首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of various lipophilic compounds on the activity of monoamine oxidase (MAO) was determined. The local anaesthetics procaine, procainamide, tetracaine and lignocaine were all MAO-A selective inhibitors, whereas benzyl alcohol, butan-l-ol, hexan-l-ol and octan-l-ol inhibited MAO-B selectively. Procaine was found to be a competitive inhibitor of the deamination of 5-hydroxy-tryptamine (5-HT), tyramine, β-phenethylamine and benzylamine. Benzyl alcohol was competitive towards β-phenethylamine and benzylamine, but a mixed-type inhibitor towards 5-HT and tyramine. The same patterns of inhibition for both drugs were found when the activity was assayed under atmospheres of either oxygen or air. The inhibition produced by both compounds was fully reversible. Triton X-100 appeared to inhibit the activity of MAO-A selectively when preincubated with the enzyme for 30 min at 30°. This selectivity was lost when the preincubation temperature was raised to 37°. The inhibition of MAO activity by Triton X-100 after preincubation at 37° was found to be irreversible. Sodium deoxycholate and SDS were also found to inhibit the activity of MAO after preincubation with the enzyme at 37°. The significance of these results is discussed.  相似文献   

2.
Psoralen and isopsoralen, furocoumarins isolated from the plant Psoralea corylifolia L., were demonstrated to exhibit in vitro inhibitory actions on monoamine oxidase (MAO) activities in rat brain mitochondria, preferentially inhibiting MAO-A activity over MAO-B activity. This inhibition of enzyme activities was found to be dose-dependent and reversible. For MAO-A, the IC50 values are 15.2 +/- 1.3 microM psoralen and 9.0 +/- 0.6 microM isopsoralen. For MAO-B, the IC50 values are 61.8 +/- 4.3 microM psoralen and 12.8 +/- 0.5 microM isopsoralen. Lineweaver-Burk transformation of the inhibition data indicates that inhibition by both psoralen and isopsoralen is non-competitive for MAO-A. The Ki values were calculated to be 14.0 microM for psoralen and 6.5 microM for isopsoralen. On the other hand, inhibition by both psoralen and isopsoralen is competitive for MAO-B. The Ki values were calculated to be 58.1 microM for psoralen and 10.8 microM for isopsoralen. These inhibitory actions of psoralen and isopsoralen on rat brain mitochondrial MAO activities are discussed in relation to their toxicities and their potential applications to treat affective disorders.  相似文献   

3.
The effects of styrene on mitochondrial monoamine oxidase (MAO) activity in rat and monkey brains were compared in vitro. After preincubation at 25 degrees C for 20 min with 1 mM styrene monomer MAO-A activity in monkey brain was inhibited potently using 5-HT (for MAO-A substrate), but MAO-B activity in monkey brain and platelets were slightly inhibited using beta-PEA (for MAO-B substrate). Styrene monomer also competitively inhibited MAO-A activity in a dose-dependent manner. MAO-A in monkey brain was inhibited by styrene in ascending order of potency: styrene trimer>styrene dimer>styrene monomer. In contrast styrene monomer slightly inhibited both MAO-A and MAO-B activities in rat brain mitochondria. In the present study styrene monomer potently inhibits MAO-A activity, but not MAO-B activity, in monkey brain mitochondria in vitro. These results indicate the inhibiting action of styrene differs depending on animal species and MAO isoforms.  相似文献   

4.
The relationship between changes in IV tyramine pressor sensitivity accompanying selective monoamine oxidase (MAO) inhibitor treatment and estimates of MAO-A and MAO-B inhibition in vivo were studied. Reductions in platelet MAO activity provided an index of MAO-B inhibition, while changes in plasma 3-methoxy-4-hydroxyphenethylene glycol (MHPG) were used as an hypothesized reflection of MAO-A inhibition. Chronic treatment with the MAO-A inhibitor clorgyline and the MAO-B inhibitor pargyline showed significant inhibition of the alternate MAO enzyme as well, although this crossover effect was greater for pargyline than clorgyline. The MAO-B inhibitor deprenyl appeared to maintain the greatest degree of MAO inhibition selectivity in vivo. Tyramine pressor sensitivity changes accompanying administration of the MAO inhibitors were highly correlated with decreases in plasma MHPG (r=0.92), supporting our previous data indicating the rank order of clorgyline > pargyline > deprenyl for enhancement of tyramine pressor sensitivity and, thus, suggesting that tyramin potentiation is primarily a function of MAO-A rather than MAO-B inhibition. Changes in plasma MHPG are suggested to provide a potentially useful clinical index of in vivo MAO-A inhibition.Presently with the Biological Psychiatry Branch, NIMH  相似文献   

5.
The ability of MAO-A and MAO-B to metabolize benzylamine in vitro has been investigated in mitochondrial preparations from rat liver and heart. Although under normal circumstances benzylamine appeared to be metabolized exclusively by MAO-B in the rat liver, a contribution by both MAO-A and a clorgyline-resistant enzyme component was revealed when the MAO-B activity was much reduced by pretreatment of the mitochondria with appropriate concentrations of deprenyl. These three enzyme activities also contributed to benzylamine deamination in rat heart mitochondria. However, binding studies with [3H]pargyline, which provided an estimate of the respective concentrations of MAO-A and MAO-B active centres in heart mitochondria, indicated a ratio between MAO-A and MAO-B, markedly different from that shown by plots of inhibition of benzylamine metabolism by various concentrations of clorgyline. The interpretation of these clorgyline plots is discussed in terms of the kinetic constants of both MAO-A and MAO-B, and the relative amounts of each enzyme. It is proposed that although the turnover rate constant for benzylamine metabolism by MAO-A is much smaller than that shown by MAO-B, in those tissues containing a large ratio of MAO-A:MAO-B content, the metabolism of benzylamine by MAO-A can be detected.  相似文献   

6.
The effects of ZnSO(4) on mitochondrial monoamine oxidase (MAO) activity in monkey brain were compared with those in rat and rabbit, in vitro. After preincubation at 25 degrees C for 20 min with 1 microM ZnSO(4), MAO-A activity in monkey brain was about 50% using serotonin (5-HT) as a substrate, and the inhibition was proportional to the concentration of ZnSO(4). However, ZnSO(4) had no effect on MAO-B activity in monkey brain using beta-phenylethylamine (beta-PEA) as a substrate. The inhibition by ZnSO(4) of MAO-A activity was competitive and reversible. CdSO(4) also inhibits MAO-A, but not MAO-B in monkey brain mitochondria. ZnSO(4) did not inhibit either MAO-A or MAO-B activity in rat and rabbit brain mitochondria. These results indicate that the inhibiting action of Zn(2+) differs depending on animal species. In monkey brain mitochondria, MAO-A was highly sensitive to Zn(2+) and MAO-B was less sensitive. These results also suggest that Zn(2+) may regulate the level of catecholamine content in monkey brain.  相似文献   

7.
Monkey liver monoamine oxidase (MAO) was predominantly the B-form enzyme from the observed differences in substrate specificities and differences in sensitivities to MAO inhibitors. It is known that a MAO inhibitor, pargyline, binds to MAO irreversibly in the molar ratio of 1:1. 3H-pargyline was used as a marker to determine the existence of MAO. The molecular weight of MAO in monkey liver mitochondria was investigated by SDS-polyacrylamide gel electrophoresis after solubilization of 3H-pargyline binding mitochondria with 6% sodium dodecyl sulphate (SDS). The subunit molecular weight was found to be 60,000. The molecular weight determined from the electrophoretic mobility on several concentrations of gels by disc gel electrophoresis in the absence of SDS was found to be 120,000. These results indicate that monkey liver mitochondrial MAO exists as a dimer. Isoelectric focusing of the enzyme after solubilization with 0.1% Triton X-100 and 0.75% Triton X-100 and 0.75% Lubrol showed that it had a pI value near 6.5. Similar pI values were obtained for enzyme preparations solubilized with 0.75% Triton X-100 after treatment with phospholipase A or methylethylketone. These results suggest that the pI value of MAO in monkey liver mitochondria does not depend on the properties of detergents used to solubilize the enzyme preparation.  相似文献   

8.
The ability of MAO-A and MAO-B to metabolize benzylamine in vitro has been investigated in mitochondrial preparations from rat liver and heart. Although under normal circumstances benzylamine appeared to be metabolized exclusively by MAO-B in the rat liver, a contribution by both MAO-A and a clorgyline-resistant enzyme component was revealed when the MAO-B activity was much reduced by pretreatment of the mitochondria with appropriate concentrations of deprenyl. These three enzyme activities also contributed to benzylamine deamination in rat heart mitochondria. However, binding studies with [3 H]pargyline, which provided an estimate of the respective concentrations of MAO-A and MAO-B active centres in heart mitochondria, indicated a ratio between MAO-A and MAO-B, markedly different from that shown by plots of inhibition of benzylamine metabolism by various concentrations of clorgyline. The interpretation of these clorgyline plots is discussed in terms of the kinetic constants of both MAO-A and MAO-B, and the relative amounts of each enzyme. It is proposed that although the turnover rate constant for benzylamine metabolism by MAO-A is much smaller than that shown by MAO-B, in those tissues containing a large ratio of MAO-A:MAO-B content, the metabolism of benzylamine by MAO-A can be detected.  相似文献   

9.
The small molecule, isatin, is a well-known reversible inhibitor of the monoamine oxidase (MAO) enzymes with IC50 values of 12.3 and 4.86 μM for MAO-A and MAO-B, respectively. While the interaction of isatin with MAO-B has been characterized, only a few studies have explored structure–activity relationships (SARs) of MAO inhibition by isatin analogues. The current study therefore evaluated a series of 14 isatin analogues as in vitro inhibitors of human MAO-A and MAO-B. The results indicated good potency MAO inhibition for some isatin analogues with five compounds exhibiting IC50 < 1 μM. 4-Chloroisatin ( 1b ) and 5-bromoisatin ( 1f ) were the most potent inhibitors with IC50 values of 0.812 and 0.125 μM for MAO-A and MAO-B, respectively. These compounds were also found to be competitive inhibitors of MAO-A and MAO-B with Ki values of 0.311 and 0.033 μM, respectively. Among the SARs, it was interesting to note that C5-substitution was particularly beneficial for MAO-B inhibition. MAO inhibitors are established drugs for the treatment of neuropsychiatric and neurodegenerative disorders, while potential new roles in prostate cancer and cardiovascular disease are being investigated.  相似文献   

10.
Ifenprodil, which is clinically used as a cerebral vasodilator, inhibited rat brain type A (MAO-A) and type B (MAO-B) monoamine oxidase activity. It did not, however, affect rat lung semicarbazide-sensitive amine oxidase. The degree of inhibition of either form of MAO was not changed by 30 min preincubation of the enzyme preparations at 37 degrees C with ifenprodil. Modes of inhibition of MAO-A and MAO-B by ifenprodil were competitive towards oxidation of their respective substrates, 5-hydroxytryptamine and benzylamine, with Ki values of 75 microM for inhibition of MAO-A and 110 microM for inhibition of MAO-B.  相似文献   

11.
The present study was undertaken to clarify the enzymic and molecular properties of monoamine oxidase (MAO) in carp brain. In particular, its sensitivities to selective MAO inhibitors, kinetic properties and molecular weight were compared with those of the enzyme in carp liver. The selective and potent MAO-A and MAO-B inhibitors FLA 788(+), FLA 336(+), MD 780236 and benzylcyanide caused dose-dependent inhibitions of MAO activity in both carp brain and liver; the inhibition curves were all single-sigmoidal, and the degrees of inhibition of the activities towards 5-hydroxytryptamine (5-HT, selective MAO-A substrate), tyramine (substrate for both forms of MAO) and beta-phenylethylamine (PEA, selective MAO-B substrate) were similar. This was also the case for inhibition of activity in carp brain by the irreversible and selective MAO-A and MAO-B inhibitors clorgyline and I-deprenyl, indicating the presence in both preparations of a single MAO which differs from either form of MAO. Studies on the substrate specificities and Km values for these three substrates and the inhibitory effects of some compounds suggested that the enzymic characters of MAO in carp preparations were similar and that these enzymes might be FAD-containing enzymes, like MAO in various mammals. By labelling the preparations with radioactive pargyline and then subjecting them to sodium dodecyl sulfate electrophoresis, the apparent molecular weights of carp brain and liver MAO were estimated as 60,000 daltons. The same value was also obtained for rat brain and liver mitochondrial MAO-B. These results indicate that by the present definitions of MAO-A and MAO-B, MAO in carp brain and liver is similar to, but distinct from, both these forms of MAO.  相似文献   

12.
The non-ionic detergent Triton X-100, an agent used to solubilize mitochondrial membrane monoamine oxidase (EC 1.4.3.4, MAO), has been shown to inhibit markedly MAO activity. The inhibition was non-competitive in nature. Triton X-100 changed the susceptibility of MAO toward clorgyline, a specific type A MAO inhibitor, and deprenyl, a type B inhibitor. Its effect on the temperature dependence of the initial velocity revealed that the transition temperatures for p-tyramine and serotonin (22°) and β-phenylethylamine (16° and 27°) were not changed. The stability of the MAO decreased considerably, however, in the presence of Triton X-100, and its inactivation was particularly pronounced somewhat higher temperatures.  相似文献   

13.
In vitro studies of the effect of MD 780236, a selective monoamine oxidase (MAO)-B inhibitor, on a semicarbazide-sensitive amine oxidase (SSAO) in rat testis and lung showed that this compound dose-dependently inhibited SSAO activity. The extents of inhibition of MAO-A, -B and SSAO in these two rat tissues by this compound after 30 min of preincubation were found to be MAO-B greater than MAO-A greater than SSAO. This selectivity was also evident in preparations without preincubation. Degree of inhibition of SSAO was not significantly influenced by pretreatment with either 10(-3) M clorgyline, I-deprenyl or 10(-4) M SKF 525A. Inhibition of SSAO was not enhanced by varying the time of preincubation of the enzyme and the compound, indicating direct action on and reversible inhibition of SSAO. The inhibition of SSAO by MD 780236 was non-competitive with or without preincubation, with a K1 value of 110 muM. Although MD 780236 is a selective and "suicide substrate" inhibitor of MAO-B, these present results indicate that this compound may also inhibit SSAO activity, but by a mechanism different from that for MAO-B. These findings confirm an earlier hypothesis that compounds that inhibit both MAO and SSAO have totally different modes of action on these two different amine oxidases.  相似文献   

14.
The effect of diethylnitrosamine (DEN), a well-known experimental carcinogen, toward MAO-A and MAO-B activity of rat liver was investigated. The oxidations of both beta-PEA (MAO-B) and 5-HT (MAO-A) were inhibited by DEN. The K1 values of DEN in the inhibition of rat liver MAO-A and MAO-B activity were determined. The kinetic data show that DEN is a competitive, MAO-B selective inhibitor and its inhibitory effect on MAO-B is about 4-fold more potent than that on MAO-A. DEN might change the proportions of the multiple forms of MAO activity in tumor cells.  相似文献   

15.
During 4 weeks of treatment with clorgyline, a selective MAO-A inhibitor, platelet monoamine oxidase (MAO) activity was unchanged. During a similar 4-week crossover treatment period with pargyline, a selective MAO-B inhibitor, platelet MAO activity was essentially completely inhibited in the same individuals. The differential effects of the two drugs on platelet MAO, which consists exclusively of the MAO-B form, suggests that the in vitro selectivity of clorgyline, and possibly of pargyline, on MAO-A and MAO-B may be maintained in vivo during long-term administration in man. Reductions in blood pressure, heart rate, and plasma amine oxidase activity were generally similar in magnitude during treatment with both drugs, however, suggesting that either these effects are nonspecific consequences of both MAO-A and MAO-B inhibition, or that pargyline also inhibited MAO-A activity.  相似文献   

16.
Tricyclic antidepressant drugs (TCA) were found to reversibly inhibit monoamine oxidase (MAO) in intact mitochondria of beef brain cortex, I50, values were in the range of 10?4 to 10?3 M, using chlorimipramine, amitriptyline, desimipramine, imipramine and doxepin. Unlike TCA inhibition reported for MAO in rabbit tissues, the inhibition observed with beef brain MAO was greater for the A-type enzyme, indicated by serotonin (5-HT) deamination, than for the B-type enzyme, indicated by phenylethylamine (PEA) deamination. Chlorimipramine was the most effective of the five tricyclic antidepressant drugs tested for the inhibition of 5-HT deamination, while amitriptyline was the most effective for inhibiting PEA deamination. Kinetic analyses also revealed marked differences in the interaction of the tricyclics with the A form and the B form of MAO. Inhibition was found to be of a mixed type by reciprocal plots, but Dixon plots indicated that the inhibition was parabolic with 5-HT and either linear or hyperbolic with PEA, depending on the TCA used. Mixed inhibitor studies were also carried out, combining a TCA with a selective (clorgyline or deprenyl) or a non-selective (tranylcypromine) MAO inhibitor. Such combinations did not result in a potentiation of inhibition of either the MAO-A or MAO-B type enzyme activity. The present results indicate that the inhibition of MAO may be of only minor significance in the therapeutic efficacy of TCA in the treatment of depression, especially in combined therapy. However, this conclusion must be tempered by the knowledge that there are marked variations in MAO properties from different enzyme sources, as evidenced by these results.  相似文献   

17.
Literature observations indicate that some psychotropic drugs may have inhibitory activity towards monoamine oxidase (MAO). This study was undertaken to assess the potency, isozyme selectivity and mechanism of inhibition of representative first- and second-generation antidepressant drugs towards rat brain MAO-A and MAO-B. Five tricyclic antidepressants (imipramine, trimipramine, clomipramine, amitriptyline and doxepine) and three selective serotonin reuptake inhibitors (fluoxetine, fluvoxamine and citalopram) were examined. They showed inhibitory activity towards MAO-A and MAO-B, with clear selectivity for MAO-B (Ki in the micromolar range). Their mechanism of inhibition was competitive towards MAO-B and of a mixed competitive type towards MAO-A. The results suggest that some of the drugs examined might also contribute an MAO inhibitory effect in chronically treated patients.  相似文献   

18.
5-Hydroxyoxindole is a recently identified endogenous compound. Its physiological role remains unclear but certain evidence exists, that it may share some regulatory properties with isatin, a known endogenous inhibitor of monoamine oxidase (MAO) type B (MAO-B). In this study several oxidized indoles were tested for their in vitro inhibition of MAO type A (MAO-A) and B of rat brain non-synaptic mitochondria. 5-Hydroxyoxindole was less potent MAO-A inhibitor (IC50 56.8 microM) than isatin (31.8 microM) and especially 5-hydroxyisatin (6.5 microM), but it was the only highly selective MAO-A inhibitor among the all compounds studied (IC50 MAO-A:IC50 MAO-B = 0.044). Thus, the in vitro data suggest that MAO-A may represent potential target for 5-hydroxyoxindole.  相似文献   

19.
The deamination of dopamine by human brain monoamine oxidase   总被引:6,自引:0,他引:6  
The deamination of dopamine has been studied in seven regions of human brain. Both A and B forms of the enzyme were found to be active towards this substrate. The ratio of activities of MAO-A: MAO-B was found to vary considerably from brain region to brain region, from about 1:1 for the cerebral and cerebellar cortex to about 1:2 for the pons and medulla oblongata. Enzyme titration studies and comparisons of the substrate specificities of MAO-A and MAO-B across the brain indicated that dopamine was metabolised by the same MAO active centres as other monoamines. In the cerebral cortex, the Km values of MAO-A and -B towards dopamine were found to be 210 and 230 microM, respectively, indicating that the relative contributions of these two forms towards the oxidation of this substrate will not be significantly affected by changes in its concentration.  相似文献   

20.
Four different noncatecholic and one catecholic tetrahydroisoquinolines (TIQs), cyclic condensation derivatives of beta-phenylethylamine and dopamine with aldehydes or keto acids, were examined for the inhibition of rat and mouse brain monoamine oxidase (MAO) and rat striatum tyrosine hydroxylase (TH) activity. Simple noncatecholic TIQs were found to act as moderate (TIQ, N-methyl-TIQ, 1-methyl-TIQ) or weak (1-benzyl-TIQ), MAO B and MAO A inhibitors. 1-Methyl-TIQ inhibited more potently MAO-A than MAO-B; the similar but more modest effect was exerted by salsolinol. Only salsolinol markedly inhibited TH activity, being competitive with the enzyme biopterin cofactor. The inhibition of MAO and TH by TIQs is discussed in relation to their ability to regulate monoamine metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号