首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epithelial cell-derived thymic stromal lymphopoietin (TSLP) is a master switch for asthma or atopic dermatitis by inducing a dendritic cell-mediated Th2-type allergic inflammation. Allergic rhinitis is also pathologically characterized by Th2-type allergic inflammation. This study demonstrates that mast cells regulate the epithelial TSLP expression in allergic rhinitis. TSLP expression was found to be up-regulated predominantly in the nasal epithelium in the ovalbumin (OVA)-sensitized and -nasally challenged mouse model of allergic rhinitis, which was abolished in mast cell-deficient WBB6F1-W/W(v) in comparison with control WBB6F1-+/+ mice. Similarly, the epithelial TSLP expression was reduced in Fc receptor gamma chain (FcgammaR)-deficient mice, where the high-affinity IgE receptor (FcepsilonRI) is not expressed on mast cells, in comparison with control C57BL/6 mice. Furthermore, the administration of neutralizing TSLP antibody during the challenge phase of OVA inhibited the development of allergic rhinitis. These results suggest that the direct stimulation of epithelial cells by antigens alone may not be sufficient to induce TSLP expression in the nasal epithelium, and that mast cell regulation of epithelial TSLP expression, possibly via FcepsilonRI, plays an important role in the development of allergic rhinitis.  相似文献   

2.
Allergic asthma is a chronic inflammation of the airways mediated by an adaptive type 2 immune response. Upon allergen exposure, group 2 innate lymphoid cells (ILC2s) can be rapidly activated and represent an early innate source of IL‐5 and IL‐13. Here, we used a house dust mite (HDM)‐driven asthma mouse model to study the induction of ILC2s in allergic airway inflammation. In BALF, lungs, and lymph nodes, ILC2 activation is critically dependent on prior sensitization with HDM. Importantly, T cells are required for ILC2 induction, whereby T‐cell activation precedes ILC2 induction. During HDM‐driven allergic airway inflammation the accumulation of ILC2s in BALF is IL‐33 independent, although infiltrating ILC2s produce less cytokines in Il33?/? mice. Transfer of in vitro polarized OVA‐specific OT‐II Th2 cells alone or in combination with Th17 cells followed by OVA and HDM challenge is not sufficient to induce ILC2, despite significant eosinophilic inflammation and T‐cell activation. In this asthma model, ILC2s are therefore not an early source of Th2 cytokines, but rather contribute to type 2 inflammation in which Th2 cells play a key role. Taken together, ILC2 induction in HDM‐mediated allergic airway inflammation in mice critically depends on activation of T cells.  相似文献   

3.
T helper 2 (Th2) cell-derived cytokines, including interleukin (IL)-4, IL-5 and IL-13, play important roles in causing allergic airway inflammation. In contrast to Th2 cells, however, the role of IgE and mast cells in inducing allergic airway inflammation is not understood fully. In the present study, we addressed this point using transgenic mice expressing trinitrophenyl (TNP)-specific IgE (TNP-IgE mice), which enable us to investigate the role of IgE without the influence of antigen-specific T cell activation and other immunoglobulins. When the corresponding antigen, TNP-BSA, was administered intranasally to TNP-IgE mice, a large number of CD4+ T cells were recruited into the airways. In contrast, TNP-BSA administration did not induce eosinophil recruitment into the airways or airway hyperreactivity. Furthermore, when ovalbumin (OVA)-specific Th2 cells were transferred to TNP-IgE mice and the mice were challenged with inhaled OVA, TNP-BSA administration increased OVA-specific T cell recruitment and then enhanced Th2 cell-mediated eosinophil recruitment into the airways. These results indicate that IgE-induced mast cell activation principally induces CD4+ T cell recruitment into the airways and thus plays an important role in enhancing Th2 cell-mediated eosinophilic airway inflammation by recruiting Th2 cells into the site of allergic inflammation.  相似文献   

4.
T helper type 2 (Th2) and regulatory T cells (T(reg) ) have been postulated to have critical roles in the pathogenesis of allergic asthma. Cytotoxic T lymphocyte antigen 4 immunoglobulin (CTLA4Ig) gene-modified dendritic cells (DC-CTLA4Ig) have the potential to reduce Th2 cells and induce T(reg) cells. In the present study, we evaluated the therapeutic effects and potential mechanisms of the adoptive transfer of DC-CTLA4Ig into mice in an experimental model of asthma. BALB/c mice were sensitized with ovalbumin (OVA) and challenged with aerosolized OVA for 7 days. Just prior to the first challenge, DC-CTLA4Ig, DCs or DCs infected with DC-green fluorescent protein (GFP) were injected intravenously into mice. The administration of DC-CTLA4Ig reduced airway hyperresponsiveness, relieved asthmatic airway inflammation and decreased the numbers of esosinophils in the BALF in OVA-sensitized/challenged mice. In addition, DC-CTLA4Ig altered the balance of Th1/Th2 cytokine production in the lungs with increased interferon (IFN)-γ levels and decreased interleukin (IL)-4 levels, decreased the percentage of Th2 and increased both the percentage of Th1 and T(reg) cells in the lungs of OVA-sensitized/challenged mice. This research demonstrates that DC-CTL4Ig reduces airway hyperresponsiveness effectively and prevents airway inflammation in OVA-sensitized/challenged mice, which is due most probably to attenuated secretion of Th2 cytokines and increased secretion of Th1 cytokines in the local airway, and the correction of the pulmonary imbalance between Th1/Th2 cells and Th2/T(reg) cells.  相似文献   

5.
Background Identifying therapeutic drugs that block the release or effects of T‐helper type 2 (Th2) cytokines after allergen exposure is an important goal for the treatment of allergic inflammatory diseases including asthma. We recently showed, using a murine model of allergic airway inflammation, that poly(ADP‐ribose) polymerase (PARP) plays an important role in the pathogenesis of asthma‐related lung inflammation. PARP inhibition, by single injection of a novel inhibitor, thieno[2,3‐c]isoquinolin‐5‐one (TIQ‐A), before ovalbumin (OVA) challenge, prevented airway eosinophilia in C57BL/6 mice with concomitant suppression of Th2 cytokine production and mucus secretion. Objective To evaluate the efficacy of the drug when it is given after OVA challenge for its possible therapeutic potential. Methods This study was conducted using a murine model of allergic airway inflammation. Results A single injection of TIQ‐A (6 mg/kg) one or 6 h post‐allergen challenge conferred similar reduction in OVA challenge‐induced eosinophilia. More significantly, post‐allergen challenge administration of the drug exerted even better suppression on the production of IL‐4, IL‐5, IL‐13, and IgE and prevented airway hyperresponsiveness to inhaled‐methacholine. The significant decrease in IL‐13 was accompanied by a complete absence of airways mucus production indicating a potential protection against allergen‐induced airway remodelling. Conclusion The coincidence of the inflammation trigger and the time of drug administration appear to be important for the drug's more pronounced protection. The observed time window for efficacy, 1 or 6 h after allergen challenge may be of great clinical interest. These findings may provide a novel therapeutic strategy for the treatment of allergic airway inflammation, including asthma.  相似文献   

6.
Background The effects of smoking on asthma pathogenesis are complex and not well studied. We have shown recently that 3 weeks of smoking attenuates ovalbumin (OVA)‐induced airway inflammation in mice and that 4–6 months of smoking induces emphysema in mice without airway inflammation. Effects of combined long‐term smoking and OVA exposure have not been investigated so far. Objective To study whether long‐term smoking affects progression of allergic airway inflammation and/or enhances the development of emphysema in mice. Methods Mice were sensitized to OVA and challenged with saline or OVA aerosols for 6 months. From 2 months onwards, mice were also exposed to air or smoke. Lung tissue was analysed for extent of inflammation, emphysema, remodelling and for cytokine levels, and serum for OVA‐specific IgE levels. Results Chronic OVA exposure of 6 months resulted in a T helper type 2 (Th2)‐type inflammation with increased levels of IL‐4, IL‐5, IL‐6 and infiltration of eosinophils, CD4+ T cells, macrophages and plasma cells. Smoking induced a Th17‐type of airway inflammation, characterized by neutrophils, macrophages, B cells and increased levels of IL‐17, IL‐6, granulocyte‐macrophage colony‐stimulating factor, granulocyte colony‐stimulating factor and monocyte chemoattractant protein‐1. Concomittant smoking and OVA exposure resulted in inflammation similar to OVA exposure alone. OVA exposure increased IgE levels compared with saline exposure, and smoking did not further increase these levels. Conclusion We did not find evidence for increased inflammation, IgE levels or emphysema in mice with allergic airway inflammation after 4 months of smoking compared with non‐smoking. However, a 4‐month exposure to smoke alone did enhance neutrophilic airway inflammation characterized by high pulmonary IL‐17 levels. A Th2 inflammatory environment due to OVA exposure may be one explanation as to why no further detrimental effects of smoking on allergic airway inflammation were found.  相似文献   

7.
Thymic stromal lymphopoietin (TSLP) plays important roles in the pathogenesis of allergic diseases. Whether and how TSLP is involved in the initial priming of T helper type‐2 (Th2) differentiation against harmless antigen remains unclear. Using an intranasal sensitization protocol with OVA and LPS, we showed that TSLP signaling is required for low‐dose LPS‐induced Th2 inflammation, but not for high‐dose LPS‐induced Th1 immunity. We further demonstrated that low‐dose LPS‐activated bone marrow‐derived dendritic cells expressed relatively high Tslp but low Il12a, and were able to prime naïve DO11.10 T cells to differentiate into Th2 cells in a TSLP‐dependent manner. After transfer into wild‐type recipient mice, the low‐dose LPS‐activated OVA‐loaded dendritic cells (DCs) induced airway eosinophilia, but primed neutrophil‐dominated airway inflammation when TSLP‐deficient DCs were used. These studies demonstrate that TSLP released by DCs in response to a low concentration of LPS plays a role in priming Th2 differentiation and thus may serve as a polarizing third signal, in addition to antigen/MHC class II and co‐stimulatory factors, from antigen‐presenting DCs to direct effector T‐cell differentiation.  相似文献   

8.
BACKGROUND: Bacterial infection occasionally exacerbates asthma, although the cellular and molecular mechanisms have not been well defined. An involvement of mast cells has been suggested, as lipopolysaccharides (LPS)-induced cytokine production from mast cells in vitro. OBJECTIVE: This study was undertaken to examine the effects of LPS inhalation on mast cell functions and allergen-specific immune responses in a murine model of asthma. METHODS: Female BALB/c mice or mast cell-deficient W/W(v) mice were immunized intraperitoneally with ovalbumin (OVA). Mice were challenged with aerosolized OVA or OVA with LPS daily from day 21 to day 24. Twenty-four hours after the last challenge, airway inflammation and OVA-specific immune responses were examined. Allergen-specific T cell responses were further analysed by adoptively transferring OVA-specific CD4(+) T cells. Expression of chemokines in the lung was also examined. RESULTS: LPS inhalation with OVA resulted in exacerbated airway infiltration, which was not evident in mast cell-deficient mice. IL-5 production by mast cells in the lung was enhanced by LPS inhalation. OVA-specific IgE production as well as proliferation, cytokine production and local infiltration of OVA specific T-helper lymphocytes type 2 (Th2) were also enhanced. Up-regulated expression of Th2- and/or eosinophil-attracting chemokines was observed in the lung of mice inhalated with LPS. CONCLUSIONS: LPS inhalation exacerbates airway inflammation, which is accompanied by mast cell activation and enhanced Th2 responses. These observations provide clues towards understanding the mechanisms of bacterial infection-induced exacerbation of the clinical features of asthma.  相似文献   

9.
Respiratory syncytial virus (RSV) infection has been hypothesized to be a risk factor for the development of allergy and asthma, but epidemiologic studies in humans still remain inconclusive. The association between RSV infection and allergic diseases may be dependent on an atopic background and previous history of RSV infection. It has been reported that RSV infection before sensitization to an allergen decreased the production of Th2‐like cytokines in the lung and the levels of allergen‐specific Th2‐type antibodies in the serum. However, the underlying mechanisms are largely unknown. In the present study, the role of pulmonary γδ T cells in RSV‐affected, allergen‐induced airway inflammation was investigated. BALB/c mice were sensitized to or challenged with ovalbumin (OVA) and infected with RSV either before or after the sensitization period. It became clear that sensitization and challenge of mice with OVA induced a large influx of γδ T cells to the lungs. However, prior RSV infection inhibited the infiltration of γδ T cells as well as activated γδ T cells, characterized by expression of CD40L or CD69 molecular in the cell surface. Moreover, prior RSV infection elevated the type 1 cytokine gene expression but suppressed type 2 cytokine expression in the lung γδ T cells. Adoptive transfer of γδ T cells from OVA‐sensitized and challenged mice increased airway inflammation, suggesting that γδ T cells may play a proinflammatory role in allergic responses. These results described here support the idea of an unknown γδ T cell‐dependent mechanism in the regulation of RSV‐affected, allergen‐induced allergic airway responses. J. Med. Virol. 85:149–156, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
Background Allergic rhinitis (AR) and asthma often coexist and are referred to as ‘united airways’ disease. However, the molecular and cellular pathways that are crucially involved in the interaction between upper and lower airways remain to be identified. Objective We sought to assess whether and how AR exacerbates lower airway inflammation upon allergen challenge in mice. Methods We previously developed an intranasal ovalbumin (OVA)‐driven AR model, characterized by nasal eosinophilic inflammation, enhanced serum levels of OVA‐specific IgE and Th2 cytokine production in cervical lymph nodes. In OVA‐sensitized mice with or without AR, a lower airway challenge was given, and after 24 h, lower airway inflammation was analysed. Results We found that AR mice were more susceptible to eosinophilic inflammation following a lower airway OVA challenge than OVA‐sensitized controls. AR mice manifested increased numbers of eosinophils in bronchoalveolar lavage fluid and increased inter‐cellular adhesion molecule‐1 (ICAM‐1) expression on lung endothelium, when compared with OVA‐sensitized controls. Depletion of T cells in OVA‐challenged AR mice completely abrogated all hallmarks of lower airway inflammation, including enhanced IL‐5 and tissue eosinophilia. Conversely, adoptive transfer of Th2 effector cells in naïve animals induced lower airway eosinophilic inflammation after challenge with OVA. Blocking T cell recirculation during AR development by the spingosine‐1 analogue FTY720 also prevented lower airway inflammation including ICAM‐1 expression in AR mice upon a single lower airway challenge. Conclusion Our mouse model of ‘united airways’ disease supports epidemiological and clinical data that AR has a significant impact on lower airway inflammation. Circulating Th2 effector cells are responsible for lung priming in AR mice, most likely through up‐regulation of ICAM‐1. Cite this as: A. KleinJan, M. Willart, M. van Nimwegen, K. Leman, H. C. Hoogsteden, R.W. Hendriks and B.N. Lambrecht, Clinical & Experimental Allergy, 2010 (40) 494–504.  相似文献   

11.
Studies have shown that atopic individuals have decreased serum levels of n‐3 fatty acids. Indicating these compounds may have a protective effect against allergic reaction and/or are consumed during inflammation. This study investigated whether fish (n‐3) or sunflower (n‐6) oil supplementation affected T helper type 1 (Th1)‐ and Th2‐mediated hypersensitivity in the skin and airways, respectively, and whether the fatty acid serum profile changed during the inflammatory response. Mice were fed regular chow, chow + 10% fish oil or chow + 10% sunflower oil. Mice were immunized with ovalbumin (OVA) resolved in Th1 or Th2 adjuvant. For Th1 hypersensitivity, mice were challenged with OVA in the footpad. Footpad swelling, OVA‐induced lymphocyte proliferation and cytokine production in the draining lymph node were evaluated. In the airway hypersensitivity model (Th2), mice were challenged intranasally with OVA and the resulting serum immunoglobulin (Ig)E and eosinophilic lung infiltration were measured. In the Th1 model, OVA‐specific T cells proliferated less and produced less interferon (IFN)‐γ, tumour necrosis factor (TNF) and interleukin (IL)‐6 in fish oil‐fed mice versus controls. Footpad swelling was reduced marginally. In contrast, mice fed fish oil in the Th2 model produced more OVA‐specific IgE and had slightly higher proportions of eosinophils in lung infiltrate. A significant fall in serum levels of long‐chain n‐3 fatty acids accompanied challenge and Th2‐mediated inflammation in Th2 model. Fish oil supplementation affects Th1 and Th2 immune responses conversely; significant consumption of n‐3 fatty acids occurs during Th2‐driven inflammation. The latter observation may explain the association between Th2‐mediated inflammation and low serum levels of n‐3 fatty acids.  相似文献   

12.
Acetylshikonin has long been known as an anti‐inflammatory and antioxidative reagent. However, the anti‐allergic effect has not been studied. The aim of this study was to evaluate the effect of acetylshikonin on allergic rhinitis (AR) in mice. Mice were sensitized by intraperitoneal injection of OVA and aluminum hydroxide and challenged with intranasal instillation of OVA. Acetylshikonin was administered orally after nasal cavities challenge. Severity of allergic rhinitis was assessed according to nasal symptoms; serum OVA‐specific immunoglobulin E (IgE), IgG1, and IgG2a level; and interleukin (IL)‐4, IL‐10, IL‐5, IL‐13, TNF‐α, IL‐12, and interferon (INF)‐γ levels in nasal lavage fluid (NALF). Additionally, the histological change and the release of histamine in serum and nasal lavage fluid were evaluated by acid‐Schiff stain and ELISA. Acetylshikonin attenuated manifestation of nasal symptoms in sensitized mice and inhibited production of Th2‐related OVA‐specific IgE, IgG1, and Th2 cell‐produced IL‐4, IL‐5, IL‐13, and mast cell produced histamine; however, it had no effect on Th1 cell‐produced cytokines, like INF‐γ. In addition, the degree of inflammatory cell infiltration and goblet cell hyperplasia was attenuated by acetylshikonin treatment. Our results suggest that acetylshikonin effectively reduces allergic inflammation in a mouse model of allergic rhinitis by its anti‐allergic and anti‐inflammatory properties.  相似文献   

13.
Background: Allergic asthma is a Th2-type chronic inflammatory disease of the lung. It is characterized by infiltration of eosinophils, neutrophils, mast cells and T lymphocytes into the airways. Th2 cytokines like interleukin (IL)-4, IL-5 and chemokines like eotaxin are increased in the asthmatic response. The processing and presentation of exogenous antigens is important in the sensitization to an allergen. Cathepsin E (Ctse) is an intracellular aspartic endoprotease which is expressed in immune cells like dendritic cells (DCs). It was found to play an essential role in the processing and presentation of ovalbumin (OVA). The aim of the present study was to investigate the inhibition of Ctse in two different experimental models of allergic airway inflammation. Methods: Ctse wild-type (Ctse(+/+)) and Ctse-deficient (Ctse(-/-)) bone marrow-derived DCs (BMDCs) were pulsed with OVA/OVA peptide and cocultured with OVA transgenic T II (OT II) cells whose proliferation was subsequently analyzed. Two different in vivo asthma models with Ctse(+/+) and Ctse(-/-) mice were performed: an acute OVA-induced and a subchronic Phleum pratense-induced airway inflammation. Results: Proliferation of OT II cells was decreased when cocultured with BMDCs of Ctse(-/-) mice as compared to cells cocultured with BMDCs of Ctse(+/+) mice. In vivo, Ctse deficiency led to reduced lymphocyte influx after allergen sensitization and challenge in both investigated airway inflammation models, compared to their control groups. Conclusion: Ctse deficiency leads to a reduced antigen presentation in vitro. This is followed by a distinct effect on lymphocyte influx in states of allergic airway inflammation in vivo.  相似文献   

14.
Background The molecular determinants of the severity and persistence of allergic asthma remain poorly understood. Suppressor of cytokine signalling 1 (SOCS1) is a negative regulator of IL‐4‐dependent pathways in vitro and might therefore control T‐helper type 2 (Th2) immunity associated traits, such as IgE levels, mucin production, IL‐5 and IL‐13 induction, and eosinophilic mucosal inflammation, which are implicated in allergic asthma. Objective To investigate the role of SOCS1 in regulating Th2‐associated disease traits in a murine sub‐chronic aeroallergen‐driven asthma model. Methods Following sensitization and challenge with ovalbumin (OVA), bronchoalveolar lavage and serum were collected from mice lacking the Socs1 gene on an IFN‐γ null background (Socs1?/?Ifnγ?/?). The composition of infiltrating cells in the lung, serum IgE and IgG1 levels and cytokine levels were analysed. Results Serum IgE levels and infiltrating eosinophils were considerably increased in the lungs of OVA‐treated Socs1?/?Ifnγ?/? mice compared with Ifnγ?/? and C57BL/6 controls. Expression of the Th2 cytokines, IL‐4, IL‐5 and IL‐13 was increased in CD4+ cells and lung tissue from OVA‐treated Socs1?/?Ifnγ?/? mice. IgE, IL‐5 levels and infiltrating eosinophils were also elevated in saline‐treated Socs1?/?Ifnγ?/? mice, suggesting that in the absence of SOCS1, mice are already biased towards a Th2 response. It is at present unclear whether the elevated cytokine levels are sufficient to result in the exacerbated Th2 response to OVA challenge or whether enhanced intra‐cellular signalling also contributes. Surprisingly, of the various IL‐4/IL‐13 responsive genes tested, only Arginase I appeared to be modestly up‐regulated in the lungs of OVA‐treated Socs1?/?Ifnγ?/? mice, suggesting that regulation by SOCS1 occurs primarily in haematopoietic cells and not in the airway epithelium. Conclusions Together these results indicate that SOCS1 is an important regulator of the Th2 response.  相似文献   

15.
Background Epidemiological and experimental data suggest that bacterial lipopolysaccharides (LPS) can either protect from or exacerbate allergic asthma. Lipopolysaccharides trigger immune responses through toll‐like receptor 4 (TLR4) that in turn activates two major signalling pathways via either MyD88 or TRIF adaptor proteins. The LPS is a pro‐Type 1 T helper cells (Th1) adjuvant while aluminium hydroxide (alum) is a strong Type 2 T helper cells (Th2) adjuvant, but the effect of the mixing of both adjuvants on the development of lung allergy has not been investigated. Objective We determined whether natural (LPS) or synthetic (ER‐803022) TLR4 agonists adsorbed onto alum adjuvant affect allergen sensitization and development of airway allergic disease. To dissect LPS‐induced molecular pathways, we used TLR4‐, MyD88‐, TRIF‐, or IL‐12/IFN‐γ‐deficient mice. Methods Mice were sensitized with subcutaneous injections of ovalbumin (OVA) with or without TLR4 agonists co‐adsorbed onto alum and challenged with intranasally with OVA. The development of allergic lung disease was evaluated 24 h after last OVA challenge. Results Sensitization with OVA plus LPS co‐adsorbed onto alum impaired in dose‐dependent manner OVA‐induced Th2‐mediated allergic responses such as airway eosinophilia, type‐2 cytokines secretion, airway hyper‐reactivity, mucus hyper production and serum levels of IgE or IgG1 anaphylactic antibodies. Although the levels of IgG2a, Th1‐affiliated isotype increased, investigation into the lung‐specific effects revealed that LPS did not induce a Th1 pattern of inflammation. Lipopolysaccharides impaired the development of Th2 immunity, signaling via TLR4 and MyD88 molecules and via the IL‐12/IFN‐γ axis, but not through TRIF pathway. Moreover, the synthetic TLR4 agonists that proved to have a less systemic inflammatory response than LPS also protected against allergic asthma development. Conclusion Toll‐like receptor 4 agonists co‐adsorbed with allergen onto alum down‐modulate allergic lung disease and prevent the development of polarized T cell‐mediated airway inflammation.  相似文献   

16.
Th17 cells play key roles in mediating autoimmunity, inflammation and mucosal host defense against pathogens. To determine whether naturally occurring Treg (nTreg) limit Th17‐mediated pulmonary inflammation, OVA‐specific CD4+ Th17 cells and expanded CD4+CD25+Foxp3+ nTreg were cotransferred into BALB/c mice that were then exposed to OVA aerosols. Th17 cells, when transferred alone, accumulated in the lungs and posterior mediastinal LN and evoked a pronounced airway hyperreactivity and neutrophilic inflammation, characterized by B‐cell recruitment and elevated IgA and IgM levels. Cotransfer of antigen‐specific nTreg markedly reduced the Th17‐induced pulmonary inflammation and associated neutrophilia, B‐cell influx and polymeric Ig levels in the airways, but did not inhibit airway hyperreactivity. Moreover, the regulation appeared restricted to the site of mucosal inflammation, since transfer of nTreg did not affect the Th17 response developing in the lung draining LN, as evidenced by unaltered levels of IL‐17 production and low numbers of Foxp3+ Treg. Our findings suggest a crucial role for Th17 cells in mediating airway B‐cell influx and IgA response, and demonstrate that antigen‐specific nTreg suppress Th17‐mediated lung inflammation. These results provide new insights into how Th17 responses are limited and may facilitate development of novel approaches for controlling Th17‐induced inflammation.  相似文献   

17.
Background Human thymic stromal lymphopoietin (TSLP) is expressed in the human asthmatic lung and activates dendritic cells (DCs) to strongly induce proallergic T‐helper type 2 (Th2) cell responses, suggesting that TSLP plays a critical role in the pathophysiology of human asthma. Th2 cells are predominantly involved in mild asthma, whereas a mixture of Th1 and Th2 cells with neutrophilic inflammation, probably induced by Th17, affects more severe asthmatic disease. Exacerbation of asthmatic inflammation is often triggered by airway‐targeting RNA viral infection; virus‐derived double‐stranded RNA, Toll‐like receptor (TLR)3 ligand, activates bronchial epithelial cells to produce pro‐inflammatory mediators, including TSLP. Objective Because TSLPR‐expressing DCs express TLR3, we examined how the relationship between TSLP and TLR3 ligand stimulation influences DC activation. Methods CD11c+DCs purified from adult peripheral blood were cultured in TLR ligands containing media with or without TSLP and then co‐cultured with allogeneic naïve CD4+T cells. Results CD11c+ DCs responded to a combination of TSLP and TLR3 ligand, poly(I : C), to up‐regulate expression of the functional TSLP receptor and TLR3. Although TSLP alone did not induce IL‐23 production by DCs, poly(I : C) alone primed DCs for the production of IL‐23, and a combination of TSLP and poly(I : C) primed DCs for further production of IL‐23. The addition of poly(I : C) did not inhibit TSLP‐activated DCs to prime naïve CD4+ T cells to differentiate into inflammatory Th2 cells. Furthermore, DCs activated by a combination of TSLP and poly(I : C) primed more naïve CD4+ T cells to differentiate into Th17‐cytokine–producing cells with a central memory T cell phenotype compared with DCs activated by poly(I : C) alone. Conclusions These results suggest that through DC activation, human TSLP and TLR3 ligands promote differentiation of Th17 cells with the central memory T cell phenotype under Th2‐polarizing conditions.  相似文献   

18.
The transmembrane form of T1/ST2 (ST2) is a specific marker on murine Th2 cells that have been generated in vitro, or isolated from sites of allergic type 2 inflammation. Despite the association of ST2 with Th2 cells, to date no obligate role for ST2 in type 2 responses in vivo has been described. We have specifically addressed the role of ST2 on T cells by generation of ST2(-/-) mice crossed with ovalbumin (OVA) T cell receptor-transgenic mice. OVA-specific ST2(-/-) cells had normal cytokine responses to T cell activation after in vitro Th2 differentiation, but OVA stimulation of IL-5 was increased. Transfer of OVA-specific ST2(-/-) Th2 cells into BALB/c mice caused exacerbated pulmonary inflammation with occluded airways, elevated airway hyper-responsiveness and increased susceptibility to methacholine challenge that was associated with mortalities of recipient mice. The increased pulmonary inflammation in OVA-specific ST2(-/-) Th2 cell recipients was associated with selective differences in pulmonary levels of Th2 cytokines compared with OVA-specific ST2(+) Th2 cell recipients. Recipients of OVA-specific ST2(-/-) Th2 cells had a significant increase in eosinophils and a significant reduction in F4/80(hi) macrophages in the lungs. This is the first demonstration of a role for ST2 expression on Th2 cells down-regulating pulmonary inflammation. These data have major implications for the targeting of ST2 as a therapy for allergic airway disorders.  相似文献   

19.
Allergen‐specific IgE has long been regarded as a major molecular component of allergic asthma. Additionally, there is increasing evidence of the important roles of interleukin‐33 (IL‐33) in the disease. Here, we show that IL‐33 and alveolar macrophages play essential roles in the exacerbation of IgE‐mediated airway inflammation and remodelling. BALB/c mice passively sensitized with ovalbumin (OVA)‐specific IgE monoclonal antibody (mAb) were challenged with OVA seven times intratracheally. The seventh challenge exacerbated airway inflammation and remodelling compared with the fourth challenge; furthermore, markedly increased expression of IL‐33 in the lungs was observed at the fourth and seventh challenges. When anti‐IL‐33 or anti‐ST2 antibody was administered during the fourth to seventh challenge, airway inflammation and remodelling were significantly inhibited at the seventh challenge. Because increases of IL‐33+ and ST2+ alveolar macrophages and ST2+ CD4+ T cells in the lungs were observed at the fourth challenge, the roles of macrophages and CD4+ cells were investigated. Depletion of macrophages by 2‐chloroadenosine during the fourth to seventh challenge suppressed airway inflammation and remodelling, and IL‐33 production in the lung at the seventh challenge; additionally, anti‐CD4 mAb inhibited airway inflammation, but not airway remodelling and IL‐33 production. Meanwhile, treatment with 2‐chloroadenosine or anti‐CD4 mAb decreased IL‐33‐induced airway inflammation in normal mice; airway remodelling was repressed only by 2‐chloroadenosine. These results illustrate that macrophage‐derived IL‐33 contributes to the exacerbation of IgE‐mediated airway inflammation by mechanisms associated with macrophages and CD4+ cells, and airway remodelling through the activation of macrophages.  相似文献   

20.
哮喘小鼠气道上皮TSLP表达及激活DCs加重气道炎症的研究   总被引:2,自引:0,他引:2  
目的 研究支气管哮喘小鼠气道上皮中胸腺间质淋巴细胞生成素(TSLP)表达,探讨其对哮喘小鼠肺部炎症的影响.方法 BALB/c小鼠分为生理盐水对照组、哮喘模型组和TSLP中和抗体干预组.通过气道反应性和肺组织病理学评价哮喘模型;酶联免疫吸附试验(ELISA)检测支气管肺泡灌洗液(BALF)上清中IL-4、IL-5和IL13的含量;实时荧光定量PCR(qRT-PCR)测定肺组织中TSLP mRNA的表达;免疫组化及Western blot法测定肺组织中TSLP蛋白的表达;流式细胞术检测BALF中树突状细胞(OCs)表面CD40、CD80、CD86的表达水平.结果 小鼠气道反应性增高和肺组织病理学检查结果均符合哮喘的典型表现证实造模成功;哮喘组BALF中IL-4、IL-5和IL-13的水平显著高于正常组(P<0.05),且TSLP与其成正相关;与正常对照组相比,哮喘组气道上皮TSLPmRNA和蛋白高表达,两组间差异有统计学意义(P<0.05);哮喘组BALF中DCs表面CD40、CD80、CD86表达明显高于正常组(P<0.05).TSLP中和抗体干预后,BALF中DCs表面CD40、CD80、CD86表达明显减低,并进一步减少IL-4、IL-5和IL-13的表达.结论 哮喘气道上皮中TSLP表达增高,TSLP通过上调DCs表面CD40、CD80、CD86的表达,激活DCs诱导CD4~+T细胞向Th2分化发育,与加重哮喘的气道炎症有关;TSLP抗体干预可阻断DCs的活化,减少Th2细胞因子的分泌,这些因素可能与减轻哮喘炎症反应有关,为哮喘治疗途径提供新的思路.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号