A receptor distribution in the human brain on plasma levels of dehydroepiandrosterone sulfate (DHEAS) and cortisol in vivo. Eighteen healthy female were measured with PET and the selective 5-HT1A receptor radioligand [carbonyl-11C]WAY-100635. Nine a priori defined brain regions (hypothalamus, orbitofrontal cortex, amygdala, hippocampus, anterior and posterior cingulate cortices, dorsal raphe nucleus, retrosplenial cortex, and insula) and the cerebellum (reference region) were delineated on coregistered MR images. DHEAS and cortisol plasma levels were collected by blood sampling in the morning of the PET day. Linear regression analysis of DHEAS plasma level as dependent variable and hypothalamic 5-HT1A receptor binding potential (BP) as independent variable showed a highly significant association (r = .691, p = .002). The hypothalamic 5-HT1A BP predicted 47.7% of the variability in DHEAS plasma levels. Regressions were borderline significant (p < .01, Bonferroni corrected threshold <.0056) between 5-HT1A BP in the anterior cingulate and orbitofrontal cortices and free cortisol levels. No significant associations between DHEAS or cortisol and the 5-HT1A receptor BP in other investigated brain regions were found. In conclusion, the serotonergic system may influence the DHEAS plasma level by modulating CRH and ACTH release via hypothalamic 5-HT1A receptors as reported for cortisol before. As disturbances of the HPA axis as well as changes of the 5-HT1A receptor distribution have been reported in affective disorders, future studies should focus on these interactions.  相似文献   

20.
Serotonin 5-HT1A receptor agonist 8-OH DPAT suppressed drinking behavior in Brattleboro and Wistar rats. 5-HT1B agonist CGS-12066A and 5-HT2A antagonist ketanserin did not affect drinking behavior in Brattleboro rats; 5-HT3 antagonist ondansetron suppressed water consumption and 5-HT1A agonist stimulated salt appetite in Brattleboro, but not in Wistar rats. Presumably, vasopressin regulates thirst and salt appetite by modulating sensitivity/density of various types of 5-HT receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号