首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The role of redox regulation in immune‐mediated arthritis has been previously described. However, the relationship between innate immune cells, including innate lymphoid cells (ILCs) and phagocyte‐derived ROS, in this process remains unclear. Here, we characterize ILCs and measure the IL‐1 family cytokines along with other cytokines relevant to ILC functions and development in serum‐induced arthritic joints in wild type and phagocytic NADPH oxidase (NOX2)‐deficient Ncf1?/? mice. We found more severe serum‐induced joint inflammation and increased NCR+ ILC3s in inflamed joints of Ncf1?/? mice. Furthermore, in vitro stimulation with IL‐1β on Tbet+ ILC1s from joints facilitated their differentiation into ROR‐γt+ ILC3s. Moreover, treatment with IL‐1 antagonists effectively lowered the proportions of NCR+ ILC3s and IL‐17A producing ILC3s in Ncf1?/? arthritic mice and ameliorated the joint inflammation. These results suggest that NOX2 is an essential regulator of ILC transdifferentiation and may mediate this process in a redox‐dependent manner through IL‐1β production in the inflammatory joint. Our findings shed important light on the role of ILCs in the initiation and progression in tissue inflammation and delineate a novel innate immune cell‐mediated pathogenic mechanism through which redox regulation may determine the direction of immune responses in joints.  相似文献   

2.
Interleukin (IL)‐36α, IL‐36β and IL‐36γ are expressed highly in skin and are involved in the pathogenesis of psoriasis, while the antagonists IL‐36Ra or IL‐38, another potential IL‐36 inhibitor, limit uncontrolled inflammation. The expression and role of IL‐36 cytokines in rheumatoid arthritis (RA) and Crohn's disease (CD) is currently debated. Here, we observed that during imiquimod‐induced mouse skin inflammation and in human psoriasis, expression of IL‐36α, γ and IL‐36Ra, but not IL‐36β and IL‐38 mRNA, was induced and correlated with IL‐1β and T helper type 17 (Th17) cytokines (IL‐17A, IL‐22, IL‐23, CCL20). In mice with collagen‐induced arthritis and in the synovium of patients with RA, IL‐36α, β, γ, IL‐36Ra and IL‐38 were all elevated and correlated with IL‐1β, CCL3, CCL4 and macrophage colony‐stimulating factor (M‐CSF), but not with Th17 cytokines. In the colon of mice with dextran sulphate sodium‐induced colitis and in patients with CD, only IL‐36α, γ and IL‐38 were induced at relatively low levels and correlated with IL‐1β and IL‐17A. We suggest that only a minor subgroup of patients with RA (17–29%) or CD (25%) had an elevated IL‐36 agonists/antagonists ratio, versus 93% of patients with psoriasis. By immunohistochemistry, IL‐36 cytokines were produced by various cell types in skin, synovium and colonic mucosa such as keratinocytes, CD68+ macrophages, dendritic/Langerhans cells and CD79α+ plasma cells. In primary cultures of monocytes or inflammatory macrophages (M1), IL‐36β and IL‐36Ra were produced constitutively, but IL‐36α, γ and IL‐38 were produced after lipopolysaccharide stimulation. These distinct expression profiles may help to explain why only subgroups of RA and CD patients have a potentially elevated IL‐36 agonists/antagonists ratio.  相似文献   

3.
Human induced CD4+CD25+ T cells have been shown to express FOXP3, similar to naturally occurring Treg cells (nTreg). However, the suppressive capacity of these cells is still under debate. The current study was designed to investigate functional characteristics of CD25+FOXP3+ derived from CD25? T cells. Stimulation of CD25? PBMC with allogeneic PBMC resulted in production of CD4+CD25high T cells. This process was more rapid and prominent when highly mature DC were used for stimulation. The resultant CD4+CD25high population concurrently exhibited regulatory markers FOXP3, CTLA‐4, GITR, and inflammatory cytokines IL‐2 and IFN‐γ. These human‐induced FOXP3+IFN‐γ+ T cells were shown, for the first time, to markedly inhibit alloreactive T‐cell expansion, similar to nTreg. However, in contrast to nTreg, the induced CD4+CD25+FOXP3+ cells did not suppress proliferation against a third party donor stimulus or CMV. This suggested that the cell population possessed a more selective suppressive capacity targeted against the original stimulus only. The induced human CD4+CD25+FOXP3+ subset derived from CD25? T cells, while expressing inflammatory cytokines, exhibits a suppressive cell contact‐dependent effect, restricted against T cells responding to the original stimulus. Such unique properties suggest that these cells are potentially ideal for the use as post‐transplant GVH disease prophylaxis.  相似文献   

4.
The immunological mechanisms that modulate protection during Mycobacterium tuberculosis (Mtb) infection or vaccination are not fully understood. Secretion of IFN‐γ and, to a lesser extent, of IL‐17 by CD4+ T cells plays a major role both in protection and immunopathology. Few Mtb Ags interacting with DCs affect priming, activation, and regulation of Ag‐unrelated CD4+ T‐cell responses. Here we demonstrate that PstS1, a 38 kDa‐lipoprotein of Mtb, promotes Ag‐independent activation of memory T lymphocytes specific for Ag85B or Ag85A, two immunodominant protective Ags of Mtb. PstS1 expands CD4+ and CD8+ memory T cells, amplifies secretion of IFN‐γ and IL‐22 and induces IL‐17 production by effector memory cells in an Ag‐unrelated manner in vitro and in vivo. These effects were mediated through the stimulation of DCs, particularly of the CD8α? subtype, which respond to PstS1 by undergoing phenotypic maturation and by secreting IL‐6, IL‐1β and, to a lower extent, IL‐23. IL‐6 secretion by PstS1‐stimulated DCs was required for IFN‐γ, and to a lesser extent for IL‐22 responses by Ag85B‐specific memory T cells. These results may open new perspectives for immunotherapeutic strategies to control Th1/Th17 immune responses in Mtb infections and in vaccinations against tuberculosis.  相似文献   

5.
An impaired expression of α‐defensins (α‐Defs) in the ileal mucosa and, conversely, increased levels in plasma, have been reported in Crohn's disease (CD). However, the specificity and correlation of these findings with the degree of inflammation are unclear. We aimed to characterize the concentration and utility of ileal and plasma α‐Defs in CD and to analyse a potential epigenetic mechanism of α‐Def expression. Peripheral blood samples and ileal biopsies were obtained from patients at disease onset (aCD), from those who achieved remission (iCD) and from two control groups (healthy controls and non‐CD‐aetiology ileitis patients). Plasma α‐Defs 1–3 and 4 were detected by enzyme‐linked immunosorbent assay (ELISA); α‐Def 5 by immunolocalization. Methylation analysis of the α‐Def 5 gene was performed using the MassARRAY EpiTYPER system. Plasma α‐Defs 1–3 concentrations were significantly higher in aCD with ileal involvement (L1, L3) versus iCD or the control groups. The α‐Defs 1–3 concentrations were also similar to healthy controls in patients with non‐CD ileitis. There was a significant positive correlation between plasma α‐Defs 1–3 levels in aCD and the endoscopic index, as well as with C‐reactive protein (CRP) levels. The immunopositivity scoring showed significantly reduced α‐Def 5 expression in ileal inflamed (aCD) versus non‐inflamed mucosa (iCD and healthy controls). The α‐Def 5 gene showed a higher methylation status in CD patients than controls, regardless of the inflammation. Plasma α‐Defs 1–3 concentrations correlate with the degree of inflammation and appear to be specific biomarkers of ileal‐CD at diagnosis. Ileal α‐Def 5 expression is down‐regulated permanently by methylation.  相似文献   

6.
Several chemokine receptors are expressed selectively on the surface of T cells depending on their polarization. The aim of this study was to characterize chemokine receptor expression in peripheral blood memory T cells in Crohn's disease (CD) and ulcerative colitis (UC), and to correlate the expression with disease activity. Peripheral blood mononuclear cells (PBMCs) were obtained from 24 patients with CD, 30 patients with UC, 24 normal controls and 10 disease controls. PBMCs were stained by anti-CCR3, CCR4, CCR5, CXCR3, CD4, CD8, CD45RO and beta 7 integrin, and the expression of the chemokine receptors were determined by flow cytometry. CCR4 expression on memory T cells was significantly lower in UC than in CD or normal controls, and that of memory CD4+ T and beta 7(high) memory CD4+ T cells was significantly higher in CD than in UC or normal controls. CCR4 expression on memory CD4+ T cells exhibited significant positive correlation with disease activity in CD, and this decreased significantly after treatment. Such a decrease was not found in the disease controls. CCR5 and CXCR3 expression on memory CD8+ T cells was significantly lower in CD than in normal controls. CXCR3 expression on beta 7(high) memory CD4+ T and CXCR3 expression on memory CD8+ T cells were lower in UC than in normal controls. These findings suggest that in peripheral blood memory T cells, chemokine receptor expression is different between CD and UC. Enhancement of CCR4 and suppression of CCR5 and CXCR3 seem to be the characteristic chemokine receptor profile in peripheral blood memory T cells of CD.  相似文献   

7.
IL‐10 is a potent immunoregulatory and anti‐inflammatory cytokine. However, therapeutic trials in chronic inflammation have been largely disappointing. It is well established that IL‐10 can inhibit Th1 and Th2 cytokine production via indirect effects on APC. Less data are available about the influence of IL‐10 on IL‐17 production, a cytokine which has been recently linked to chronic inflammation. Furthermore, there are only few reports about a direct effect of IL‐10 on T cells. We demonstrate here that IL‐10 can directly interfere with TCR‐induced IFN‐γ production in freshly isolated memory T cells in the absence of APC. This effect was independent of the previously described effects of IL‐10 on T cells, namely inhibition of IL‐2 production and inhibition of CD28 signaling. In contrast, IL‐10 did not affect anti‐CD3/anti‐CD28‐induced IL‐17 production from memory T cells even in the presence of APC. This might have implications for the interpretation of therapeutic trials in patients with chronic inflammation where Th17 cells contribute to pathogenesis.  相似文献   

8.
IL‐17, produced by a distinct lineage of CD4+ helper T (Th) cells termed Th17 cells, induces the production of pro‐inflammatory cytokines from resident cells and it has been demonstrated that over‐expression of IL‐17 plays a crucial role in the onset of several auto‐immune diseases. Here we examined the role of IL‐17 in the pathogenesis of autoimmune gastritis, a disease that was previously believed to be mediated by IFN‐γ. Significantly higher levels of IL‐17 and IFN‐γ were found in the stomachs and stomach‐draining lymph nodes of mice with severe autoimmune gastritis. Unlike IL‐17, which was produced solely by CD4+ T cells in gastritic mice, the majority of IFN‐γ‐producing cells were CD8+ T cells. However, CD8+ T cells alone were not able to induce autoimmune gastritis. T cells that were deficient in IL‐17 or IFN‐γ production were able to induce autoimmune gastritis but to a much lower extent compared with the disease induced by wild‐type T cells. These data demonstrate that production of neither IL‐17 nor IFN‐γ by effector T cells is essential for the initiation of autoimmune gastritis, but suggest that both are required for the disease to progress to the late pathogenic stage that includes significant tissue disruption.  相似文献   

9.
IL‐17 is produced not only by CD4+ αβ T cells, but also CD8+ αβ T cells, NKT cells, and γδ T cells, plus some non‐T cells, including macrophages and neutrophils. The ability of IL‐17 to deploy neutrophils to sites of inflammation imparts this cytokine with a key role in diseases of several types. Surprisingly, γδ T cells are responsible for much of the IL‐17 produced in several disease models, particularly early on.  相似文献   

10.
11.
12.
γδ T cells are a potent source of innate IL‐17A and IFN‐γ, and they acquire the capacity to produce these cytokines within the thymus. However, the precise stages and required signals that guide this differentiation are unclear. Here we show that the CD24low CD44high effector γδ T cells of the adult thymus are segregated into two lineages by the mutually exclusive expression of CCR6 and NK1.1. Only CCR6+ γδ T cells produced IL‐17A, while NK1.1+ γδ T cells were efficient producers of IFN‐γ but not of IL‐17A. Their effector phenotype correlated with loss of CCR9 expression, particularly among the NK1.1+ γδ T cells. Accordingly, both γδ T‐cell subsets were rare in gut‐associated lymphoid tissues, but abundant in peripheral lymphoid tissues. There, they provided IL‐17A and IFN‐γ in response to TCR‐specific and TCR‐independent stimuli. IL‐12 and IL‐18 induced IFN‐γ and IL‐23 induced IL‐17A production by NK1.1+ or CCR6+ γδ T cells, respectively. Importantly, we show that CCR6+ γδ T cells are more responsive to TCR stimulation than their NK1.1+ counterparts. In conclusion, our findings support the hypothesis that CCR6+ IL‐17A‐producing γδ T cells derive from less TCR‐dependent selection events than IFN‐γ‐producing NK1.1+ γδ T cells.  相似文献   

13.
Inducible Treg (iTreg) cells generated from Ag‐stimulated naïve CD4+ T cells in the periphery play an important role in regulating immune responses. TGF‐β is a key cytokine that promotes this conversion process; however, how this process is regulated in vivo remains unclear. Here, we report that γδ T cells play a crucial role in controlling iTreg generation and suppressor function. Ag‐induced iTreg generation was significantly enhanced in C57BL/6 mice in the absence of γδ T cells. Inhibition of iTreg conversion was mediated by IFN‐γ produced by activated γδ T cells but not by activated CD4+ T cells. BM chimera experiments further confirmed γδ‐derived IFN‐γ‐dependent mechanism in regulating iTreg generation in vivo. Lastly, human peripheral blood γδ T cells also interfere with iTreg conversion via IFN‐γ. Our results suggest a novel function of γδ T cells in limiting the generation of iTreg cells, potentially balancing immunity and tolerance.  相似文献   

14.
15.
16.
Crohn's disease is a chronic inflammatory bowel disease of unknown aetiology. Mucosal inflammatory dysregulation is likely important, with increased production of pro‐inflammatory cytokines, including tumour necrosis factor alpha (TNFα). The chimeric monoclonal antibody, infliximab, inhibits TNFα and promotes intestinal mucosal healing. Despite this, many patients still require surgical intervention. Patients who have undergone colonic resection post‐infliximab therapy, show markedly variable morphological response to treatment. FOXP3+ CD4+ regulatory T‐cells have been shown to have a protective role in autoimmune/inflammatory diseases and their sequestration to the bowel is found in those treated with infliximab. We examined the immunohistochemical profile of lymphoid aggregates in tissue sections from post‐infliximab Crohn's colitis resection specimens, classified as morphological responders or non‐responders, defined in relation to the absence/presence of mucosal ulceration and active inflammation, and a control group. Results indicated no significant diffences in CD68‐positive cell counts but increased FOXP3‐positive (P = 0.02) and CD4‐positive (P = 0.05) cell counts in responders versus non‐responders. Untreated control scores were similar to non‐responders. Although based on small study numbers, our results suggest an association between upregulation of FOXP3+/CD4+ regulatory T‐cells and morphological response to infliximab therapy. This represents a possible quantitative methodology for monitoring therapeutic response to infliximab therapy, based on immunohistochemical evaluation of endoscopic biopsy specimens.  相似文献   

17.
18.
The cytokines IL‐6, IL‐1β, TGF‐β, and IL‐23 are considered to promote Th17 commitment. Langerhans cells (LC) represent DC in the outer skin layers of the epidermis, an environment extensively exposed to pathogenic attack. The question whether organ‐resident DC like LC can evoke Th17 immune response is still open. Our results show that upon stimulation by bacterial agonists, epidermal LC and LC‐like cells TLR2‐dependently acquire the capacity to polarize Th17 cells. In Th17 cells, expression of retinoid orphan receptor γβ was detected. To clarify if IL‐17+cells could arise per se by stimulated LC we did not repress Th1/Th2 driving pathways by antibodies inhibiting differentiation. In CD1c+/langerin+ monocyte‐derived LC‐like cells (MoLC), macrophage‐activating lipopeptide 2, and peptidoglycan (PGN) induced the release of the cytokines IL‐6, IL‐1β, and IL‐23. TGF‐β, a cytokine required for LC differentiation and survival, was found to be secreted constitutively. Anti‐TLR2 inhibited secretion of IL‐6, IL‐1β, and IL‐23 by MoLC, while TGF‐β was unaffected. The amount of IL‐17 and the ratio of IL‐17 to IFN‐γ expression was higher in MoLC‐ than in monocyte‐derived DC‐cocultured Th cells. Anti‐IL‐1β, ‐TGF‐β and ‐IL‐23 decreased the induction of Th17 cells. Interestingly, blockage of TLR2 on PGN‐stimulated MoLC prevented polarization of Th cells into Th17 cells. Thus, our findings indicate a role of TLR2 in eliciting Th17 immune responses in inflamed skin.  相似文献   

19.
Inflammatory bowel diseases (IBD) are key risk factors for the development of colorectal cancer, but the mechanisms that link intestinal inflammation with carcinogenesis are insufficiently understood. Card9 is a myeloid cell‐specific signaling protein that regulates inflammatory responses downstream of various pattern recognition receptors and which cooperates with the inflammasomes for IL‐1β production. Because polymorphisms in Card9 were recurrently associated with human IBD, we investigated the function of Card9 in a colitis‐associated cancer (CAC) model. Card9?/? mice develop smaller, less proliferative and less dysplastic tumors compared to their littermates and in the regenerating mucosa we detected dramatically impaired IL‐1β generation and defective IL‐1β controlled IL‐22 production from group 3 innate lymphoid cells. Consistent with the key role of immune‐derived IL‐22 in activating STAT3 signaling during normal and pathological intestinal epithelial cell (IEC) proliferation, Card9?/? mice also exhibit impaired tumor cell intrinsic STAT3 activation. Our results imply a Card9‐controlled, ILC3‐mediated mechanism regulating healthy and malignant IEC proliferation and demonstrates a role of Card9‐mediated innate immunity in inflammation‐associated carcinogenesis.  相似文献   

20.
Conventional αβ T cells have the ability to form a long‐lasting resident memory T‐cell (TRM) population in nonlymphoid tissues after encountering foreign antigen. Conversely, the concept of ‘innate memory’, where the ability of nonadaptive branches of the immune system to deliver a rapid, strengthened immune response upon reinfection or rechallenge, is just emerging. Using the αβ T‐cell‐independent Aldara psoriasis mouse model in combination with genetic fate‐mapping and reporter systems, we identified a subset of γδ T cells in mice that is capable of establishing a long‐lived memory population in the skin. IL‐17A/F‐producing Vγ4+Vδ4+ T cells populate and persist in the dermis for long periods of time after initial stimulation with Aldara. Experienced Vγ4+Vδ4+ cells show enhanced effector functions and mediate an exacerbated secondary inflammatory response. In addition to identifying a unique feature of γδ T cells during inflammation, our results have direct relevance to the human disease as this quasi‐innate memory provides a mechanistic insight into relapses and chronification of psoriasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号