首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulatory T cells (Tregs) control immune responses by suppressing various inflammatory cells. Tregs in newborn babies may play an important role in preventing excessive immune responses during their environmental change. We examined the number and phenotype of Tregs during the neonatal period in 49 newborn babies. Tregs were characterized by flow cytometry using cord blood (CB) and peripheral blood (PB) from the early (7–8 days after birth) and late (2–4 weeks after birth) neonatal periods. CD4+forkhead box protein 3 (FoxP3+) T cells were classified into resting Tregs (CD45RA+FoxP3low), activated Tregs (CD45RA FoxP3high) and newly activated T cells (CD45RA FoxP3low). Compared with CB and PB during the late neonatal period, the percentage of Tregs and all Treg subpopulations in the CD4+ lymphocyte population were increased significantly during the early neonatal period. Furthermore, the proportion and absolute number of activated Tregs were increased markedly compared with other Treg subpopulations, such as resting Tregs and newly activated T cells (non‐Tregs), in the early neonatal period. Increased Tregs concomitantly expressed the suppressive molecule cytotoxic T lymphocyte antigen‐4 (CTLA‐4). The up‐regulated expression of chemokine receptor 4 (CCR4) and down‐regulated expression of CCR7 were also observed in expanded Tregs. When cord blood cells were cultured in vitro with CD3 monoclonal antibodies (mAb) for 5 days, CD4+CD45RAFoxP3high cells were increased significantly during the culture. Thus, the presence of increased activated Tregs in early neonates may play an important role in immunological regulation by suppressing excessive T cell activation caused by the immediate exposure to ubiquitous antigens after birth.  相似文献   

2.
Physiological changes during normal pregnancy are characterized by an inflammatory immune response and insulin resistance. Therefore, we hypothesize that gestational diabetes mellitus (GDM) may be caused by an inappropriate adaption of the maternal immune system to pregnancy. In this study we examined the role of regulatory T cell (Treg) differentiation for the development of GDM during pregnancy. We used six-colour flow cytometric analysis to demonstrate that the total CD4+CD127low+/−CD25+ forkhead box protein 3 (FoxP3+) Treg pool consists of four different Treg subsets: naive CD45RA+ Tregs, HLA-DRCD45RA memory Tregs (DR Tregs) and the highly differentiated and activated HLA-DRlow+CD45RA and HLA-DRhigh+CD45RA memory Tregs (DRlow+ and DRhigh+ Tregs). Compared to healthy pregnancies, the percentage of CD4+CD127low+/−CD25+FoxP3+ Tregs within the total CD4+ T helper cell pool was not different in patients affected by GDM. However, the suppressive activity of the total CD4+CD127low+/−CD25+ Treg pool was significantly reduced in GDM patients. The composition of the total Treg pool changed in the way that its percentage of naive CD45RA+ Tregs was decreased significantly in both patients with dietary-adjusted GDM and patients with insulin-dependent GDM. In contrast, the percentage of DR-memory Tregs was increased significantly in patients with dietary-adjusted GDM, while the percentage of DRlow+ and DRhigh+ memory Tregs was increased significantly in patients with insulin-dependent GDM. Hence, our findings propose that alterations in homeostatic parameters related to the development and function of naive and memory Tregs may cause the reduction of the suppressive capacity of the total Treg pool in GDM patients. However, as this is an exploratory analysis, the results are only suggestive and require further validation.  相似文献   

3.
CD4+ T cell anergy reflects the inability of CD4+ T cells to respond functionally to antigenic stimulation through proliferation or IL‐2 secretion. Histone deacetylase (HDAC) inhibitors have been shown to induce anergy in antigen‐activated CD4+ T cells. However, questions remain if HDAC inhibitors mediate anergy through direct action upon activated CD4+ T cells or through the generation and/or enhancement of regulatory T (Treg) cells. To assess if HDAC inhibitor n‐butyrate induces anergy independent of the generation or expansion of FoxP3+ Treg cells in vitro, we examine n‐butyrate‐treated murine CD4+ T cells for anergy induction and FoxP3+ Treg activity. Whereas n‐butyrate decreases CD4+ T cell proliferation and IL‐2 secretion, n‐butyrate did not augment FoxP3 protein production or confer a suppressive phenotype upon CD4+ T cells. Collectively, these data suggest that HDAC inhibitors can facilitate CD4+ T cell functional unresponsiveness directly and independently of Treg cell involvement.  相似文献   

4.
Accumulating lines of evidence have suggested that regulatory T cells (Tregs) play a central role in T cell-mediated immune response and the development of type 1A and fulminant type 1 diabetes. CD4+forkhead box protein 3 (FoxP3)+ T cells are composed of three phenotypically and functionally distinct subpopulations; CD45RA+FoxP3low resting Tregs (r-Tregs), CD45RAFoxP3high activated Tregs (a-Tregs) and CD45RAFoxP3low non-suppressive T cells (non-Tregs). We aimed to clarify the frequency of these three subpopulations in CD4+FoxP3+ T cells and the function of a-Tregs with reference to subtypes of type 1 diabetes. We examined 20 patients with type 1A diabetes, 15 patients with fulminant type 1 diabetes, 20 patients with type 2 diabetes and 30 healthy control subjects. A flow cytometric analysis in the peripheral blood was performed for the frequency analysis. The suppressive function of a-Tregs was assessed by their ability to suppress the proliferation of responder cells in a 1/2:1 co-culture. A flow cytometric analysis in the peripheral blood demonstrated that the frequency of a-Tregs was significantly higher in type 1A diabetes, but not in fulminant type 1 diabetes, than the controls. Further, the proportion of a-Tregs among CD4+FoxP3+ T cells was significantly higher in patients with type 1A diabetes with detectable C-peptide but not in patients with type 1A diabetes without it and with fulminant type 1 diabetes. A proliferation suppression assay showed that a-Tregs were functionally impaired both in fulminant type 1 diabetes and in type 1A diabetes. In conclusion, a-Tregs were functionally impaired, related to residual insulin-secreting capacity and may be associated with the development of type 1 diabetes.  相似文献   

5.
6.
This study determines levels of regulatory T cells (Tregs), naive Tregs, immune activation and cytokine patterns in 15 adult human immunodeficiency virus (HIV)‐infected patients receiving prolonged highly active anti‐retroviral therapy (HAART) who have known thymic output, and explores if naive Tregs may represent recent thymic emigrant Tregs. HIV‐infected patients treated with HAART with a median of 1 and 5 years were compared with healthy controls. Percentages of Tregs (CD3+CD4+CD25+CD127low), naive Tregs (CD3+CD4+CD25+CD45RA+) and activation markers (CD38+human leucocyte antigen D‐related) were determined by flow cytometry. Forkhead box P3 mRNA expression and T cell receptor excision circles (TREC) content in CD4+ cells were determined by polymerase chain reaction and cytokines analysed with Luminex technology. Levels of Tregs were significantly higher in HIV‐infected patients compared with controls, both after 1 and 5 years of HAART (P < 0·001), despite fully suppressed HIV‐RNA and normalization of both CD4 counts, immune activation and cytokine patterns. Furthermore, levels of naive Tregs were elevated significantly in HIV‐infected patients (P < 0·001) and were associated with thymic output measured as the TREC frequency in CD4+ cells (P = 0·038). In summary, Treg levels in HIV‐infected patients are elevated even after 5 years of HAART. Increased thymic production of naive Tregs may contribute to higher Treg levels in HIV‐infection.  相似文献   

7.
Although CD4+/CD25+ T regulatory cells (Tregs) are a potentially powerful tool in bone marrow transplantation, a prerequisite for clinical use is a cell‐separation strategy complying with good manufacturing practice guidelines. We isolated Tregs from standard leukapheresis products using double‐negative selection (anti‐CD8 and anti‐CD19 monoclonal antibodies) followed by positive selection (anti‐CD25 monoclonal antibody). The final cell fraction (CD4+/CD25+) showed a mean purity of 93·6% ± 1·1. Recovery efficiency was 81·52% ± 7·4. The CD4+/CD25+bright cells were 28·4% ± 6·8. The CD4+/CD25+ fraction contained a mean of 51·9% ± 15·1 FoxP3 cells and a mean of 18·9% ± 11·5 CD127 cells. Increased FoxP3 and depleted CD127 mRNAs in CD4+CD25+FoxP3+ cells were in line with flow cytometric results. In Vβ spectratyping the complexity scores of CD4+/CD25+ cells and CD4+/CD25 cells were not significantly different, indicating that Tregs had a broad T cell receptor repertoire. The inhibition assay showed that CD4+/CD25+ cells inhibited CD4+/CD25 cells in a dose‐dependent manner (mean inhibition percentages: 72·4 ± 8·9 [ratio of T responder (Tresp) to Tregs, 1:2]; 60·8% ± 20·5 (ratio of Tresp to Tregs, 1:1); 25·6 ± 19·6 (ratio of Tresp to Tregs, 1:0·1)). Our study shows that negative/positive Treg selection, performed using the CliniMACS device and reagents, enriches significantly CD4+CD25+FoxP3+ cells endowed with immunosuppressive capacities. The CD4+CD25+FoxP3+ population is a source of natural Treg cells that are depleted of CD8+ and CD4+/CD25 reacting clones which are potentially responsible for triggering graft‐versus‐host disease (GvHD). Cells isolated by means of this approach might be used in allogeneic haematopoietic cell transplantation to facilitate engraftment and reduce the incidence and severity of GvHD without abrogating the potential graft‐versus‐tumour effect.  相似文献   

8.
Only mismatch repair (MMR)‐deficient colorectal cancer (CRC) appears to respond well to programmed death (PD)‐1 inhibition at the present time. Emerging evidence suggests a role for micro‐environmental factors such as CD25+ cells modulating response to PD‐1 inhibition. In the ApcMin/+ model of familial adenomatous polyposis (MMR‐proficient CRC), increased Cyclooxygenase‐2 (Cox‐2) expression by cells which include alternatively activated mononuclear phagocytes promotes intestinal tumorigenesis by mechanisms which may include immune suppression. To gain insight into this, we compared regulatory T cell (Treg) populations between ApcMin/+ and wild‐type mice prior to and after the phase of increased intestinal Cox‐2‐dependent prostaglandin E2 (PGE2) production. There was no difference in systemic Treg function or numbers between ApcMin/+ and wild‐type mice. However, increased numbers of small intestinal CD25+ Tregs were observed with increased Cox‐2 activity in the absence of any difference in the expression of Tgf‐β or Tslp between ApcMin/+ and wild‐type mice. Cox‐2 inhibitor therapy (Celecoxib) reversed the increase in ApcMin/+ intestinal CD25+ Treg numbers, without decreasing numbers of CD25+ systemic Tregs. Forkhead box protein 3 (FoxP3+) and Cox‐2+ cells were co‐localized to the interstitium of adenomas of Apcmin/+ mice. These results suggest selective dependence of an ‘activated Treg’ phenotype on paracrine Cox‐2 activity in ApcMin/+ small intestine. For therapeutic potential, further studies are required to evaluate the relevance of these findings to human cancer as well as the functional significance of CD25+ intestinal Tregs in cancer.  相似文献   

9.
10.
Heparin is a widely used anti-coagulant that enhances anti-thrombin (AT) activity. However, heparin also suppresses immune and inflammatory responses in various rodent models and clinical trials, respectively. The mechanism by which heparin suppresses immune responses is unclear. The effect of heparin on regulatory T cells (Tregs) in allogeneic immune responses was analysed using an acute graft-versus-host disease (aGVHD) mouse model and mixed lymphocyte reactions (MLRs). In-vitro culture systems were utilized to study the effects of heparin on Tregs. Heparin administration reduced mortality rates and increased the proportion of Tregs in the early post-transplantation period of aGVHD mice. In both murine and human MLRs, heparin increased Tregs and inhibited responder T cell proliferation. Heparin promoted functional CD4+CD25+forkhead box protein 3 (FoxP3)+ Treg generation from naive CD4+ T cells, increased interleukin (IL)-2 production and enhanced the activation of pre-existing Tregs with IL-2. Heparin-induced Treg increases were not associated with anti-coagulant activity through AT, but required negatively charged sulphation of heparin. Importantly, N-acetyl heparin, a chemically modified heparin without anti-coagulant activity, induced Tregs and decreased mortality in aGVHD mice. Our results indicate that heparin contributes to Treg-mediated immunosuppression through IL-2 production and suggest that heparin derivatives may be useful for immunopathological control by efficient Treg induction.  相似文献   

11.
The role of mast cells (MCs) in the generation of adaptive immune responses especially in the transplant immune responses is far from being resolved. It is reported that mast cells are essential intermediaries in regulatory T cell (Treg) transplant tolerance, but the mechanism has not been clarified. To investigate whether bone marrow‐derived mast cells (BMMCs) can induce Tregs by expressing transforming growth factor beta 1 (TGF‐β1) in vitro, bone marrow cells obtained from C57BL/6 (H‐2b) mice were cultured with interleukin (IL)‐3 (10 ng/ml) and stem cell factor (SCF) (10 ng/ml) for 4 weeks. The purity of BMMCs was measured by flow cytometry. The BMMCs were then co‐cultured with C57BL/6 T cells at ratios of 1:2, 1:1 and 2:1. Anti‐CD3, anti‐CD28 and IL‐2 were administered into the co‐culture system with (experiment groups) or without (control groups) TGF‐β1 neutralizing antibody. The percentages of CD4+CD25+forkhead box P3 (FoxP3)+ Tregs in the co‐cultured system were analysed by flow cytometry on day 5. The Treg percentages were significantly higher in all the experiment groups compared to the control groups. These changes were deduced by applying TGF‐β1 neutralizing antibody into the co‐culture system. Our results indicated that the CD4+ T cells can be induced into CD4+CD25+FoxP3+ T cells by BMMCs via TGF‐β1.  相似文献   

12.
Two different subsets of naturally occurring regulatory T cells (nTregs), defined by their expression of the inducible co‐stimulatory (ICOS) molecule, are produced by the human thymus. To examine the differentiation of ICOS+ and ICOS?CD45RA+CD31+ recent thymic emigrant (RTE) Tregs during normal pregnancy and in the presence of pre‐eclampsia or haemolysis elevated liver enzymes low platelet (HELLP)‐syndrome, we used six‐colour flow cytometric analysis to determine the changes in the composition of the ICOS+ and ICOS? Treg pools with CD45RA+CD31+ RTE Tregs, CD45RA+CD31? mature naive (MN) Tregs, CD45RA?CD31+ and CD45RA?CD31? memory Tregs. With the beginning of pregnancy until term, we observed a strong differentiation of both ICOS+ and ICOS?CD45RA+CD31+ RTE, but not CD45RA+CD31? MN Tregs, into CD45RA?CD31? memory Tregs. At the end of pregnancy, the onset of spontaneous term labour was associated with a significant breakdown of ICOS+CD45RA?CD31? memory Tregs. However, in the presence of pre‐eclampsia, there was a significantly increased differentiation of ICOS+ and ICOS?CD45RA+CD31+ RTE Tregs into CD45RA?CD31+ memory Tregs, wherein the lacking differentiation into CD45RA?CD31? memory Tregs was partially replaced by the increased differentiation of ICOS+ and ICOS?CD45RA+CD31? MN Tregs into CD45RA?CD31? memory Tregs. In patients with HELLP syndrome, this alternatively increased differentiation of CD45RA?CD31? MN Tregs seemed to be exaggerated, and presumably restored the suppressive activity of magnetically isolated ICOS+ and ICOS? Tregs, which were shown to be significantly less suppressive in pre‐eclampsia patients, but not in HELLP syndrome patients. Hence, our findings propose that the regular differentiation of both ICOS+ and ICOS?CD45RA+CD31+ RTE Tregs ensures a healthy pregnancy course, while their disturbed differentiation is associated with the occurrence of pre‐eclampsia and HELLP syndrome.  相似文献   

13.
Although regulatory T‐cells (Tregs) have been shown to be expanded in acute dengue, their role in pathogenesis and their relationship to clinical disease severity and extent of viraemia have not been fully evaluated. The frequency of Tregs was assessed in 56 adult patients with acute dengue by determining the proportion of forkhead box protein 3 (FoxP3) expressing CD4CD25+T‐cells (FoxP3+ cells). Dengue virus (DENV) viral loads were measured by quantitative real‐time polymerase chain reaction (PCR) and DENV‐specific T‐cell responses were measured by ex‐vivo interferon (IFN)‐γ enzyme‐linked immunospot (ELISPOT) assays to overlapping peptide pools of DENV‐NS3, NS1 and NS5. CD45RA and CCR4 were used to phenotype different subsets of T‐cells and their suppressive potential was assessed by their expression of cytotoxic T lymphocyte‐antigen 4 (CTLA‐4) and Fas. While the frequency of FoxP3+ cells in patients was significantly higher (P < 0·0001) when compared to healthy individuals, they did not show any relationship with clinical disease severity or the degree of viraemia. The frequency of FoxP3+ cells did not correlate with either ex‐vivo IFN‐γ DENV‐NS3‐, NS5‐ or NS1‐specific T‐cell responses. FoxP3+ cells of patients with acute dengue were predominantly CD45RA+ FoxP3low, followed by CD45RA‐FoxP3low, with only a small proportion of FoxP3+ cells being of the highly suppressive effector Treg subtype. Expression of CCR4 was also low in the majority of T‐cells, with only CCR4 only being expressed at high levels in the effector Treg population. Therefore, although FoxP3+ cells are expanded in acute dengue, they predominantly consist of naive Tregs, with poor suppressive capacity.  相似文献   

14.
Adoptive transfer of regulatory T cells (Tregs) has been proposed for use as a cellular therapy to induce transplantation tolerance. Preclinical data are encouraging, and clinical trials with Treg therapy are anticipated. In this study, we investigate different strategies for the isolation and expansion of CD4+CD25highCD127low Tregs from uraemic patients. We use allogeneic dendritic cells (DCs) as feeder cells for the expansion and compare Treg preparations isolated by either fluorescence activated cell sorting (FACS) or magnetic activated cell sorting (MACS) that have been expanded subsequently with either mature or tolerogenic DCs. Expanded Treg preparations have been characterized by their purity, cytokine production and in‐vitro suppressive ability. The results show that Treg preparations can be isolated from uraemic patients by both FACS and MACS. Also, the type of feeder cells used in the expansion affects both the purity and the functional properties of the Treg preparations. In particular, FACS‐sorted Treg preparations expanded with mature DCs secrete more interleukin (IL)‐10 and granzyme B than FACS‐sorted Treg preparations expanded with tolerogenic DCs. This is a direct comparison between different isolation techniques and expansion protocols with Tregs from uraemic patients that may guide future efforts to produce clinical‐grade Tregs for use in kidney transplantation.  相似文献   

15.
16.
17.
CD4+ regulatory T (Treg) cells have been involved in impaired immunity and persistence of viral infections. Herein, we report the level, phenotype and activation status of Treg cells in patients chronically infected with human immunodeficiency virus (HIV) and/or hepatitis C virus (HCV). Expression of CD25, CD45RA, CD27, CD127 and CD38 was assessed on these cells using polychromatic flow cytometry in 20 healthy controls, 20 HIV‐monoinfected, 20 HCV‐monoinfected and 31 HIV/HCV‐co‐infected patients. Treg cells were defined as CD4+forkhead box P3 (FoxP3)+. The percentage of Treg cells was increased significantly in HIV patients compared with controls. Moreover, there was a significant inverse correlation between CD4 counts and Treg cell levels. Fewer than 50% of Treg cells expressed CD25, with differences in terms of CD127 expression between CD25+ and CD25() Treg cells. CD4+Foxp3+ Treg cells displayed predominantly a central memory phenotype (CD45RACD27+), without differences between patients and healthy controls. Activated Treg cells were increased in HIV patients, particularly considering the central memory subset. In summary, HIV infection, but not HCV, induces an up‐regulation of highly activated Treg cells, which increases in parallel with CD4 depletion. Hypothetically, this might contribute to the accelerated course of HCV‐related liver disease in HIV‐immunosuppressed patients.  相似文献   

18.
19.
20.
In mast cells, IL‐33 typically induces the activation of NF‐κB, which results in the production of cytokines such as IL‐6 and IL‐2. Here, we demonstrate that the IL‐33‐induced IL‐6 production in murine mast cells and the formation of RORγt+ Tregs essentially depends on the MAPKAPs, MK2, and MK3 (MK2/3) downstream of MyD88. In contrast to this, the IL‐33‐induced and MyD88‐dependent IL‐2 production in mast cells contributes to the maintenance of Helios+ Tregs. Thereby, the IL‐33‐induced IL‐2 response and, thus, the maintenance of Helios+ Tregs are limited by an IL‐6‐mediated autocrine negative feedback stimulation acting on mast cells. Collectively, we present MK2/3 in IL‐33‐activated mast cells as a signaling node, which controls the dichotomy between RORγt+ Treg and Helios+ Treg in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号