首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human cannabinoid receptors 1 (hCB(1)R) and 2 (hCB(2)R) are expressed in the CNS and couple to G(i)/G(o)-proteins. The aim of this study was to compare coupling of hCB(1)R and hCB(2)R to G(alpha)(i2)beta(1)gamma(2) in Sf9 insect cells. High-affinity agonist binding at hCB(1)R, but not at hCB(2)R, was resistant to guanine nucleotides. hCB(1)R activated G(alpha)(i2)beta(1)gamma(2) much more rapidly than hCB(2)R in the [(35)S]guanosine 5'-[gamma-thio]triphosphate ([(35)S]GTPgammaS) binding assay. Moreover, hCB(1)R exhibited a higher constitutive activity than hCB(2)R as assessed by the relative inhibitory effects of inverse agonists on [(35)S]GTPgammaS binding and steady-state high-affinity GTPase activity compared to the stimulatory effects of the hCB(1/2)R agonist CP 55,940 [(-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol]. G(alpha)(i2)beta(1)gamma(2) coupled to hCB(2)R exhibited higher GDP- and GTPgammaS-affinities than G(alpha)(i2)beta(1)gamma(2) coupled to hCB(1)R. NaCl effectively reduced constitutive activity of hCB(1)R but not of hCB(2)R. Collectively, hCB(1)R and hCB(2)R couple differentially to G(alpha)(i2)beta(1)gamma(2). Moreover, hCB(1)R exhibits higher constitutive activity than hCB(2)R. These differences point to distinct functions of hCB(1)R and hCB(2)R in the CNS.  相似文献   

2.
Painful diabetic neuropathy causes hyperalgesia and does not respond to commonly used analgesics such as non-steroidal anti-inflammatory drugs or opioids at doses below those producing disruptive side effects. In the present study, we examined the effect of P2X receptor antagonists, which are known to modulate the pain pathway, on mechanical hyperalgesia in streptozotocin (STZ)-induced diabetic mice. The paw withdrawal frequency measured by von Frey filaments, began to significantly increase 5 days after STZ injection and was maintained for more than 14 days. Intrathecal administration of P2X receptor antagonists (PPADS and TNP-ATP) inhibited the mechanical allodynia in diabetic mice. The levels of P2X2 and P2X3 receptors mRNA were significantly increased in diabetic mice at 14 days after the intravenous injection of STZ. These results suggest that the upregulation of P2X2, P2X3 and/or P2X2/3 receptor in DRG neurons is associated with mechanical allodynia in STZ-induced diabetic mice.  相似文献   

3.
Reg-2 is a secreted protein that is expressed de novo in motoneurons, sympathetic neurons, and dorsal root ganglion (DRG) neurons after nerve injury and which can act as a Schwann cell mitogen. We now show that Reg-2 is also upregulated by DRG neurons in inflammation with a very unusual expression pattern. In a rat model of monoarthritis, Reg-2 immunoreactivity was detected in DRG neurons at 1 day, peaked at 3 days (in 11.6% of DRG neurons), and was still present at 10 days (in 5%). Expression was almost exclusively in the population of DRG neurons that expresses the purinoceptor P2X(3) and binding sites for the lectin Griffonia simplicifolia IB4, and which is known to respond to glial cell line-derived neurotrophic factor (GDNF). Immunoreactivity was present in DRG cell bodies and central terminals in the dorsal horn of the spinal cord. In contrast, very little expression was seen in the nerve growth factor (NGF) responsive and substance P expressing population. However intrathecal delivery of GDNF did not induce Reg-2 expression, but leukemia inhibitory factor (LIF) had a dramatic effect, inducing Reg-2 immunoreactivity in 39% of DRG neurons and 62% of P2X(3) cells. Changes in inflammation have previously been observed predominantly in the neuropeptide expressing, NGF responsive, DRG neurons. Our results show that changes also take place in the IB4 population, possibly driven by members of the LIF family of neuropoietic cytokines. In addition, the presence of Reg-2 in central axon terminals implicates Reg-2 as a possible modulator of second order dorsal horn cells.  相似文献   

4.
We isolated peptides that home to mouse dorsal root ganglion (DRG) from a phage library expressing random 7-mer peptides fused to a minor coat protein (pIII) of the M13 phage. An in vitro biopanning procedure yielded 113 phage plaques after five cycles of enrichment by incubation with isolated DRG neurons and two cycles of subtraction by exposure to irrelevant cell lines. Analyses of the sequences of this collection identified three peptide clones that occurred repeatedly during the biopanning procedure. Phage-antibody staining revealed that the three peptides bound to DRG neurons of different sizes. To determine if the peptides would recognize neuronal cells in vivo, we injected individual GST-peptide-fusion proteins into the subarachnoid space of mice and observed the appearance of immunoreactive GST in the cytosol of DRG neurons with a similar size distribution as that observed in vitro, indicating that the GST-peptide-fusion proteins were recognized and taken up by different DRG neurons in vivo. The identification of homing peptide sequences provides a powerful tool for future studies on DRG neuronal function in vitro and in vivo, and opens up the possibility of neuron-specific drug and gene delivery in the treatment of diseases affecting DRG neurons.  相似文献   

5.
Neurological disorders are prevalent in horses, but their study is challenging due to anatomic constraints and the large body size; very few host‐specific in vitro models have been established to study these types of diseases, particularly from adult donor tissue. Here we report the generation of primary neuronal dorsal root ganglia (DRG) cultures from adult horses: the mixed, dissociated cultures, containing neurons and glial cells, remained viable for at least 90 days. Similar to DRG neurons in vivo, cultured neurons varied in size, and they developed long neurites. The mitochondrial movement was detected in cultured cells and was significantly slower in glial cells compared to DRG‐derived neurons. In addition, mitochondria were more elongated in glial cells than those in neurons. Our culture model will be a useful tool to study the contribution of axonal transport defects to specific neurodegenerative diseases in horses as well as comparative studies aimed at evaluating species‐specific differences in axonal transport and survival.  相似文献   

6.
Functional relevance of non-synaptic purinergic receptors on dorsal root ganglion cells was tested in vivo by the influence of ATP using 2P-LSM and Ca imaging. Within a few seconds after local application of ATP, neurones in dorsal root ganglion were activated indicated by an increase of their calcium signal. The signal reached its maximum within a few seconds and declined to control values after about 30 s. Purinergic action seems to include non-synaptic cell-to-cell communication within dorsal root ganglia.  相似文献   

7.
The goal of this study was to quantify the histological changes in the dorsal root ganglion (DRG) and the sciatic nerve in rats subjected to sciatic nerve crush (SNC) following curcumin treatment. The rats were divided into four groups, each including five animals, and underwent the following intervention: group I: control animals which received olive oil; group II: sham-operated animals whose skin of the posterior thigh was opened, sutured, and received the vehicle; group III: SNC animals which received the vehicle; and group IV: SNC plus curcumin (100 mg/kg/day) solved in the vehicle. On the 28th day, the fifth lumbar DRG and sciatic nerve were removed. Volume of the ganglion, mean cell volume, total volume of DRG cells (A- and B-cells), and total surface of DRG cells, total number, diameter, and area of the myelinated nerve fibers were estimated using stereological methods. Except for the volume of the ganglion, all other parameters were decreased after nerve crush. In curcumin-treated rats, these parameters decreased, but to a lesser extent, and the values were significantly higher than in the non-treated SNC group (p < 0.04).It can be concluded that in rats after crush, curcumin has a protective effect on the DRG and sciatic nerve.  相似文献   

8.
目的:建立一种长时程的有效获得高度纯化成年大鼠背根节(dorsal root ganglions,DRG)神经元的方法。方法:将SD大鼠的DRG剥膜、消化制成单细胞悬液,牛血清白蛋白(bovine serum albumin,BSA)分层离心去除大部分非神经元细胞后接种于多聚赖氨酸处理的盖玻片上;培养1 d后,胰酶消化再次制成细胞悬液,BSA二次分层离心,再次接种于多聚赖氨酸处理的盖玻片上。BSA二次分层离心后的神经元为实验一(T1组)、单次离心的神经元为实验组二(T2组)、未经离心处理的神经元为对照组(C组)。各组除离心次数外,其余各方法相同。相差显微镜下观察上述各组培养神经元,结合βtubulinⅢ免疫荧光组化染色及MTT分析检测神经元纯化效果及细胞活力。结果:培养3 d后,T1组神经元比例达88.43±6.13%,较T2组、C组显著增高,差别具有统计学意义(P0.05);MTT的结果显示与T2组、C组比较,T1组神经元的相对活力略微下降,但无统计学差异(P0.05)。结论:二次纯化法是一种简单有效的成年大鼠DRG神经元纯化方法。  相似文献   

9.
The neuropeptide galanin is known to have an antinociceptive effect under neuropathic conditions. After axotomy, galanin is upregulated in sensory neurons, presumably in the capsaicin-sensitive ones. Here, the sensitivity to capsaicin and the expression of galanin were simultaneously examined by double-staining in individual, dissociated rat dorsal root ganglion neurons (1) after axotomy of the sciatic nerve for up to 14 days and (2) in culture for up to 4 days without prior nerve injury. Ten days after axotomy, the proportion of capsaicin-sensitive neurons had decreased by 36 percentage points (from 63% to 27%), whereas the proportion of galaninergic neurons had increased by 33 percentage points (from 3% to 36%). These changes were also observed in neurons kept in culture, where the regulation was attenuated by the addition of nerve growth factor (NGF) or glial cell line-derived neurotrophic factor (GDNF) to the medium. After axotomy, galaninergic neurons had a soma size-distribution profile similar to the capsaicin-sensitive neurons, but there was no colocalization of capsaicin sensitivity and galanin expression in individual neurons. In culture, some neurons showed colocalization after 30 h and 48 h, but not after 6 h or 96 h. We conclude that the upregulation of galanin in an individual neuron is preceded by downregulation of its capsaicin sensitivity both in NGF-dependent peptidergic and in GDNF-dependent non-peptidergic neurons, indicating a change in phenotype.  相似文献   

10.
It has been reported that mesenchymal stem cells (MSCs) can transdifferentiate into Schwann cell-like cells by a series of treatments with a reducing agent, retinoic acid and a combination of trophic factors in vitro, and can transdifferentiate into myelin-forming cells to repair the demyelinated rat spinal cord in vivo. We now report that when co-cultured with dorsal root ganglion (DRG) neurons, MSCs were induced to transdifferentiate into Schwann cell-like cells that had ensheathed DRG axons. Following differentiation, MSCs underwent morphological changes similar to those of cultured Schwann cells and express GFAP and S100, the marker of Schwann cells. Moreover, 6 weeks later, MSCs wrapped their membrane around DRG axons. Further, initiation of myelination was observed in the co-cultured DRG neurons, which was determined by signals to MBP and this initiation of axon myelination by MSCs is similar to that of Schwann cells. However, electron micrographs show that no compact myelin was present in the MSCs co-cultures, whereas the Schwann cells co-cultures had formed a multilammelar myelin sheath around the axon. These indicate that the release of cytokine by DRG neurons may promote the transdifferentiation of MSCs, but is not sufficient to elicit compact myelination by transdifferentiated MSCs. These results improve our understanding in the mechanism of MSC transdifferentiation, and the mechanism underlying ensheathment and myelination by transdifferentiated MSCs.  相似文献   

11.
The aim of the present study was to investigate the role of transient receptor potential vanilloid 4 (TRPV4) in mediating mechanical allodynia in rodent models of chronic compression of the dorsal root ganglion (CCD). First, the levels of TRPV4 mRNA and protein expression in the dorsal root ganglion (DRG) were assessed using real-time RT-PCR and Western blotting analysis respectively at 7, 14, and 28 days post-CCD. Then, the effects of spinal administration of TRPV4 antisense oligodeoxynucleotide (ODN) and mismatch ODN on CCD-induced mechanical allodynia were evaluated. Lastly, the calcium responses to hypotonic solution and 4alpha-phorbol 12,13-didecanoate (4alpha-PDD) were assessed following sham surgery, CCD, spinal application of TRPV4 antisense ODN and mismatch ODN. The results showed that the levels of TRPV4 mRNA and protein expression increased significantly at 7-28 days post-CCD when compared with the sham group, with the highest level at 7 days post-CCD. TRPV4 antisense ODN, but not mismatch ODN, partly reversed the CCD-induced mechanical allodynia. Additionally, TRPV4 antisense ODN had no effect on the baseline nociceptive response. The percentage of DRG neurons responsive to hypotonic solution and 4alpha-PDD and the fluorescence ratio of calcium response were also enhanced significantly in both the CCD group and the mismatch ODN group. These increased responses were significantly inhibited by TRPV4 antisense ODN. In conclusion, TRPV4 plays a crucial role in CCD-induced mechanical allodynia.  相似文献   

12.
Neuraxial analgesia is often provided using a mixture of local anesthetics and opioids. This combination of agents provides better pain relief and is generally associated with fewer side effects than when either drug is given alone. Local anesthetics have been shown to alter signaling of other G protein-coupled receptors, but little is known about their effect on opioid receptor signaling. Because opioids produce analgesia at least in part by inhibiting presynaptic Ca channels, we have evaluated the effects of tetracaine and bupivacaine on opioid-mediated inhibition of Ca channels in dorsal root ganglion neurons. The mu-opioid specific agonist DAMGO (1microM) inhibited Ca channels in both the absence and presence of tetracaine (50 or 100muM). However, the extent of DAMGO inhibition in the presence of both concentrations of tetracaine was less than that observed in the absence of tetracaine. DAMGO inhibition decreased from 39.2+/-24.4% in control to 34.2+/-24.4% with 50microM tetracaine (n=16; p<0.05), and from 40.5+/-19.6% in control to 34.6+/-20.5% with 100microM tetracaine (n=10; p<0.05). Similar results were seen with bupivacaine. Tetracaine also decreased the voltage-dependent facilitation of Ca channel currents when G proteins were activated by either DAMGO or the non-hydrolyzable GTP analogue (GTPgammaS), suggesting that tetracaine weakens the interaction between G protein betagamma subunits and the Ca channel. Overall, these results suggest that local anesthetics decrease opioid inhibition of Ca channel activity by interfering with the GTP-mediated signal transduction between opioid receptors and Ca channels.  相似文献   

13.
14.
A subgroup of dorsal root ganglion (DRG) neurons responds to noxious heat with an influx of cations carried by specific ion channels such as the transient receptor potential channel of the vanilloid receptor type, subtype 1 (TRPV1). Application of capsaicin induces a reversible facilitation of these currents. This facilitation could be an interaction of two agonists at their common receptor or be caused by an influx of calcium ions into the cell. Calcium influx into the cell can activate protein kinases such as the extracellular signal-related protein kinase (ERK) pathway. This study explored the kinetics, calcium-dependency and intracellular signals following application of capsaicin and leading to facilitation of heat-induced currents (Iheat) in rat DRG neurons. Application of 0.5 microM capsaicin caused a 2.65-fold increase of Iheat within 2 s, which was significantly correlated to a small capsaicin-induced current. Intracellular application of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), a fast calcium chelator, did not change capsaicin-induced currents or Iheat itself, but inhibited facilitation of Iheat by capsaicin. ERK is activated by calcium influx and membrane depolarization via the mitogen-activated protein kinase/extracellular signal-related protein kinase kinase (MEK). Application of the MEK inhibitor U0126 also inhibited facilitation of Iheat by capsaicin. We conclude that the MEK/ERK cascade is an intracellular signaling pathway playing a vital role in the regulation of nociceptive neurons' sensitivity. The very fast kinetics (less than two seconds) are only explainable with a membrane-attached or at least membrane-near localization of these kinases.  相似文献   

15.
16.
The development of opiate analgesics that do not produce adverse side effects is hampered by the difficulty in developing drugs that are tissue/sensory cell-specific. Previously, our laboratory has demonstrated that small- and medium-diameter dorsal root ganglia (DRG) cells can be subclassified into at least nine distinct cell types based upon their patterns of voltage activated currents [Petruska, J.C., Napaporn, J., Johnson, R.D., Gu, J.G., Cooper, B.Y., 2000. Subclassified acutely dissociated cells of rat DRG: histochemistry and patterns of capsaicin-, proton-, and ATP-activated currents. J. Neurophysiol. 84 (5), 2365–2379; Petruska, J.C., Napaporn, J., Johnson, R.D., Cooper, B.Y., 2002. Chemical responsiveness and histochemical phenotype of electrophysiologically classified cells of the adult rat dorsal root ganglion. Neuroscience 115 (1), 15–30.] Based on their responses to algesic compounds and histochemical phenotype, eight of the nine subtypes are likely nociceptors. In the present study, we examined the immunoreactivity (IR) of delta-, kappa- and mu-opioid receptors (DOR, KOR and MOR, respectively), in 164 electrophysiologically subclassified DRG neurons.

The expression of opioid receptors in the DRG cell types was diverse. Type 1 (25–30 μm cell diameter) and type 9 (35–45 μm) expressed MOR-IR, but were negative for DOR-IR and KOR-IR. Type 2 (25–30 μm) co-expressed DOR-IR and MOR-IR, but did not express KOR-IR. Type 3 (15–20 μm), the non-nociceptive cell type, was not immunoreactive. Type 4 (35–45 μm), type 6 (35–45 μm), and type 7 (15–20 μm) expressed all three opioid receptors. Type 5 (35–45 μm) and type 8 (35–45 μm), co-expressed KOR-IR and MOR-IR, but did not express DOR-IR. The co-expression of opioid receptors in some of the cell types suggests that these sensory afferents might contain heteromeric opioid receptors. Additionally, the diverse expression patterns of opioid receptors between cell types and the consistency of these patterns maintained within each cell type provides further evidence of distinct functional properties of DRG nociceptors.  相似文献   


17.
目的研究骨髓间充质干细胞(MSC)对脐带血(CB)CD34^+细胞体外增殖和造血重建能力的影响。方法取人骨髓单个核细胞贴壁培养.梭形细胞完全融合后传代,用流式细胞仪检测免疫表型;将CBCD34^+细胞接种到MSC或其他培养液中.比较不同培养条件对造血干细胞扩增能力、集落形成能力及黏附分子表达的影响。结果在加入IL-3的培养体系中.在MSC和细胞因子作用下,CD34^+细胞扩增7d和14d后,有核细胞(NC)、CD34^+细胞和CDl33^+细胞数,实验组均显著多于对照组。CD34+细胞在未加入IL-3的培养体系中培养8d后,实验组NC、CD34^+细胞、CD34^+CD38-细胞和造血祖细胞集落扩增倍数均显著高于对照组。扩增后CD34^+细胞的ALCAM、VLA-α4、VLA-α5、VLA-β1、HCAM、PECAM和LFA-1表达较扩增前无显著变化。结论MSC可为造血干细胞(HSC)体外扩增提供适宜的微环境,有助于CD34^+细胞体外增殖并抑制HSC分化,保持其造血重建潜能和归巢能力。  相似文献   

18.
目的:探讨大鼠CCD模型模拟的腰背痛诱致的DRG大神经元兴奋性改变及其离子通道机制。方法:建立大鼠慢性压迫腰膨大L4/L5 DRG的CCD模型,模拟临床常见的腰背痛的触诱发痛表现。制备整节L4/L5 DRG标本,应用全细胞膜片钳技术记录去极化电流刺激诱致的DRG大型神经元的兴奋性改变及其离子通道机制。结果:对直径50μm的健康的DRG大神经元进行全细胞膜片钳记录。结果显示:给予去极化方波电流刺激可以诱致CCD模型大鼠DRG大神经元呈现兴奋性增强的表现,具体表现为相同刺激强度的电流注射在CCD模型DRG大神经元上诱致的动作电位的频率显著高于对照组神经元。同样的细胞放电增强也见于给予细胞斜波电流刺激。进一步的机制研究分析显示CCD模型大鼠上DRG大神经元的I_h电流明显高于对照组大鼠。结论:CCD模型可以诱致DRG大神经元呈现超兴奋状态,该兴奋性增强的状态主要由I_h电流增强来介导,为认识神经损伤诱致的病理性痛觉敏化尤其是触诱发痛的神经机制提供了实验证据。  相似文献   

19.
Expiants of 14-day fetal mouse spinal cord with attached dorsal root ganglia, which had become differentiated over 2–3 weeks in culture, were exposed to 1–2 μM taxol for up to 6 days. The culture medium was supplemented with nerve growth factor (300 units/ml) during exposure to the drug.By 3–6 days in taxol, unusually numerous microtubules were seen in peripheral perikaryal and proximal neuritic regions of ganglion neurons. Microtubules also engirdled massive aggregations of pleomorphic vesicular/cisternal elements in many neurons. These aggregates were visible as unusual ‘clear’ spheroidal regions in the living cells, and were often as large as the nuclei. Some of the elements comprising these striking vesicular/cisternal accumulations appeared to be portions of disrupted Golgi complexes normally polarized around the cytocentrum, as well as hypertrophied smooth endoplasmic reticulum formations. In other neuronal areas, Golgi complexes and other organelles were altered or disrupted to lesser degrees. Ordered microtubular arrays occurred along endoplasmic reticulum cisternae both in neuron somata and neurites. Over time, a plethora of microtubules assembled throughout the perikarya in various orientations apparently unrelated to microtubule organizing centers. Unlike the effects of other plant alkaloids that interact with tubulin, there was no discernible increase in filaments, although their distribution appeared altered. Concentric ordered microtubular-macromolecular lamellated complexes were seen only in neurites. Neuronal nuclei were misshapen, often displaced, and displayed fine structure reminiscent of chromatolysis. Satellite and Schwann cells contained atypically abundant microtubules, abnormal cisternae, disrupted Golgi complexes, and increased lysosomes. Some nuclei displayed abnormal chromatin, and in rare cases even microtubules.We suggest that taxol alters the distribution, integrity, and/or organization of organelle systems in dorsal root ganglion cells by engendering unusually abundant microtubules in abnormal groupings and aberrant locations in these cells.  相似文献   

20.
The possible involvement of fibroblast growth factor receptor (FGFR) activation in the dorsal root ganglion (DRG) was examined following peripheral nerve injury in the rat. Ligation of the sciatic nerve down-regulated FGFR2, -3 and -4 mRNA; however, the expression of FGFR1 mRNA showed no change. Activation of FGFR was examined by immunohistochemistry using an antibody of the phosphorylated form of FGFR1-4. Ligation of the sciatic nerve produced phosphorylation of FGFR in the L4 and 5 DRG ipsilateral to the injury, starting at 3 days after the lesion and persisting for more than 30 days. Substantial activation of FGFR was observed, mainly in unmyelinated small DRG neurons that co-expressed phosphorylated p38 mitogen-activated protein kinase (MAPK). Continuous intrathecal infusion of the FGFR1 inhibitor, 3-[3-(2-carboxyethyl)-4-methylpyrrol-2-methylidenyl]-2-indolinone, reduced p38 MAPK phosphorylation in the DRG and pain-related behaviors in the partial sciatic nerve model rat without affecting on the activation of spinal glia cells (microglia and astrocyte). In the injured small DRG neurons, activation of FGFR1 may contribute to the generation of neuropathic pain by activating p38 MAPK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号